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Finite Element analysis for a multi-mehanismdamage model of erebral arterial tissue∗M. de Lua ♯, D. Ambrosi ♯, A. M. Robertson †, A. Veneziani ‡, A. Quarteroni♯§April 27, 2010
♯ Dipartimento di Matematia �F. Brioshi�Politenio di Milanovia Bonardi 9, 20133 Milano, Italy

† Department of Mehanial Engineering and Materials SieneUniversity of Pittsburgh648 Benedum Hall3700 O'Hara Street, Pittsburgh, PA 15261
‡ Department of Mathematis and Computer SieneEmory University400 Dowman Dr, 30322 Atlanta, GA, USA

§ Mathematis Institute of Computational Siene and EngineeringEole Polytehnique Federale de LausanneBat. MA, Av. Piard, Station 8, CH-1015 Lausanne (Switzerland)AbstratWe developed a non-linear multi-mehanism model, that is suitable to representthe mehanial behavior of the healthy arterial wall and the early stage erebralaneurysm formation. A erebral aneurysm is a loalized bulge of the arterialwall, resulting from an initial dilatation.The ore of the multi-mehanism model is to onsider the arterial wall madeup of two mehanisms, related to its two main passive onstituents: elastin andollagen. Histologial studies show that the early stage aneurysm formation isassoiated with the disruption of elastin, that is found fragmented in the ar-terial wall. From experimental observations, the elastin atively ontributes toload bearing even at low deformation levels, while the ollagen network is in arimped state in its stress-free on�guration. For larger deformations, the olla-gen network strethes out and starts to ontribute to the mehanial behavior ofthe arterial wall. The strain energy of the model is additively omposed of twoterms, one related to the �rst mehanism and the other related to the seond
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(a) Draw of the irle of willis with someaneurysms [1℄. (b) Clinial angiography image of ananeurysm at the apex of the basilar artery[2℄.Figure 1: Graphi representation and linial image of erebral aneurysms.one. The ollagen reruitment happens when a threshold deformation is reahed.In our model this threshold is heked at eah time step in eah element of theomputational domain allowing a non-uniform ollagen ativation aross the ma-terial. The fragmentation of elastin is modeled by multiplying the stress tensorterm related to the �rst mehanism by a suitable damage oe�ient. The lattergradually dereases from one (�rst mehanism ative) to zero (disappearane of�rst mehanism) as funtion of deformation.Our model has been implemented in a FE ode that has been validated on aset of test ases for whih an analytial solution is available, showing the expetedbehavior. Numerial simulations for more realisti geometries have shown thatthe omputational multi-mehanism model is able to apture the non-linearityand inelastiity of the arterial wall, as well as early stage aneurysm formation.keywords: Cerebral aneurysm, Cerebral arteries, Multi-mehanism model, Weaklyompressible materials, Finite element analysis, Continuos damage.1 Introdution to erebral aneurysmsA erebral aneurysm (also known as intraranial or intraerebral aneurysm) isan abnormal loalized dilation of a erebral artery, �lled with blood (�gure 1(a)and 1(b)). Usually, it is asymptomati until rupture. When rupture ours, theaneurysm leaks or spills blood in the subarahnoid spae in the brain, ausingthe so-alled subarahnoid hemorrhage [3℄. This hemorrhage is potentially lethal2



with a mortality rate as high as 50%. Many patients who survive have perma-nent disability. Some aneurysms reveal their presene before rupture by exertingpressure on a nerve or on the surrounding brain tissue. Usually that happenswhen the aneurysm is loalized in the posterior erebral irulation. Cerebralaneurysms an our anywhere in the brain, but usually they are loated on,or lose to, the Cirle of Willis [4℄, between the underside of the brain and thebase of the skull. No method is yet known to prevent the formation of a erebralaneurysm. The di�erene between a healthy and a pathologial artery is basedon the knowledge of the mophologial struture of the arterial wall.1.1 Histology of erebral arteries and aneurysm wallIn this work we fous on the passive behavior of arteries, that is the mehanialstress-strain relation of its own material seen as an inert material: remodellingissues are negleted. From the strutural point of view, the arterial wall is om-posed of three distint layers, the tunia intima, the tunia media and the tuniaexterna (adventitia). In �gure 2 there is a shemati representation of the om-ponents of a healthy arterial wall.The intima is the innermost layer of the artery. It onsists mainly of a singlelayer of endothelial ells. In healthy young individuals, the intima is very thinand provides a minor ontribution to the mehanial properties of the arterialwall. However, the intima thikens and sti�ens with age (arterioslerosis), henethe mehanial ontribution may beome relevant. Pathologial hanges of theintimal omponents may be assoiated with atheroslerosis, the most ommondisease of the arterial wall. It onsists in deposition of material, suh as alium,ellular waste produts, and �brin, that in a healthy situation are arried awayby the blood �ow. The resulting build-up is alled atherosleroti plaque. It maybe very omplex in geometry and biohemial omposition. The presene of thispathologial struture auses signi�ant alterations in the mehanial behaviorof the arterial wall [5℄.The media is the middle layer of an artery and it is omposed of a omplexthree-dimensional network of smooth musle ells, elastin and ollagen �brils.Elasti layers, alled fenestrated elasti laminae, separate the media into a vary-ing number of well-de�ned onentrially �ber reinfored layers [6℄. The numberof elasti laminae dereases toward the peripheral irulation. The media is sep-arated from the intima and the adventitia by the internal elasti lamina (IEL)and the external elasti lamina (EEL), respetively. In small vessels, and inpartiular in erebral arteries, the EEL is poorly developed [7℄.The adventitia, the outermost layer of an artery, is mainly made of ollagen,�broblasts, and �broytes, whih are ells that mainly produe ollagen. Theadventitia is surrounded by onnetive tissue. The thikness of the adventitiastrongly depends on the artery type. In partiular, in erebral arteries thisonstitutive layer is almost absent [7℄. Close to the bifurations, the mediatapers gradually. At the bifurations, the tunia media is ompletely replaed3



