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Abstract

We consider a loosely coupled algorithm for fluid-structure interaction based
on a Robin interface condition for the fluid problem (explicit Robin-Neumann
scheme). We study the dependence of the stability of this method on the
interface parameter in the Robin condition. In particular, for a model prob-
lem we find sufficient conditions for instability and stability of the method.
In the latter case, we found a stability condition relating the time dis-
cretization parameter, the interface parameter, and the added mass effect.
Numerical experiments confirm the theoretical findings and highlight opti-
mal choices of the interface parameter that guarantee an accurate solution
with respect to an implicit one.

1 Introduction

Loosely-coupled schemes (also known as explicit) are a very attractive strategy
for the numerical solution of the fluid-structure interaction (FSI) problem. In-
deed, they are based on the solution of just one fluid and one structure problem
at each time step, thus allowing a big improvement in the computational costs
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in comparison to fully-coupled (implicit) partitioned procedures and monolithic
schemes. Another interesting feature of such schemes is that pre-existing fluid
and structure solvers could be often employed.

For these reasons, loosely-coupled schemes have been widely used in many
engineering applications such as aeroelasticity [12,27,28]. However, the stability
properties of such schemes deteriorate when the so-called added mass effect
becomes relevant. This happens, in particular, when the fluid and structure
densities are comparable, as happens in hemodynamics [29]. For example, in
[10] it has been proven that the classical explicit Dirichlet-Neumann scheme is
unconditionally unstable in the hemodynamic regime, see also [16,26].

In the recent years, there has been a growing interest in partitioned proce-
dures that are based on Robin interface conditions. The latter are obtained by
considering linear combinations of the standard interface conditions owing to the
introduction of suitable parameters. The choice of such parameters is crucial for
accelerating the convergence of implicit schemes [2–4, 17, 18]. Some works fo-
cused then on the design of stable loosely-coupled schemes for large added mass
effect, which are based on Robin interface conditions [6–9,13,14,19,21,25]. These
studies proposed specific values of the interface parameters which guarantee good
stability properties (possibly in combination with suitable stabilizations).

In this paper, the explicit Robin-Neumann scheme, obtained by equipping
the fluid subproblem with a Robin condition with parameter α and the structure
one with a Neumann condition, is considered. In particular, it is investigated how
the choice of the interface parameter α influences the stability of the numerical
solution. To this aim, two analyses on a simplified problem are performed, the
first one determining sufficient conditions for instability of the scheme, whereas
the second one sufficient conditions for its stability. This will allow us to under-
stand the dependence of stability and instability on the physical and numerical
parameters and to properly design stable loosely-coupled schemes which could
be easily implemented also by means of available (even commercial) solvers.

To validate the theoretical findings found in the analysis reported in Section
2, in Section 3 we eventually present the results of some numerical experiments,
where the issue of accuracy is also discussed by proposing some ”optimal” value
of the interface parameters.

2 Position of the problem

2.1 The fluid-structure interaction problem

We introduce in what follows the simplified fluid-structure interaction problem
considered in the analyses below, see [10]. We consider the 2D fluid domain Ωf

which is a rectangle R×L, where R is denoted the “radius” and L the length of
the domain. Its boundary is given by ∂Ωf = Γ

⋃
Σ, where Σ is the part where

the interaction with the structure occurs, see Figure 1. For the structure, we
consider a 1D model in the domain Ωs = Σ.
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Figure 1: Fluid and structure domains for the simplified fluid-structure interac-
tion problem.

For the fluid modeling, we consider a linear incompressible inviscid problem,
whereas for the structure the independent rings model [30]. The displacement
could happen only in the radial direction. Moreover, we assume small displace-
ments so that the structure deformation is negligible and the fluid domain can
be considered fixed. Thus, we have the following FSI problem:
Find fluid velocity u, fluid pressure p, and structure displacement η, such that

ρf
∂u

∂t
+∇p = 0 in (0, T )× Ωf ,

∇ · u = 0 in (0, T )× Ωf ,

u · n =
∂η

∂t
in (0, T )× Σ, (1a)

ρsHs
∂2η

∂t2
+ βη − ψ∂

2η

∂x2
= p in (0, T )× Σ, (1b)

where n is the outward normal, ρf and ρs the fluid and structure densities, x the
axial direction along which Σ is located, Hs the structure thickness, and β and ψ
two suitable parameters accounting for the elasticity of the structure. Moreover,
we have to equip the fluid problem with boundary conditions (for example of
homogeneous type) on ∂Ω \ Σ and for the tangential component on Σ [10].
Condition (1a) represents a no-slip condition at the interface Σ between fluid
and structure (perfect adherence or kinematic condition). Due to the lower space
dimension of the structure, the independent rings model (1b) represents also the
third Newton law (continuity of the normal stresses or dynamic condition).