Figure 2: Model of the major omponents of a healthy artery [11℄. The three mainlayers visible in the draw are the tunia intima, made of endothelial ells,the tunia media, made of musle ells, elastin and ollagen, and the tuniaadventitia, mainly made of ollagen.by the adventitia [7℄.The struture of an aneurysmati wall an be lassi�ed aordingly to thetype of tissue of the erebral arterial wall region from whih it develops. Theadventitia is deteted at the outer wall of aneurysms and appears strethed [8℄.At the ori�e of the aneurysm, the media terminates or, at most, slightly extendsinto the aneurysm nek region, while the elasti tissue, presumably of the IEL,may be fragmented or slightly extended [9℄. Away from the ori�e, the medialayer is ompletely absent from aneurysm wall. Remnants of elasti tissue anbe found at the inner wall of aneurysms [10℄.Cerebral aneurysms grow over a long time sale, hene the struture of theirwall undergoes to mophologial hanges that may di�er in ruptured and unrup-tured aneurysms [10℄. In reent hystologyal studies four di�erent wall types havebeen deteted that likely re�et onseutive stages of degenarion of aneurism wallbefore rupture [10℄.Mehanial data for aneurysm initiation were �rst obtained by Sott, Fergu-son, and Roah [12℄. Figure 3 shows the mean stress-strain urves of erebralarteries that underwent loading in�ation and extension yli test. The disten-sibility urve abruptly hanges after some runs to pressures up to 200 mmHg.These hanges are not observed when the arteries are loaded to lower levels. In[12℄, it was onjetured that the abrupt hange is related to elastin fragmenta-tion in the arterial wall, due to mehanial loads. Notie that the urve in �gure3(b) (after hange), returns to a relaxed state di�erent from the undamaged one(�gure 3(a)), beause of a residual stress, due to the irreversible loss of elastin in4
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Figure 3: The graph shows an in�ating test on a irumferential segment of sixteenanterior arotid arteries. Figure (a) represents the mehanial response ofthe arterial wall during some initial runs, up to a pressure of 200 mmHg.After some runs an abrupt hange in the arterial wall ours and its newmehanial behavior is represented by Figure (b) (Data from [12℄).the arterial wall.1.2 Classi�ation and treatment of erebral aneurysmsThere are three types of erebral aneurysms. A saular aneurysm is a roundedor pouh-like sa that is attahed by a well-de�ned nek to an artery or a branhof a blood vessel. Also known as a berry aneurysm (beause it resembles aberry hanging from a vine), this most ommon form of erebral aneurysm istypially found on arteries at the base of the brain. Saular aneurysms mostoften our in adults. A lateral aneurysm appears as a bulge in the wall of theblood vessel, while a fusiform aneurysm is formed by the widening along thewall of the vessel. Aneurysms are also lassi�ed by size. Small aneurysms areless than 11 millimeters in diameter, large aneurysms are 11-25 millimeters, andgiant aneurysms are greater than 25 millimeters in diameter [13℄.The auses of erebral aneurysms formation are a subjet of intense inves-tigation. In some spei� ases inherited and aquired risk fators have beenrelated to their pathologi onset [14℄. Mainly hereditary onnetive tissue disor-ders have been assoiated with aneurysm formation, presumably as a result ofthe weakening of the vasular wall. Some other diseases show onnetion witherebral aneurysms, as oartation of the aorta artery or �bromusular dysplasia,most likely beause of the elevated blood pressure that ours in these onditions.5



Moreover a onnetion between brain aneurysms and oaine use or general drugsabuse has been noted. This assoiation is thought to be due to inreased turbu-lene of blood �ow and repeated, transient ases of hypertension [14℄. However,the auses of initiation, development and rupture of most aneurysms is still notknown.There are many imaging tehniques for intraranial aneurysms identi�ation,suh as the intra-arterial digital subtration angiography, magneti resonaneangiography, omputed tomographi angiography, and transranial Doppler ul-trasonography. Some of these medial praties are invasive beause they arearried out by means of X-ray tehniques and other are expensive, so that theyare not used for sreening [1℄. This is the main reason there is muh more infor-mation on ruptured aneurysms rather than unruptured ones. One of the mainstudies on unruptured aneurysm is the ISUIA (International Study of UnrupturedIntraranial Aneurysms), evaluating the risk of aneurysms rupture throughoutlinial examinations of approximate 2000 patient reords dating bak to 1998[15℄. Often unruptured aneurysms are disovered aidentally and in these asesit is not well understood whih is the right strategy. When the aneurysm is big,it is usually treated, when the size is small, there is no general indiation aboutthe treatment to employ. Many small aneurysms never rupture [1℄, but there isno rule.Nowadays there are few tehniques to treat unruptured aneurysms. Themost invasive one is the lipping tehnique, that implies an open brain surgeryto insert a lip that loses the aneurysm nek [16℄. Less invasive is the oilingtehnique, that onsists of inserting a oil by means of an endosopi proedure.The oil �lls the bleb and auses a loth formation inside the aneurysm [17℄.More reently, the adoption of vasular endoprostheses (��ow diverting� stents)together with oiling, is inreasing, with the aim of proteting the aneurysmsa from the blood �ow. All these tehniques are well known. However theymay ause ompliations, so it is extremely important to have some auxiliarytreatment tools and also have more information about the aneurysm pathologyto help in the seletion of a treatment strategy [18℄ [19℄.2 Multi-mehanism modelIn this setion the basi kinematis, the stress and elastiity tensors for a multi-mehanism model are presented. Fousing on the spei� appliation of arterialwall, we onsider two strain energy funtions: one of the elastin omponent ofarterial wall and the other related to ollagen �bers. Restriting attention toan homogeneous hyperelasti material, the ombination of the two mehanismsan suitably represent the non-linear and inelasti behavior of arterial wall. Atlow level of deformations, only elastin ontributes to tension, while for largerdeformations, the ollagen starts to bear load. Hene the two mehanisms aretriggered in di�erent ranges of deformation.6
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x1Figure 4: The two referene on�guration of the model: Ω1 is related to the elastinmehanism and Ω2 to the ollagen mehanism. Ω(t) is the urrent on�gu-ration.2.1 Kinematis of a multi-mehanism modelLet us onsider a body B and a bounded domain Ω1 ⊆ R
3 whih represents theregion oupied by the body in its referene, stress free, on�guration. Assoi-ated with Ω1 there is a time referene frame, so that the body is in refereneon�guration Ω1 at time t = t1. At this stage the position of a material point

P1 ∈ Ω1 is identi�ed by the vetor X1 as shown in �gure 4.During the motion, the body B leaves its undeformed state to reah a urrenton�guration Ω(t), t > t1, where the position vetor of a material point is x =
χ1(X1, t). The vetor funtion χ1(X1, t) is a smooth, single-valued funtion,invertible and ontinuously di�erentiable with respet to its arguments as manytimes as required. The deformation gradient related to this motion is:

F1(X1, t) =
∂χ1(X1, t)

∂X1
, (1)where the subsript �1� denotes all the quantities evaluated in the referene on-�guration Ω1.During this �rst stage of the deformation, only elastin ontributes to the me-hanial behavior of the body, so that the stress tensor depends only on F1(X1, t),like a standard single mehanism elasti material.The strain energy funtion per unit volume, in the referene on�guration

Ω1, is
W (t) = W1(F1(X1, t)). (2)7



When the body reahes on�guration Ω2 = Ω(t2) the reruitment of ollagen�bers ours. As the body deforms further, orresponding to inreased valuesof deformation, both mehanisms are ative and ontribute the load bearing.Adopting now Ω2 as a referene on�guration for the seond mehanism, a mate-rial point position, in suh a referene on�guration, is identi�ed by the positionvetor:
X2 = x(X1, t2) = χ1(X1, t2), (3)and, in the urrent on�guration Ω(t), t > t2, the position of a material partilean be represented by the position vetor:

x = χ2(X2, t − t2), (4)where the vetor funtion χ2(X2, t− t2) as well, is a smooth, single-valued fun-tion, invertible and ontinuously di�erentiable with respet to its argumentsmany times as required. If we de�ne a new referene time frame t′ in Ω2 suhthat t′ = t − t2, (4) beomes x = χ2(X2, t
′), and the deformation gradient thatdesribes the motion from the referene on�guration Ω2 is:

F2(X2, t
′) =

∂x(X2, t
′)

∂X2
=

∂χ2(X2, t
′)

∂X2
, (5)where now the subsript index �2� denotes that all the variables are referred to

Ω2. In the urrent on�guration Ω(t) an in�nitesimal displaement dx an berelated to both referene on�gurations as followsdx = F1(X1, t)dX1 = F2(X2, t
′)dX2. (6)By means of (6) and (3) we an �nd the relation between the deformation gra-dients

F2(X2, t
′) = F1(X1, t)F

−1
1 (X1, t2), (7)where the tensor F

−1
1 (X1, t2) is known. We an now ompute the determinantof eah term of equation (7) as

det(F2(X2, t
′)) = det(F1(X1, t)) det(F−1

1 (X1, t2)). (8)If we denote J2(t
′) = det(F2(X2, t

′)) and J1(t) = det(F1(X1, t)), we have therelation
J2(t

′) = J1(t)
(

J1(t2)
)−1

, (9)where (J1(t2)
)−1 is related to the referene on�guration Ω2 and it is a knownsalar value onstant in time, after the ollagen reruitment has ourred.The in�nitesimal volume transformation among all on�gurations isdΩ(t) = J1(t)dΩ1 = J2(t

′)dΩ2, (10)8



so that the relation between an in�nitesimal volume element in Ω1 and Ω2 reads
dΩ2 = J1(t)

(

J2(t
′)
)−1dΩ1, (11)and from (9) we �nally have

dΩ2 = J1(t2)dΩ1. (12)After ollagen reruitment, the strain energy funtion assoiated with thehyperelasti material has ontribution from both mehanisms
W (t) = W1,2(F1(X1, t),F2(X2, t

′)). (13)When a seond ritial value of deformation is reahed, we hypothesize thatelastin starts to degrade, and the �rst mehanism is weakened.Before elastin breakage happens, the material behavior is purely elasti, i.e.after unloading it is able to reover the initial on�guration Ω1. Due to theirreversible nature of elastin breakage, in the unloading stage, the material isno longer able to reover the on�guration Ω1, but it eventually reahes anotherreferene on�guration Ω̂ that depends on the entity of the elastin damage. Inpartiular, when all the elastin is broken, Ω̂ orresponds to Ω2, only due torelaxed ollagen �bers.
W1 and W2 have to be invariant with respet to superimposed rigid rotationsrelative to the orrespondent referene on�guration Ω1 and Ω2. The most gen-eral strain energy funtions satisfying the invariane requirements are expressedby

W1 = W̃1(C1), and W2 = W̃2(C2), (14)where C1 and C2 are the right Cauhy-Green tensors of the �rst and seondmehanism, respetively
C1 = F

T
1 F1, and C2 = F

T
2 F2. (15)With a further hypothesis of isotropy (whih is de�nitely aeptable for elastinmehanism), without loss in generality, the strain energy funtions take the form

W1 = W̌1(I1, II1, III1), and W2 = W̌2(I2, II2, III2), (16)where (I1, II1, III1) and (I2, II2, III2) are the prinipal invariants of C1 and
C2 respetively. Collagen �bers are instead arranged with a spei� orientationthrough the arterial wall and we should introdue in W2 a dependene to aountfor the anisotropy of �bers, as explained in [20℄. As the fous of this work is theimplementation of the multi-mehanism model, at the moment we aept theisotropy hypothesis for ollagen too, with future expetative of orreting it.The last assumption is that the two mehanisms are independent, so that thestrain energy funtion when both elastin and ollagen are ative is

W1,2 = W1 + W2. (17)The two mehanisms represent the indipendent behavior of elastin and ollagen,respetively. This assumption is largely supported by the fat that both materialsare found in distint layers in the arterial wall [21℄.9



2.2 Strain energy funtionLet us observe that W1 and W2 are strain energy funtions per unit volumede�ned in the referene on�guration Ω1 and Ω2, respetively. In order to have aomplete desription in terms of energy of the multi-mehanism model, we needto refer both the energies to only one referene on�guration.As �rst step, let us observe that the onservation of mass holds:
∫

Ω(t)
ρ dΩ =

∫

Ω1

ρ1 dΩ1 =

∫

Ω2

ρ2 dΩ2, (18)where ρ is the mass density represented in the urrent on�guration and ρ1 and
ρ2 are respetively the mass densities in Ω1 and Ω2. If we hoose as uniquereferene on�guration Ω1, by employing (12) and (10), the previous integralsrewrite

∫

Ω1

ρJ1(t)dΩ1 =

∫

Ω1

ρ1dΩ1 =

∫

Ω1

ρ2J1(t2)dΩ1, (19)where
ρ2 = ρ1J1(t2)

−1 and ρ = ρ1J1(t)
−1 (20)are two relations that allow to relate the mass density in Ω(t) and Ω2 with themass density in Ω1. By means of (10), the total energy in the urrent on�gura-tion Ω(t), when both mehanisms are ative, is expressed by

Utot =

∫

Ω(t)
J−1

1 (t)W1dΩ +

∫

Ω(t)
J−1

2 (t′)W2dΩ, (21)suh that
U1 =

∫

Ω(t)
J−1

1 (t)W1dΩ, and U2 =

∫

Ω(t)
J−1

2 (t′)W2dΩ, (22)where U1 is the energy assoiated to the �rst mehanism and U2 to the seond.If we express the total energy with respet to the referene on�guration Ω1,from equation (21), by means of the relation (12), we have
Utot =

∫

Ω1

W1dΩ1 +

∫

Ω1

J−1
2 (t′)J1(t)W2dΩ1. (23)The insertion of relation (9) in the previous one gives