2.2 Time discretization and explcit Robin-Neumann scheme

Denoting by ∆t the time discretization parameter, vn the approximation of
v(tn), tn = n∆t, and setting un = (un · n)|Σ, we have the following discretized-
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in-time version of problem (1): Find for each n, un, pn, and ηn, such that

ρf
un − un−1

∆t
+∇pn = 0 in Ωf , (2a)

∇ · un = 0 in Ωf , (2b)

un =
ηn − ηn−1

∆t
on Σ, (2c)

ρsHsδttη
n + βηn − ψ∂

2ηn

∂x2
= pn in Σ. (2d)

Notice that we have considered a backward Euler approximation for the fluid
problem and we indicated with δtt the approximation of the second derivative in
time for the structure problem.

Introducing α > 0, we can substitute in (2) the kinematic condition (2c) with
the following linear combination obtained with the dynamic condition (2d):

−αun + pn = −αη
n − ηn−1

∆t
+ ρsHsδttη

n + βηn − ψ∂
2ηn

∂x2
on Σ. (3)

Of course, the solution of problem (2a)-(2b)-(3)-(2d) coincides with that of (2).
Now, the idea is to consider a partitioned method where condition (3) is

given to the fluid problem, whereas (2d) is in fact the structure problem. Since
the fluid problem has been discretized with an implicit method, in (3) we use
the following approximation of the second derivative

δttη
n = ρsHs

ηn − 2ηn−1 + ηn−2

∆t2
.

Instead, for the structure problem (2d) we use the explicit leap-frog approxima-
tion

δttη
n = ρsHs

ηn+1 − 2ηn + ηn−1

∆t2
.

We observe that, due to the explicit time discretization of the structure problem,
fluid and structure are in fact decoupled and, accordingly, we can introduce the
following algorithm.
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Algorithm 1 Explicit Robin-Neumann algorithm.

Given u0, η1, η0, for n ≥ 1, at time step tn:

1. Solve the fluid problem with a Robin condition at the interface Σ:

ρf
un − un−1

∆t
+∇pn = 0 in Ωf ,

∇ · un = 0 in Ωf ,

− αun + pn = −αη
n − ηn−1

∆t
+ ρsHs

ηn − 2ηn−1 + ηn−2

∆t2
+ βηn − ψ∂

2ηn

∂x2
on Σ;

(4a)

2. Then, solve the structure problem (Neumann condition at the interface):

ρsHs
ηn+1 − 2ηn + ηn−1

∆t2
+ βηn − ψ∂

2ηn

∂x2
= pn in Σ. (5)

In the next section, we study how the stability of the previous algorithm is
affected by the choice of the parameter α.

3 Stability analysis

3.1 Preliminaries

First, we notice that using the previous algorithm, the discrete kinematic con-
dition (2c) is not satisfied anymore. Indeed, from (5) we have

βηn − ψ∂
2ηn

∂x2
− pn = −ρsHs

ηn+1 − 2ηn + ηn−1

∆t2
,

where it is understood from now on that the equalities we derive hold true at
the interface Σ. By introducing the latter expression in (4a), we obtain

−αun = −αη
n − ηn−1

∆t
+ ρsHs

ηn − 2ηn−1 + ηn−2

∆t2
− ρsHs

ηn+1 − 2ηn + ηn−1

∆t2
,

which leads to

un =
ηn − ηn−1

∆t
+ ρsHs

ηn+1 − 3ηn + 3ηn−1 − ηn−2

α∆t2
. (6)

The latter equality provides a ”correction” of the discrete kinematic condition
(2c) as a consequence of the explicit treatment.
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Following then [10], we consider the added mass operatorM : H−1/2(Σ)→ H1/2(Σ),
which allows us to write the following relation between fluid pressure and velocity
at the interface, under the assumption of null external pressure:

p = −ρfM
(
∂(u · n)

∂t

)
in (0, T )× Σ.

At the time discrete level, we have

pn = −ρfM
(
un − un−1

∆t

)
.

Inserting (6) for both un and un−1, we obtain

pn = −ρfM
(
ηn − 2ηn−1 + ηn−2

∆t2
+
ρsHs

α∆t3
(
ηn+1 − 4ηn + 6ηn−1 − 4ηn−2 + ηn−3

))
,

(7)
which gives a relation between pressure and displacement at the interface.

We can write ηm for any m as a linear combination of the L2 orthonormal

basis functions
{
gi(x) =

√
2/L sin

(
iπx
L

)}
:

ηm(x) =

∞∑
i=1

ηmi gi(x),

for suitable coefficients ηmi , see [3,10]. Notice that gi are eigenfunctions of both
the added mass operator M and of the Laplace operator L = −b ∂xx|Σ, with
eigenvalues given by

µi =
L

iπ tanh
(
iπR
L

) , λi =

(
iπ

L

)2

,

respectively.
It is useful for later purposes to highlight that the eigenvalues µi and λi of

the discrete versions of the operators M and L obtained with finite elements,
feature the following properties [3, 10]:

µmin ∼ h, λmax ∼ h−2, µmax ∼ h0, (8)

where h is the space discretization parameter.