Utot =

∫

Ω1

W1dΩ1 +

∫

Ω1

J1(t2)W2dΩ1, (24)where we reall that J1(t2) is known after the ollagen reruitment has ourred.If we de�ne Wtot as the total strain energy per unit volume in Ω1, suh that
Utot =

∫

Ω1

WtotdΩ1, (25)beause all the integrals are referred to the volume oupied by the body in thereferene on�guration Ω1, when both mehanisms are ative, we have
Wtot = W1 + J1(t2)W2. (26)10



2.3 Stress and elastiity tensorsIn this paragraph we introdue the multipliative deomposition of the deforma-tion gradient F into an isohori (or distortional) and a volumetri (or dilational)part [22℄ [23℄ [11℄, to derive the stress tensors for a weakly ompressible material.The multipliative deomposition of the deformation gradient F reads
F = F̂F, (27)where F = J− 1

3 F is the isohori part, and F̂ = J
1

3 I is the volumetri part, with
I the seond order identity tensor. The isohori part of the deformation gradienttakes into aount the deformation without hange in volume, so that detF = 1.The volumetri part ontains all the volumetri deformation ontributions, and
det F̂ = J .In the same way, we an derive the multipliative deomposition of the rightand left Cauhy-Green tensors:

C = F
T
F = (F̂F)T F̂F = (F)T (F̂)T F̂F = J

2

3 (F)T F, (28)
B = FF

T = F̂F(F̂F)T = FF̂(F̂)T (F)T = J
2

3F(F)T , (29)and de�ne the unimodular right and left Cauhy-Green tensors as the isohoripart of C and B:
C = F

T
F = J− 2

3 C, with detC = 1, (30)
B = FF

T
= J− 2

3B, with detB = 1. (31)In partiular, together with the invariants of C we introdue the modi�ed invari-ants of C as
IC = trC, IIC =

1

2
((trC)2 − tr(C2)), IIIC = detC = J2, (32)

IC = trC, IIC =
1

2
((trC)2 − tr(C2

)), IIIC = 1, (33)and similar de�nitions hold for B and B.The use of (27), supplies the orrespondent strain energy funtion for anisotropi frame indi�erent material [23℄ splitted as
W (J, IC , IIC) = Wvol(J) + Wiso(IC , IIC), (34)where:1) Wvol depends merely on the volume hanging part throughout J .2) Wiso is purely isohori and depends on the invariants of the unimodularright Cauhy-Green C. 11



Let us derive now the stress tensors for a weakly ompressible material. Theuse of the deomposition tehnique (34) allows us to express omponentwise theseond Piola-Kirhho� stress tensor S as
SAB = 2

dW

dCAB
= 2
(dWvol

dCAB
+

dWiso

dCAB

)

, (35)where the volumetri ontribution is
dWvol

dCAB
=

dWvol

dJ

dJ

dCAB
= W ′

vol

d(
√

detC)

dCAB
= (36)

= W ′
vol

1

2
√

detC

d(detC)

dCAB
= W ′

vol

1

2
√

detC
(detC)C−1

AB =

=
1

2
W ′

vol

√
detCC−1

AB =
1

2
W ′

volJC−1
AB,and the isohori part is

dWiso

dCAB
=

dWiso

dCMN

dCMN

dCAB
. (37)Let us ompute eah term of (37) separately:

dWiso

dCMN

=
∂Wiso

∂IC

∂IC

∂CMN

+
∂Wiso

∂IIC

∂IIC

∂CMN

(38)
=

∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN ),and
dCMN

dCAB
=

d(J−2/3CMN )

dCAB
=

d((detC)−1/3CMN )

dCAB
(39)

= −1

3
(detC)−4/3 d(detC)

dCAB
CMN + (detC)−1/3 dCMN

dCAB

= −1

3
(detC)−1/3C−1

ABCMN + (detC)−1/3δAMδBN =

= J−2/3(δAM δBN − 1

3
C−1

ABCMN ).If we de�ne the fourth order tensor PABMN = (δAM δBN − 1
3C−1

ABCMN ), �nallythe seond Piola-Kirhho� stress tensor reads
SAB = W ′

volJC−1
AB + 2J−2/3(PABMN )

(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

,(40)where the stress is omposed by
(Svol)AB = W ′

volJC−1
AB , (41)

(Siso)AB = 2J−2/3(PABMN )
(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

.(42)12



From equation (35) and the de�nition of the �rst Piola-Kirhho� stress tensor Pomponentwise:
PiB = FiASAB, (43)we have

PiB = 2FiA
dW

dCAB
= 2FiA

(dWvol

dCAB
+

dWiso

dCAB

)

. (44)With similar alulation as before the volumetri and isohori parts of the stresstensor read
(Pvol)iB = JW ′

volF
−T
iB , (45)

(Piso)iB = 2J−2/3FiA(PABMN )
(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

.(46)We an now evaluate the Cauhy stress tensor T in the urrent on�guration;omponentwise
Tij = J−1FiASABFjB, (47)hene from (35)

Tij = 2J−1FiA
dW

dCAB
FjB = 2J−1FiA

(dWvol

dCAB
+

dWiso

dCAB

)

FjB, (48)and the Cauhy stress tensor deomposes as
(Tvol)ij = W ′

volδij , (49)
(Tiso)ij = 2J−5/3FiA(PABMN )

(∂Wiso

∂IC

δMN +
∂Wiso

∂IIC

(ICδMN − CMN )
)

FjB.(50)We observe that, by onstrution, in the urrent on�guration the volumetripart of the stress tensor is spherial, as the hydrostati pressure in inompressiblematerials.In the balane of linear momentum we employ the �rst Piola-Kirhho� stresstensor P, hene in the following all the alulation are made in terms of P.Finally, we introdue the fourth order elastiity tensors, obtained by:
Cvol =

∂Pvol

∂F
, and Ciso =

∂Piso

∂F
. (51)2.4 Collagen reruitmentThe ollagen reruitment and the elastin breakage are introdued on the basis ofan invariant salar funtion s that measures the deformation [24℄:

s(C1) = ŝ(C1(X1, t),x). (52)If the measure is homogeneous, there is no diret dependene on the position x.During the motion, the ollagen ativation ours at a threshold value s = sa,13



and at the orresponding material point, all the ollagen �bers are reruitedsimultaneously. If the deformation is non-uniform, the ativation riterion anbe satis�ed at di�erent times in di�erent points of the body; moreover for aninhomogeneous body, sa will depend on the material position too.For isotropi materials, we may express the homogeneous measure s as:
s(C1) =