3.2 Sufficient conditions for instability

We present in what follows a first result that provides sufficient conditions that
guarantee conditional instability of the explicit Robin-Neumann scheme. This
results generalizes the one proven in [10] about the unconditional instability of
the Dirichlet-Neumann scheme (α→∞, see Proposition 3 in [10]).
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Proposition 1. The explicit Robin-Neumann scheme is unstable if

ρsHs < max
i
γi, γi = α∆t

4ρfµi + ∆t2 (β + ψλi)

16ρfµi + 4α∆t
. (9)

Proof. We start by inserting in the interface condition (5) the expression of pn

given by (7), obtaining

ρsHs
ηn+1 − 2ηn + ηn−1

∆t2
+ βηn − ψ∂

2ηn

∂x2
+

ρfM
(
ηn − 2ηn−1 + ηn−2

∆t2
+
ρsHs

α∆t3
(
ηn+1 − 4ηn + 6ηn−1 − 4ηn−2 + ηn−3

))
= 0.

Notice that the previous is a relation in the discrete structure displacement
solely. Multiplying it by the basis function gi and integrating over the interface
Σ, we obtain

ρsHs

∆t2

(
1 +

ρfµi
α∆t

)
ηn+1
i +

(
−2ρsHs

∆t2
+ β + ψλi +

ρfµi
∆t2

−
4ρsHsρfµi
α∆t3

)
ηni +(

ρsHs

∆t2
− 2

ρfµi
∆t2

+
6ρsHsρfµi
α∆t3

)
ηn−1
i +

(
ρfµi
∆t2

−
4ρsHsρfµi
α∆t3

)
ηn−2
i +

ρsHsρfµi
α∆t3

ηn−3
i = 0.

By multiplying the last identity by α∆t
ρfµi

, we obtain the following characteristic

polynomial corresponding to the previous difference equation:

χ(y) =
ρsHs

∆t2

(
1 +

α∆t

ρfµi

)
y4 +

(
−2αρsHs

ρfµi∆t
+
α∆t

ρfµi
(β + ψλi) +

α

∆t
− 4ρsHs

∆t2

)
y3

+

(
αρsHs

ρfµi∆t
− 2

α

∆t
+

6ρsHs

∆t2

)
y2 +

(
α

∆t
− 4ρsHs

∆t2

)
y +

ρsHs

∆t2
.

(10)
Now, we compute the value of the previous polynomial for y = −1:

χ(−1) =
16ρsHs

∆t2
+

4αρsHs

ρfµi∆t
− 4α

∆t
− α∆t

ρfµi
(β + ψλi)

=
α

ρfµi∆t

(
4ρsHs − 4ρfµi −∆t2 (β + ψλi)

)
+

16ρsHs

∆t2
.

It follows that χ(−1) < 0 under condition (9). Since limy→−∞ χ(y) = +∞,
it follows that in this case there exists at least one real root ȳ < −1 of the
polynomial associated to the difference equation, implying that the method is
unstable.

3.3 Sufficient conditions for stability

We discuss in the following result some sufficient conditions that guarantee that
the explicit Robin-Neumann scheme is conditionally stable. The idea is to start
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again from the polynomial (10) and discuss when its four roots have all modulus
less than 1.

To this aim, we first introduce the following version of the implicit function
theorem.

Theorem 1. Let f ∈ C1
(
R2
)

and suppose that for all x ∈ Ω, an open interval,
and for all

y ∈ (ϕ1 (x) , ϕ2 (x)) ,

where ϕ1, ϕ2 : Ω→ R are continuous functions, we have either

∂f

∂y
(x, y) ≥ b (x) > 0 (11)

or
∂f

∂y
(x, y) ≤ b (x) < 0,

for some continuous function b : Ω → R. Let g : Ω → R be such that for all
x ∈ Ω

g (x) ∈ (ϕ1 (x) , ϕ2 (x)) , (12a)

g (x)− f (x, g (x))

b (x)
∈ (ϕ1 (x) , ϕ2 (x)) . (12b)

Then, there is a unique function ξ : Ω→ R such that, for all x ∈ Ω, ξ (x) ∈ (ϕ1 (x) , ϕ2 (x))
and f (x, ξ (x)) = 0. Furthermore, for all x ∈ Ω

|ξ (x)− g (x)| ≤
∣∣∣∣f (x, g (x))

b (x)

∣∣∣∣ .
Proof. Let us consider the case ∂f

∂y (x, y) ≥ b (x) > 0. The other case follows from
it after replacing f (x, y) with −f (x, y) and b (x) with −b (x). Fix x ∈ Ω. By
strict monotonicity of the function y 7→ f (x, y) in the interval (ϕ1 (x) , ϕ2 (x)),
there is at most one value ξ (x) ∈ (ϕ1 (x) , ϕ2 (x)) for which f (x, ξ (x)) = 0. This
proves uniqueness.