1

Cs
W1iso(IC1

, IIC1
), (53)where Cs is a onvenient oe�ient with dimension of Pa−1 and W1iso is theisohori strain energy funtion of the �rst mehanism.Finally, by means of the total strain energy funtion (26), we an express theontribution of both mehanisms in the referene on�guration Ω1 as

Wtot =

{

W1 for 0 ≤ s ≤ sa,

W1 + J1(t2)W2 for s > sa.
(54)The use of equation (34) for a multi-mehanism model leads to split furtherthe energy into W1vol and W2vol, representing the hange in volume of the bodyduring the motion, while W1iso and W2iso represent the inompressible ontribu-tions of eah mehanism. Hene (54) beomes

Wtot =

{

W1vol + W1iso for 0 ≤ s ≤ sa,

W1vol + W1iso + J1(t2)(W2vol + W2iso) for s > sa.
(55)To write the balane of linear momentum in the referene on�guration Ω1we need to derive the �rst Piola-Kirhho� stress tensor of a multi-mehanism.In the following we expliitly indiate the dependene on di�erent time frameswhen needed for larity:

P1(t) = P(t)1vol + P(t)1 iso, and P2(t
′) = P(t′)2 vol + P(t′)2 iso, (56)that, by means of (45) and (46), may be rewritten as:

P(t)1 vol = J1(t)
dW1 voldJ1(t)

F1(t)
−T , (57)

P(t)1 iso = 2J1(t)
−2/3

F1(t)P1 :
(dW1 isodC1

)

, (58)and
P(t′)2 vol = J2(t

′)
dW2voldJ2(t′)

F2(t
′)−T , (59)

P(t′)2 iso = 2J2(t
′)−2/3

F2(t
′)P2 :

(dW2 isodC2

)

. (60)To simplify the notation, let us de�ne
F1(X1, t2) = F

∗ and J1(t2) = J∗. (61)14



hene from (7) and (9), we have
F2(t

′) = F1(t)(F
∗)−1 and J2(t

′) = J1(t) (J∗)−1. (62)The replaement of (62) in (59) and (60) allows us to pull bak the �rstPiola-Kirhho� of the seond mehanism P2 to the referene on�guration Ω1.When P(t)2 vol and P(t)2 iso are expressed with respet to the �rst refereneon�guration Ω1, we may neglet in notation their dependene over time, andthe total �rst Piola-Kirhho� stress tensor for a multi-mehanism model reads
P =

{

P1 vol + P1 iso for 0 ≤ s ≤ sa,

P1 vol + P1 iso + J∗(P2 vol + P2 iso) for s > sa.
(63)The stress tensors P1 and P2 are strongly non-linear, hene to linearize andsolve the balane of linear momentum, we need to ompute the fourth orderelastiity tensors. By means of (51) we �nd

C1 =
∂P1

∂F1
, and C2 =

∂P2

∂F1
, (64)where both C1 and C2 are obtained deriving P1 and P2 with respet to F1,beause both of them refer to the �rst referene on�guration Ω1.We observe that in Finite Element Method proedure, the linearization ofthe stress tensors P1 and P2 is obtained by omputing their Frehet derivativein the diretion of an inrement δF1 of the deformation gradient. We indiatethese derivatives as:

DF1
P1[δF1] =

∂P1

∂F1
: δF1, and DF1

P2[δF1] =
∂P2

∂F1
: δF1, (65)where � :� denotes the tensor operation obtained by saturation of the last twoindies of the tensors involved, and the result is a seond order tensor. Thanksto de�niton (64) we have:

DF1
P1[δF1] = C1 : δF1, and DF1

P2[δF1] = C2 : δF1, (66)that represent the linearization of stress tensors P1 and P2 with respet of aninrement of deformation δF1.2.4.1 Volumetri stress and elastiity tensorsTo ompute the volumetri part of the stress tensor for the �rst and seondmehanism, we introdue the volumetri strain energy funtion per unit volume:
Wi vol =

Ki

4
((Ji − 1)2 + (lnJi)

2), with i = 1, 2, (67)where Ki is the ompression modulus (or bulk modulus), and expression (67)holds for both elastin and ollagen (respetively i = 1, 2).15



The derivative of Wi vol with respet to Ji readsdWi voldJi
=

Ki

2
(Ji − 1 +

1

Ji
lnJi), with i = 1, 2. (68)From (57), the volumetri part of the �rst Piola-Kirhho� stress tensor for the�rst mehanism is:

P1 vol =
K1

2
J1(J1 − 1 +

1

J1
lnJ1)F

−T
1 =

K1

2
(J2

1 − J1 + lnJ1)F
−T
1 , (69)and, from (59), the stress tensor for the seond mehanism is

P2 vol =
K2

2
J2(J2 − 1 +

1

J2
lnJ2)F

−T
2 . (70)We need to replae expression (62) in (70) to pull bak P2 vol to Ω1:

P2 vol =
K2

2

J1

J∗

(

J1

J∗
− 1 +

J∗

J1
ln

(

J1

J∗

))

(F1 (F∗)−1)−T

=
K2

2

(

(

J1

J∗

)2

− J1

J∗
+ ln

(

J1

J∗

)

)

F
−T
1 (F∗)T (71)The volumetri part of the stress tensor, obtained by adding (69) and (71) isnon-linear with respet to the deformation gradient F1.The fourth order elastiity tensors are:

C1 vol =
∂P1 vol

∂F1
, and C2 vol =

∂P2 vol

∂F1
. (72)From (65, 72) the linearization of P1 vol reads:

C1 vol : δF1 =
K1

2
J1(2J1 − 1 +

1

J1
) (F−T

1 : δF1)F
−T
1 (73)

− K1

2
(J2

1 − J1 + lnJ1)F
−T
1 δFT

1 F
−T
1 ,and the linearization of P2 vol is:

C2 vol : δF1 =
K2

2
J1

(

2
J1

J∗2
− 1

J∗
+ 1

)

(F−T
1 : δF1)F

−T
1 F

∗T (74)
− K2

2

(

(

J1

J∗

)2

−
(

J1

J∗

)

+ ln

(

J1

J∗

)

)

F
−T
1 δF1

T
F
−T
1 F

∗T ,where δF1 is a variation of F1.
16



2.4.2 Isohori stress and elastiity tensorsIn this setion we ompute the inompressible part of the stress tensor for themulti-mehanism. To model both elastin and ollagen (k = 1, 2) with a Neo-Hookean onstitutive law we introdue the strain energy funtion:
WNH

k iso =
µk

2
(ICk

− 3), with k = 1, 2, (75)and d(WNH
k iso)dCk

=
∂(WNH

k iso)

∂ICk

I =
µk

2
I, with k = 1, 2, (76)where I is the seond order identity tensor.From (58) and (76), the isohori part of the �rst Piola-Kirhho� stress tensor,for the �rst mehanism reads

P
NH
1 iso = µ1J

−2/3
1

(

F1 −
1

3
IC1

F
−T
1

)

. (77)To derive the isohori part of the �rst Piola-Kirhho� stress tensor, for theseond mehanism, we need to ompute C2, the right Cauhy-Green tensor forthe seond mehanism, in terms of C1:
C2 = (F∗)−T

C1(F
∗)−1, (78)and its deviatori part is:

C2 =

(

J1

J∗

)−2/3

(F∗)−T
C1(F

∗)−1. (79)Hene,
IC2

= trC2 =

(

J1

J∗

)−2/3

tr
(

(F∗)−T
C1(F

∗)−1
)

=

(

J1

J∗

)−2/3

tr
(

(F∗)−1(F∗)−T
C1

)

=

(

J1

J∗

)−2/3

tr
(

(C∗)−1
C1) =

(

J1

J∗

)−2/3

(C∗)−1 : C1, (80)where we used the relation (F∗)T F
∗ = C

∗ and the symmetry of C1.Relations (60), (80) and (75), help us in deriving the expression of the iso-hori part of the �rst Piola-Kirhho� stress tensor, for the seond mehanism
P

NH
2 iso = µ2

(

J1

J∗

)−2/3(

F1 (F∗)−1 − 1

3
IC2

(F∗)TF
−T
1

)

. (81)The fourth order elastiity tensors are:
C

NH
1 iso =

∂P
NH
1 iso

∂F1
, and C

NH
2 vol =

∂P
NH
2 iso

∂F1
. (82)17



From (65, 82) the linearization of P1 iso reads:
C

NH
1 iso : δF1 = − 2

3
µ1 J

−2/3
1 (F−T

1 : δF1)F1 (83)
+

2

9
µ1 IC1

(F−T
1 : δF1)F

−T
1

− 2

3
µ1 J

−2/3
1 (F1 : δF1)F

−T
1

+ µ1 J
−2/3
1 δF1 +

µ1

3
IC1

F
−T δFT

1 F
−T .and the linearization of P2 iso is:

C
NH
2 iso : δF1 = − 2

3
µ2

(

J1

J∗

)−2/3

(F−T
1 : δF1)F1(F

∗)−1 (84)
+

2

9
µ2 IC2

(F−T
1 : δF1)(F

∗)T F
−T
1

− 1

3
µ2

(

J1

J∗

)−2/3

((C∗)−1 : δFT
1 F1 + (C∗)−1 : FT

1 δF1)(F
∗)T F

−T
1

+ µ2

(

J1

J∗

)−2/3

δF1(F
∗)−1 +

µ2

3
IC2

(F∗)T F
−T
1 δFT

1 F
−T
1 .We observe that if F

∗ = F1 then P
NH
2 iso = 0.The other onstitutive law we may use to model elastin and ollagen is derivedby the exponential strain energy funtion:

W
Exp
j iso =

αj

2γj
(e

γj(ICj
−3) − 1), with j = 1, 2, (85)and d(WExp

j iso)dCj

=
∂(WExp

j iso)

∂ICj

I =
αj

2
e
γj(ICj

−3)
I, with j = 1, 2, (86)where I is the seond order identity tensor.From (58) and (86), the isohori part of the �rst Piola-Kirhho� stress tensor,for the �rst mehanism is:

P
Exp
1 iso = α1e

γ1(IC1
−3)

J
−2/3
1 F1

(

(I − 1

3
C

−1
1 ⊗ C1) : I

)

, (87)where ⊗ is the outer tensor produt. Finally,
P

Exp
1 iso = α1e

γ1(IC1
−3)

J
−2/3
1

(

F1 −
1

3
F
−T
1 IC1

)

. (88)From (60) and (86), the isohori part of the stress tensor for the seondmehanism is:
P

Exp
2 iso = α2e

γ2(IC2
−3)
(

J1

J∗

)−2/3

F1 (F∗)−1

(

(I − 1

3
C

−1
2 ⊗C2) : I

)

, (89)18



where we need to introdue (78) and (80).After some alulations
P

Exp
2 iso = α2e

γ2(IC2
−3)
(

J1

J∗

)−2/3(

F1 (F∗)−1 − 1

3
(F∗)TF

−T
1 IC2

)

, (90)as in the previous ase, we observe that when F
∗ = F1 then P

Exp
2 iso = 0.For the exponential material, the fourth order elastiity tensors read:

C
Exp
1 iso =

P
Exp
1 iso

∂F1
, and C

Exp
2 iso =

P
Exp
2 iso

∂F1
. (91)From (65, 91), the linearization of (88) reads:

C
Exp
1 iso : δF1 = − 2

3
α1 e

γ1(IC1
−3)

J
−2/3
1 (1 + γ1IC1

)(F−T
1 : δF1)F1 (92)

+
2

9
α1 e

γ1(IC1
−3)

IC1
(1 + γ1IC1

)(F−T
1 : δF1)F

−T
1

− 2

3
α1 e

γ1(IC1
−3)

J
−2/3
1 (1 + γ1IC1

)(F1 : δF1)F
−T
1

+ 2α1 γ1 e
γ1(IC1

−3)
J
−4/3
1 (F1 : δF1)F1

+ α1 e
γ1(IC1

−3)
J
−2/3
1 δF1

+
α1

3
e
γ1(IC1

−3)
IC1

F
−T
1 δFT

1 F
−T
1 .and the linearization of (90) results:

C
Exp
2 iso : δF1 = − 2

3
α2 e

γ2(IC2
−3)

(

J1

J∗

)−2/3

(1 + γ2IC2
)(F−T

1 : δF1)F1(F
∗)−1 (93)

+
2

9
α2 e

γ2(IC2
−3)

IC2
(1 + γ2IC2

)(F−T
1 : δF1)(F

∗)TF
−T
1

− α2

3
e
γ2(IC2

−3)
(

J1

J∗

)−2/3

(1 + γ2IC2
)
(

(C∗)−1 : δFT
1 F1

+ (C∗)−1 : FT
1 δF1

)

(F∗)TF
−T
1

+ α2 γ2 e
γ2(IC2

−3)
(

J1

J∗

)−4/3
(

(C∗)−1 : δFT
1 F1

+ (C∗)−1 : FT
1 δF1

)