Now, the function y 7→ f (x, y) takes the value f (x, g (x)) at y0 = g (x).
Consider now the point

y1 = y0 −
f (x, y0)

b (x)
,

and assume without loss of generality that y0 ≤ y1, that is f (x, y0) ≤ 0. By
the hypotheses, we have [y0, y1] ⊆ (ϕ1 (x) , ϕ2 (x)), so that for all y ∈ [y0, y1] we
have ∂f

∂y (x, y) ≥ b (x) > 0 and

f (x, y1) =

∫ y1

y0

∂f

∂y
(x, t) dt+ f (x, y0)

≥ b (x) (y1 − y0) + f (x, y0)

= b (x)

(
y0 −

f (x, y0)

b (x)
− y0

)
+ f (x, y0) = 0.
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By the intermediate value theorem, there is a point ξ (x) ∈ [y0, y1] such that
f (x, ξ (x)) = 0. This prove existence.

Finally,
y0 ≤ ξ (x) ≤ y1

means

g (x) ≤ ξ (x) ≤ g (x)− f (x, g (x))

b (x)

so that

|ξ (x)− g (x)| ≤
∣∣∣∣f (x, g (x))

b (x)

∣∣∣∣ ,
proving the last part of the theorem.

Now, we are ready to introduce the main result of this work.

Theorem 2. For all positive ρs, ρf , α, Hs and for all finite sequences of positive

eigenvalues {µi}Ni=1, {λi}Ni=1, there exists a positive δ such that, if 0 < ∆t < δ,
then, for all i = 1, . . . , N , the polynomial (10) has four simple roots in the open
unit disc in the complex plane.

Proof. It is convenient to normalize χ (y), setting

Q (y) =
∆t2

ρsHs
χ (y)

= (1 +Biz) y
4 −

(
4 + (2Bi −A) z −ACiz3

)
y3 + (6 + (Bi − 2A) z) y2 − (4−Az) y + 1,

where

z = ∆t > 0,

A =
α

ρsHs
> 0,

Bi =
α

ρfµi
> 0,

Ci =
1

ρfµi
(β + ψλi) > 0.

For technical reasons, we will equivalently study the polynomial

P (x) = x4Q

(
1

x

)
= x4 − (4−Az)x3 + (6 + (Bi − 2A) z)x2

−
(
4 + (2Bi −A) z −ACiz3

)
x+ (1 +Biz) ,

(13)

showing that all its four roots have modulus greater than 1. Observe first that
when z = 0, P (x) reduces to

x4 − 4x3 + 6x2 − 4x+ 1 = (x− 1)4 .
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By classical results, this implies that for sufficiently small z, P (x) has four
simple roots as close as desired to x = 1 in the complex plane (see [20], page
122). Unfortunately, this is not sufficient for our purposes, and for this reason
we need a deeper analysis.

Now set x = 1 +U . This simplifies our formulas, since we look for roots that
are close to 1. This gives

P (1 + U) = U4 +AzU3 + (Bi +A) zU2 +ACiz
3U +ACiz

3. (14)

Recalling that U is a complex variable, we write it as U = u + iv where u and
v are its real and imaginary parts, respectively. Thus, the equation

(u+ iv)4 +Az (u+ iv)3 + (Bi +A) z (u+ iv)2 +ACiz
3 (u+ iv) +ACiz

3 = 0

reduces to the system
v4 − v2

(
6u2 + 3Azu+ z (A+Bi)

)
+ u4 +Azu3 + (A+Bi) zu

2

+ACiz
3u+ACiz

3 = 0,
v
(
−v2 (4u+Az) + 4u3 + 3Au2z + 2uz (A+Bi) +ACiz

3
)

= 0.
(15)

Notice that the solution of the second equation v = 0 reduces the first equation
to

u4 + (u+ 1)Azu2 +Bizu
2 +ACiz

3 (u+ 1) = 0,

which does not have any real solution u > −1 (all summands are positive).
Since we look for roots u+ iv close to 0, we disregard the solution of the second
equation v = 0 and focus on the other solution

v2 =
4u3 + 3Au2z + 2uz (A+Bi) +ACiz

3

4u+Az
, (16)

which reduces the first equation to

T6u
6 + T5u

5 + T4u
4 + T3u

3 + T2u
2 + T1u+ T0 = 0, (17)

where

T6 = −64,

T5 = −96Az,

T4 = 32 (A+Bi) z + 48A2z2,

T3 = 32A (A+Bi) z
2 + 8A3z3,

T2 = 4 (A+Bi)
2 z2 + 8A

(
A2 +BiA− 2Ci

)
z3 + 4A2Ciz

4,

T1 = −2A (A+Bi)
2 z3 + 8A2Ciz

4 − 2A3Ciz
5,

T0 = −A2Ci (Bi − zCi) z5.

10



Since we look for roots that go to 0 with z, we may assume that u is O (z)
as z → 0. The original equation (17) can therefore be approximated with

T2u
2 + T1u+ T0 = 0;

further, disregarding all higher order terms in z, it can be approximated with

4 (A+Bi)
2 u2 − 2A (A+Bi)

2 zu−A2z3CiBi = 0. (18)

If u = O (z), then the third term in the above equation can be neglected and
the same equation can be approximated with

4u− 2Az = 0,

which gives the approximate solution

u =
A

2
z.

If u = O
(
z2
)
, then the first term in equation (18) can be neglected and (18) can

be approximated with

2 (A+Bi)
2 u+Az2CiBi = 0,

which gives the approximate solution

u = − ACiBi

2 (A+Bi)
2 z

2.

We now need to estimate the derivative with respect to u of

f (z, u) = T6u
6 + T5u

5 + T4u
4 + T3u

3 + T2u
2 + T1u+ T0,

that is
∂f

∂u
(z, u) = 6T6u

5 + 5T5u
4 + 4T4u

3 + 3T3u
2 + 2T2u+ T1. (19)

We are now ready to apply Theorem 1, with the two following choices for g
suggested by the previous approximate solutions:

g1(z) =
A

2
z,

g2(z) = − ACiBi

2 (A+Bi)
2 z

2.

Assume first u close to g1 (z) . Precisely, assume that for some K1 > 0,
ϕ1 (z) = g1 (z)−K1z

2 ≤ u ≤ ϕ2 (z) = g1 (z) +K1z
2, so that hypothesis (12a) in

Theorem 1 is satisfied. In particular, u = g1 (z) +O
(
z2
)

and, from (19),

∂f

∂u
(z, u) = 8 (A+Bi)

2 z2u− 2A (A+Bi)
2 z3 +O

(
z4
)

= 8 (A+Bi)
2 z2g1 (z)− 2A (A+Bi)

2 z3 +O
(
z4
)

= 2A (A+Bi)
2 z3 +O

(
z4
)
.
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Thus, for some small positive δ1, if 0 < z < δ1 and g1 (z)−K1z
2 ≤ u ≤ g1 (z)+K1z

2,
we have

∂f

∂u
(z, u) ≥ A (A+Bi)

2 z3 = b1 (z) ,

which shows that, with the above choices, hypothesis (11) in Theorem 1 is sat-
isfied.

Now we need to check hypothesis (12b) in Theorem 1, that is

g1 (z)−K1z
2 ≤ g1 (z)− f (z, g1 (z))

b1 (z)
≤ g1 (z) +K1z

2,

or, in other words,
f (z, g1 (z))

b1 (z)
= O

(
z2
)
.

We have:

f (z, g1 (z))

b1 (z)
=

4 (A+Bi)
2 z2g1 (z)2 − 2A (A+Bi)

2 z3g1 (z) +O
(
z5
)

A (A+Bi)
2 z3

=
(A+Bi)

2 z2A2z2 −A (A+Bi)
2 z3Az +O

(
z5
)

A (A+Bi)
2 z3

= O
(
z2
)
,

since the first two terms at numerator vanish. Thus, it follows from Theorem 1
that there exists a unique function

u1 : (0, δ1)→
(
A

2
z −K1z

2,
A

2
z +K1z

2

)
such that f (z, u1 (z)) = 0 for all z ∈ (0, δ1) . Furthermore, for all z ∈ (0, δ1)∣∣∣∣u1 (z)− A

2
z

∣∣∣∣ ≤ f (z, g1 (z))

b1 (z)
,

which implies that

u1 (z) =
A

2
z +O

(
z2
)

as z → 0+.
Similarly, let us assume now u close to g2 (z) . Precisely, assume that for some

K2 > 0, ψ1 (z) = g2 (z) − K2z
3 ≤ u ≤ ψ2 (z) = g2 (z) + K1z

3. Then, we have
u = g2(z) +O

(
z3
)

and

∂f

∂u
(z, u) = −2A (A+Bi)

2 z3 +O
(
z4
)
.

Thus, for some small positive δ2, if 0 < z < δ2 and g2 (z)−K2z
3 ≤ u ≤ g2 (z)+K2z

3,
we have

∂f

∂u
(z, u) ≤ −A (A+Bi)

2 z3 = b2 (z) .
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Now we need to check if

g2 (z)−K2z
3 ≤ g2 (z)− f (z, g2 (z))

b2 (z)
≤ g2 (z) +K2z

3

or, in other words, if
f (z, g2 (z))

b2 (z)
= O

(
z3
)
.

We have:

f (z, g2 (z))

b2 (z)
=
−2A (A+Bi)

2 z3g2 (z)−A2z5CiBi +O
(
z6
)

−A (A+Bi)
2 z3

=
z3A2CiBiz

2 −A2z5CiBi +O
(
z6
)

A (A+Bi)
2 z3

= O
(
z3
)
.

Thus, it follows from Theorem 1 that there is a unique function

u2 : (0, δ2)→
(
− ACiBi

2 (A+Bi)
2 z

2 −K2z
3,− ACiBi

2 (A+Bi)
2 z

2 +K2z
3

)
such that f (z, u2 (z)) = 0 for all z ∈ (0, δ2) . Furthermore, for all z ∈ (0, δ2)∣∣∣∣u2 (z) +

ACiBi

2 (A+Bi)
2 z

2

∣∣∣∣ ≤ f (z, g2 (z))

b2 (z)
,

which implies that

u2 (z) = − ACiBi

2 (A+Bi)
2 z

2 +O
(
z3
)

as z → 0+.
Let us now compute v2 by means of (16) for these two choices. Setting

u = u1 (z) = A
2 z +O

(
z2
)
, we obtain

v2
1 =

4u3
1 + 3Au2

1z + 2u1z (A+Bi) +ACiz
3

4u1 +Az

=
Az2 (A+Bi) +O

(
z3
)

3Az +O (z2)

=
(A+Bi)

3
z +O

(
z2
)
.
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Setting now u = u2 (z) = − ACiBi

2(A+Bi)
2 z

2 +O
(
z3
)
, we obtain

v2
2 =

4u3
2 + 3Au2

2z + 2u2z (A+Bi) +ACiz
3

4u2 +Az

=
2z (A+Bi)

(
− ACiBi

2(A+Bi)
2 z

2
)

+ACiz
3 +O

(
z4
)

Az +O (z2)

=

ACiA
A+Bi

z3 +O
(
z4
)

Az +O (z2)

=
CiA

A+Bi
z2 +O

(
z3
)
.

Thus, (u1, v1) and (u2, v2) are solutions of system (15). This means that
u1 ± iv1 and u2 ± iv2 are the 4 roots of (14) and 1 + u1 ± iv1 and 1 + u2 ± iv2

are the four roots of (13).
The final step of the proof is to show that these four roots for P (x) have

modulus greater than 1. Accordingly, we have

(1 + u1)2 + v2
1 = 1 +Az +

(A+Bi)

3
z +O

(
z2
)
, as z → 0+.

Thus, there exists a positive δ3 such that (1 + u1)2+v2
1 > 1 for z < δ3. Moreover,

we have

(1 + u2)2 + v2
2 =

(
1− ACiBi

2 (A+Bi)
2 z

2

)2

+
CiA

(A+Bi)
z2 +O

(
z3
)

= 1− ACiBi

(A+Bi)
2 z

2 +
CiA

(A+Bi)
z2 +O

(
z3
)

= 1 +
CiA

2

(A+Bi)
2 z

2 +O
(
z3
)
, as z → 0+.

Thus, there exists a positive δ4 such that (1 + u2)2 + v2
2 > 1 for z < δ4.

This proves that the four roots of χ(y) in (10) have all modulus strictly less
than 1, provided that ∆t < δ = min{δ1, δ2, δ3, δ4}.

3.4 Discussion

The results proven above give us sufficient conditions for instability or stability
of the explicit Robin-Neumann scheme. In particular, in the last case, we found
that, given α > 0, for ∆t small enough this scheme is absolute stable.

In view of the numerical experiments, we discuss hereafter more in detail the
hypotheses of the previous results. To this aim, in what follows we write three
conditions that imply (9):
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i)

ρsHs < α∆t
4ρfµmin + ∆t2 (β + ψλmax)

16ρfµmin + 4α∆t
= η. (20)

This is obtained by taking the greatest possible value of i in (9);

ii) 
ρsHs < ρfµmin + ∆t2 (β + ψλmax) /4 = η1

α >
16ρfµminρsHs

∆t (4ρfµmin + ∆t2 (β + ψλmax)− 4ρsHs)
= α1.

(21)

This is obtained by solving (20) in the variable α;

iii) 
ρsHs < ρfµ1 = η2

α >
4ρfµ1ρsHs

∆t (ρfµ1 − ρsHs)
= α2.

(22)

This is obtained by taking i = 1 in (9), deleting the term ∆t2 (β + ψλ1)
and solving in α.

1. Dependence on ρsHs. By looking at conditions (21) and (22), we see that
when ρsHs < max (η1, η2), the explicit Robin-Neumann scheme is unstable
if α is large enough. In particular, for decreasing values of ρsHs < η1 (i.e.
for increasing added mass effect), the value of α1 decreases, enlarging the
range of α such that the scheme is unstable. The same argument holds
true for α2 when ρsHs < η2.

2. Dependence on ∆t. From Theorem 2, we have that for any fixed α > 0,
the explicit Robin-Neumann scheme is stable provided that ∆t is small
enough. This result is consistent with Proposition 1. Indeed, for all indices
i, we have

lim
∆t→0

γi = lim
∆t→0

α∆t
4ρfµi + ∆t2 (β + ψλi)

16ρfµi + 4α∆t
= 0.

Accordingly, we have also from (21)

lim
∆t→0

α1 = +∞.

Observe also that, by (22), for ρsHs < η2 instability of the scheme follows
if

∆t >
4ρfµ1ρsHs

α (ρfµ1 − ρsHs)
.

This means that in order to have stability according to Theorem 2 we need
at least δ ≤ cα−1. The dependence of δ on α is still under study and will
be hopefully discussed in future studies.
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3. Dependence on h. By exploiting the behaviour of µmin and λmax with
respect to h, see (8), we find from (20) that limh→0 η = +∞ for ∆t fixed.
This means that the stability properties of the method deteriorates when
h decreases. This is justified by the fact that when h becomes small, the
fluid and structure solutions should match a large number of d.o.f. at the
interface and, due to the implicit treatment for the fluid time discretization
and the explicit one for the structure, this matching becomes more and
more difficult for smaller values of h.

4. ∆t,h→ 0. From (8), we have that if ∆t ∼ h, then lim∆t,h→0 α1 '
16ρsHsρf

ψ+4ρf−4ρsHs
.

When the added mass effect is large enough (ρsHs small enough), this limit
is positive and bounded, unlike the case ∆t→ 0, h fixed (cf. point 2). This
means that in this case we have instability for a wide range of values of α
even as ∆t→ 0. This suggests that the value of δ in Theorem 2 should be
smaller (up to a constant) than h. Indeed, we have the following result.

Lemma 1. The value of δ in Theorem 2 satisfies the relation

δ < ch,

for a suitable constant c.

Proof. Fix α > 0. Call δ = f(h) the relationship between δ and h. Let
assume that the thesis is not true, that is that there exists a sequence of
values hj and correspondingly δj = f(hj), such that

lim
j→+∞

δj
hj

= +∞. (23)

From Theorem 2, we have that stability is guaranteed if ∆t = ∆tj = δj/2.
On the other side, from (23) and the choice of ∆t above, we have that
hj = o(δj) = o(∆tj). From (20), we have that in the range h = o (∆t),
lim∆t,h→0 η = +∞, obtaining unconditional instability. This contradicts
the previous finding about stability. This means that the thesis is true.

5. The cases α = +∞ and α = 0. Theorem 2 holds true for any α ∈ (0,+∞).
The case α = +∞ corresponds to the explicit Dirichlet-Neumann scheme.
In this case, the polynomial χ(y) in (10) corresponds to the one found
in [10] (see Proposition 3 therein), where it is shown that at least one root
has modulus greater than one independently of ∆t (cf. also (20)).

Regarding α = 0, we obtain χ(y) = ρsHs

∆t2
(y − 1)4. This means that the

solution does not blow up, even if it is not strictly absolute stable. This
is in accordance with the fact that in this case the numerical solution
does not evolve during the time evolution, being always equal to the initial
condition (the same Neumann datum is transferred at the interface). Thus,
accuracy is completely lost. From this observation, we can argue that too
small values of α, even though give stability, do not lead to an accurate
solution.
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4 Numerical results

4.1 Preliminaries

In this section we present some numerical results with the aim of validating the
theoretical findings reported in the previous section. In particular, we studied the
effectiveness of the analyses obtained for the simplified models, when applied to
complete three-dimensional fluid and structure models. All the simulations are
inspired from hemodynamics. This problem is of great interest for our purposes
since it is characterized by a high added mass effect, so that the stability of
explicit methods is a challenging issue. Moreover, the thickness of the structure
is small enough to make acceptable the use of a membrane model in the stability
analysis of the previous section.

We considered the coupling between the 3D incompressible Navier-Stokes
equations written in the Arbitrary Lagrangian-Eulerian formulation [11] and
the 3D linear infinitesimal elasticity, see [18, 23] for all the details. For the
time discretization, we used the BDF scheme of order 1 for both the fluid and
structure, with a semi-implicit treatment of the fluid convective term, whereas
for the numerical discretization we employed P1bubble − P1 finite elements for
the fluid and P1 finite elements for the structure. The fluid domain at each time
step is obtained by extrapolation of previous time steps (semi-implicit approach
[5, 15, 24]). We used the following data: fluid viscosity µ = 0.035 g/(cms), fluid
density ρf = 1 g/cm3, structure density ρs = 1.1 g/cm3, Poisson ratio ν = 0.49,
Young modulus E = 3 · 105 Pa, surrounding tissue parameter for the structure
problem [22] γST = 1.5 · 105 Pa/cm.

The fluid domain is a cylinder with length L = 5 cm and radius R = 0.5 cm,
whereas the structure domain is the external cylindrical crown with thickness
Hs = 0.1 cm. We considered a couple of meshes with 4680 tetrahedra and
1050 vertices for the fluid and 1260 vertices for the structure (mesh I). Another
couple of meshes (mesh II) has been obtained by halving the values of the space
discretization parameter.

At the inlet we prescribed a Neumann condition given by the following pres-
sure function

Pin = 500

(
1− cos

(
2πt

0.01

))
dyne/cm2, t ≤ T = 0.04 s,

with absorbing resistance conditions at the outlets [23,25].
All the numerical results have been obtained with the parallel Finite Element

library LIFEV [1].

4.2 On the stability of the numerical solution

In the first set of numerical experiments, we study the stability of the solution.
The time discretization parameter is ∆t = 0.0005 s. In Figure 2 we report the
mean pressure over the middle cross section of the cylinder obtained for different
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values of α and with an implicit method. From these results we observe stability

Figure 2: Fluid mean pressure over the middle cross section (z = L/2 = 2.5 cm)
for different values of α.

of the numerical solution obtained with the explicit Robin-Neumann method for
some values of the interface parameter α. The accuracy seems to deteriorate
for decreasing values of α (cf. point 5 in the Discussion of Sect. 3.4). Notice
that with α = 2500 the numerical solution (not reported here) blows up. The
same happens for bigger values of α. This is consistent with the result proven
in Proposition 1, for which an unstable solution is obtained for α greater than
a threshold when the added mass effect is large enough, see (21)-(22) (cf. also
point 1 in the Discussion of Sect. 3.4).

In Table 1 we indicate if stability is achieved for different space and time
discretizations parameters. From the first two rows, we observe that, given a

Mesh ∆t α Stability

I 0.625 · 10−4 4689 OK
I 1.25 · 10−4 4689 NO
I 1.25 · 10−4 2000 OK
I 5 · 10−4 2000 OK
II 5 · 10−4 2000 NO

Table 1: Stability of the explicit RN scheme for different values of the parame-
ters.

value of α, stability is achieved only if ∆t is small enough. This was expected
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from the theoretical findings, see Theorem 2. From the first three lines, we
observe that the value of ∆t needed to have stability could be increased when α
is decreased. This is in accordance with point 2 in the Discussion of Sect. 3.4.
Finally, from the last two rows, we find that stability is achieved for given values
of α and ∆t if the mesh is not too fine, thus confirming the observation made in
point 3 of the Discussion of Sect. 3.4.

4.3 On the accuracy of the numerical solution

Two very interesting topics that are not yet discussed are: i) how to select not
empirically a reasonable value of α that should fall in the range of stability and
ii) which is the dependence of the accuracy of explicit Robin-Neumann methods
on α. In what follows we provide some preliminary hints about these two points.

The idea we propose is to use an optimal value of α which should guarantee
efficient convergence of the implicit Robin-Neumann scheme. Since such a value
makes the convergence factor of the method (thus the error at each iteraton)
small, we expect that the use of the same value of α for the explicit counterpart
of the method should reduce the error accumulated at each time step.

In particular, we propose here to use the optimality result proven in [18] for
the implicit Robin-Robin method in the case of cylindrical interfaces. This leads
to two optimal values αoptf and αopts in the Robin interface conditions. Since
in the hemodynamic regime the convergence properties of the implicit Robin-
Neumann scheme with the optimal value αoptf are very similar to that of the

”optimal” implicit Robin-Robin scheme [17], we propose here to use α = αoptf

as an effective value that should provide a stable and accurate solution for the
explicit Robin-Neumann scheme.

We consider the same numerical experiment as above, with time discretiza-
tion parameter ∆t = 0.001 s. In Figure 3, we report the mean pressure over the
middle cross section for α = αoptf = 2250 and α = 1500, 3000.

For α > 3500 the solution blows up, whereas for α < 1500 the accuracy
deteriorates. We observe that the solution obtained with the value αoptf proposed
a priori is very close to the optimal one (α = 3000) found empirically. This result
highlights that an effective choice of α that guarantees stability and accuracy is
possible, at least in the case of a cylindrical domain.

Remark 1. Notice that, from empirical observations running the implicit Robin-
Robin scheme, we found that αoptf is greater than zero and does not blow up
when ∆t → 0. Thus, from point 2 of the Discussion of Sect. 3.4, we have that
δ ≤ c(αopt)−1 still makes sense also when ∆t→ 0, since δ > 0.

4.4 Conclusions

In this work we have proposed an analysis of stability of a loosely coupled scheme
of Robin-Neumann type for fluid-structure interaction, possibly featuring a large
added mass effect. In order to make the results found in this paper reliable
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Figure 3: Fluid mean pressure over the middle cross section (z = L/2 = 2.5 cm)
for different values of α close to αoptf .

for concrete applications, we need now to apply them to realistic geometries
and boundary data. This would make the explicit Robin-Neumann scheme an
effective strategy to be considered for example in hemodynamics, where the
added mass effect is elevated. This is actually outside the aims of the paper
which is focused on the analysis of sufficient conditions for conditional stability
and instability. For this reason, we are currently studying this topic for a future
development of this work. What in our opinion is promising is that our numerical
experiments in the hemodynamic regime highlighted an excellent agreement with
the theoretical findings and lead to accurate solutions in the range of stability.
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