F1(F
∗)−1

+ α2 e
γ2(IC2

−3)
(

J1

J∗

)−2/3

δF1(F
∗)−1

+
α2

3
e
γ2(IC2

−3)
IC2

(F∗)TF
−T
1 δFT

1 F
−T
1 .
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 + .3Figure 5: Example of analyti expression for the damage funtion D(smax) for elastindegradation for di�erent values of se.2.5 Elastin degradationThe �rst mehanism is assoiated with the elastin omponent of arterial wall.As pointed out in Setion 1.1, early stage aneurysm formation is hypothesized tobe related to a mehanial damage of elastin. Hene, we introdue, in the multi-mehanism model a ontinuous isotropi damage model for the �rst mehanism.This approah, in the ontest of multi-mehanism models, was �rst presented byRobertson and oworkers [25℄.We de�ne an internal damage variable D ∈ [0, 1] and following the ap-proah desribed in [26℄ we postulate that the deoupled representation of the�rst mehanism strain energy funtion (see equation (34)) still holds for the freeenergy :

W D
1 (J, IC1

, IIC1
, D) = W1vol(J) + (1 − D)W1iso(IC1

, IIC1
), (94)where W1vol(J) is the same funtion de�ned in Setion 2.3 whih desribes thevolumetri elasti response, and W1iso(IC1

, IIC1
) is the isohori e�etive strainenergy of the undamaged material, whih desribes the isohori elasti response.We observe that deformations due to temperature hanges are negleted. Assuggested in [27℄, the damage phenomenon a�ets only isohori deformations.We all PD

1 the �rst Piola-Kirhho� stress tensor of the damage model.From relation (94), the volumetri part of P
D
1 is

P
D
1vol = P1vol, (95)20



and from the Clausius-Plank inequality, it follows that [28℄:
P

D
1iso = (1 − D)P1iso, (96)

−∂W D
1

∂D
Ḋ = W1isoḊ ≥ 0. (97)Inequality (97) spei�es that damage is a dissipative and irreversible phenomenon.Moreover, W1iso is the thermodynami onjugate variable of Ḋ, and the evolutionof D may be desribed in terms of W1iso.Let us onsider again the salar funtion of deformation s(C1(t)) de�ned in(53), and onsider a threshold sb below whih no damage ours. We supposethat sb > sa, where sa is de�ned in Setion 2.4 and represents the salar measureof deformation at whih ollagen is reruited. While the body deforms, as longas s(C1(t)) < sb, elastin damage never ours and after the unloading stagethe body reovers its initial stress-free on�guration Ω1. One the deformationthreshold s = sb is reahed, an irreversible damage to elastin omponent preventsthe body, in the unloading stage, to reover the initial on�guration Ω1 and itwill reah another stress-free on�guration.To take into aount the gradual irreversible damage of elastin material, wede�ne

smax(C1(t)) = max
0≤τ≤t

s(C1(τ)), (98)as the maximum of our measure s(C1(t)) during the history of deformation. Ateah time step, i.e. at eah value of deformation, the quantity
φ(C1(t)) = smax(C1(t)) − s(C1(t)) = 0 (99)represents a surfae in strain spae. The normal to this surfae is Niso = ∂φ

∂C1

;when Niso : δC1 > 0 the strain is inreasing (loading stage), otherwise when
Niso : δC1 < 0 the strain is dereasing (unloading stage).An example of an analyti expression for the damage variable D in terms of
smax is:

D(smax) =
1

2
tanh

sf − smax(C1(t))

sf − se
+

1

2
, (100)where sf and se are two salar parameters, and D depends on C1(t) through

smax(C1(t)). We observe that when smax = sf , D(sf ) = 0.5, i.e. the elastin atthe orrespondent point is half-degraded, and se ontains the information aboutthe speed of the damage proess.At eah time t, the evolution of the damage is regulated by
Ḋ =











∂D

∂smax
˙smax if φ = 0 and Niso : δC1 > 0,

0 otherwise.

(101)21



Finally, we may represent the �rst Piola-Kirhho� stress tensor P of the fullmulti-mehanism model with damage as:
P =







P1 vol + P1 iso for 0 ≤ s ≤ sa,

P1 vol + P1 iso + J∗(P2 vol + P2 iso) for sa < s ≤ sb,

P1 vol + (1 − D)P1 iso + J∗(P2 vol + P2 iso) for s > sb.

(102)As P1 vol and P2 vol have the role of penalizing the material ompression,they do not have a spei� onstitutive meaning for the multi-mehanism model.Hene, to simplify the equation, we onsider only one volumetri ontribution:
Pvol = P1 vol, (103)and rewrite equation (102) as

P = Pvol +







P1 iso for 0 ≤ s ≤ sa,

P1 iso + J∗
P2 iso for sa < s ≤ sb,

(1 − D)P1 iso + J∗(P2 iso) for s > sb.

(104)From (64), the fourth order isohori elastiity tensor for the �rst mehanismwith damage is:
C

D
1 iso =

∂ ((1 − D)P1 iso)

∂F1
, (105)and the linearization of the �rst Piola-Kirhho� stress tensor reads

C
D
1 iso : δF1 = (1 − D) C1 iso : δF1 −

∂D

∂s
(P1 iso ⊗ P1 iso) : δF1, (106)where C1 iso =

∂P1 iso

∂F1
has been alulated in Setion 2.4.2 in the ase of a spei�hoie of a Neo-Hookean or exponential material for the �rst mehanism.3 Weak formulationIn the Finite Element framework, we need to formulate the motion problem ina variational form and disretize it with respet to time and spae. Our FiniteElement disretization is quite standard, the main di�ulty is in the alulationof the stress terms and their linearization.We remark that non-linearity is an essential ingredient of elastiity for �nitedeformations. In �nite elastiity, in general, the stress tensor depends upon non-linear kinemati terms that are a funtion of the deformation gradient. Moreover,if the onstitutive law used to desribe the material is a non-linear relation ofstress and strain, the stress tensor is a�eted by another non-linearity. Anotheraspet of the formulation that inreases the omplexity of the omputationalproblem is that the weak ompressibility of the non-linear material of interest ismanifested using a penalty term. This term is strongly non-linear with respet22



to the deformation gradient by oupling all the omponents of the unknowndisplaement �eld.The linearization, performed by omputing the Frehet of the non-linearterms, and the solution of the system are obtained using an iterative Newton-Raphson proedure, enhaned with a linesearh baktraking algorithm.The linearization of the nonlinear stress tensor needed in the Newton-Raphsonmethod is the fourth order elastiity tensor. As desribed in Setion 2.4.1, 2.4.2,and 2.5, we omputed the exat form of the fourth order elastiity tensors for allthe nonlinear materials introdued in the multi-mehanism model.3.1 Priniple of virtual powerLet us onsider the bounded domain Ω1 ⊆ R
3, representing the referene on�g-uration of a body, the priniple of virtual power may be expressed as:

∫

Ω1

(divP(u) + ρ1b− ρ1a) · δυ dΩ1 = 0 (107)where δυ is an arbitrary virtual veloity, satisfying possible onstraints, the �rstPiola-Kirhho� stress tensor P is expressed as a funtion of unknown displae-ment u = u(X1, t), a =
D2

u

Dt2
is the aeleration �eld, and b are the body fores.The salar equation (107) is fully equivalent to the vetorial motion equation:
ρ1a = divP(u) + ρ1b, (108)thanks to the arbitrariness of the virtual veloity funtion. With further alu-lations we have:

∫

Ω1

ρ1
D2

u

Dt2
· δυ dΩ1 =

∫

Ω1

divP(u) · δυ dΩ1 +

∫

Ω1

ρ1b · δυ dΩ1. (109)We de�ne the external surfae ∂Ω1 = ΓD ∪ ΓN0
∪ ΓNt . In partiular ΓD is thepart of the surfae we impose the Dirihlet homogeneous boundary onditions and

ΓN0
, ΓNt are those parts where we presribe the Newmann boundary onditions.

ΓN0
is the stress free surfae and on ΓNt is imposed a known tration t. Thewhole boundary onditions and initial values are:























u(0) = u0;
v(0) = v0;
u(t) = 0 on ΓD;
Pn = 0 on ΓN0

;
Pn = t on ΓNt .

(110)From the divergene theorem and the boundary onditions (110), we obtain:
∫

Ω1

ρ1
D2

u

Dt2
· δυ dΩ1 = −

∫

Ω1

P(u) : ∇δυ dΩ1

+

∫

∂Ω1

t · δυ dΣ1 +

∫

Ω1

ρ1b · δυ dΩ1, (111)23



where dΣ1 is and in�nitesimal surfae element of ∂Ω1.In partiular, we observe that:
∇δυ =

∂

∂X1
δυ =

∂

∂X1

Dδη

Dt
=

D

Dt

∂δη

∂X1
= δḞ1, (112)with δη an arbitrary virtual displaement. The replaement of (112) in (111),gives the expression of the virtual power priniple for the �rst Piola-Kirhho�stress tensor P with its onjugate virtual deformation δḞ1:

∫

Ω1

ρ1
D2

u

Dt2
· δυ dΩ1 +

∫

Ω1

P(u) : δḞ1 dΩ1 =

∫

∂Ω1

t · δυ dΣ1 +

∫

Ω1

ρ1b · δυ dΩ1.(113)The reinterpretation of the virtual veloity δυ in (113) as a test funtion, providesthe weak formulation of problem (108).3.2 Continuous weak formulationLet V be the spae of vetor funtions de�ned as follows:
V (Ω1) = {φ ∈ [H1(Ω1)]

3 suh thatφ = 0 onΓD}. (114)The weak formulation of problem (108) states:For any t > 0 �nd u = u(t) ∈ V (Ω1) suh that u(0) = u0, v(0) = v0 and:
∫

Ω1

ρ1
D2

u

Dt2
· φ dΩ1 + a(u,φ) = F (φ), ∀φ ∈ V (Ω1) (115)with
a(u,φ) =

∫

Ω1

P(u) : ∇φ dΩ1, (116)and
F (φ) =

∫

∂Ω1

t · φ dΣ1 +

∫

Ω1

ρ1b · φ dΩ1. (117)3.3 Disrete weak formulationTo perform the spatial disretization of equation (115), we onsider the �niteelement spaes de�ned on a partition of the referene domain Ω1 by a mesh τh
1made of generi elements K. Let us assume the mesh is geometrially onformingand made of tetrahedra. Hene, the approximated domain is

Ωh
1 =

∑

K∈τh
1

K. (118)To perform the spatial disretization, we onsider Lagrangian �nite elements sothat the orresponding funtional spae is:
χN (τh

1 ) = {φh ∈ C0(Ωh
1), φh|K ∈ P

N (K), ∀K ∈ τh
1 }, (119)24



where P
N (K) is the spae of polynomials of degree N de�ned on eah element

K ∈ τh
1 . The disrete funtional spae for the displaement unknown in thereferene on�guration is Vh(Ωh

1) = [χN (τh
1 )]3. Finally, the disrete weak formu-lation of the problem (115) an be written as:For any t > 0 �nd uh = uh(t) ∈ Vh(Ωh
1) suh that uh(0) = u0h, vh(0) = v0hand :

∫

Ωh
1

ρ1
D2

uh

Dt2
· φh dΩ1 + a(uh,φh) = F (φh), ∀φh ∈ Vh(Ωh

1) (120)with
a(uh,φh) =

∫

Ωh
1

P(uh) : ∇φh dΩ1, (121)and
F (φh) =

∫

∂Ωh
1

th · φh dΣ1 +

∫

Ω1

ρ1bh · φh dΩ1, (122)where u0h and w0h are suitable approximation of the initial data ompatiblewith the imposed boundary onditions; th is an approximation of the imposedtration and bh is an approximation of the body fores.Let {φi}NV
i=1 be the Lagrange basis assoiated to the �nite element spae ofdisplaement Vh(Ωh

1), we approximate the solution as:
uh(X) =

∑

i∈NV

ui φi(X) (123)The substitution of expression (123) in equation (120), supplies the algebraiform of the semi-disretized problem:
MÜ + K(U) = F (124)where U is the unknown displaement vetor. For a three-dimensional problem, if

{φi}NV
i=1 are linear funtions, the size of vetor U is equal to the number of degreesof freedom, i.e. 3NV , where NV is the number of nodes of the omputationaldomain. M is the mass matrix and F is the vetor that takes into aount theontributions of the body fores and the tration boundary ondition. K(U)denotes a vetor that takes into aount the non-linear sti�ness ontribution dueto the disretization of the stress tensors.The representation of the generi entry (i, j), with i, j = {1, . . . , NV } of eahmatrix and vetor in system (124) is therefore:

Mij =
∫

Ωh
1

ρ1 φi φj dΩ1,

K(U)j =
∫

Ωh
1

P
(

∑

i∈NV

Ui φi(X)
)

: ∇φj dΩ1,

Fj =
∫

∂Ωh
1

∑

i∈NV

ti φi φj dΣ1,+

∫

Ωh
1

∑

i∈NV

bi φi φj dΩ1.25



3.4 Time DisretizationThe initial-value problem for (124) onsists of �nding a displaement U = U(t)satisfying (124) and the given initial data:
U(0) = U0, U̇(0) = V0. (125)To arry out the time disretization of system (124), we partition the timeinterval I = [0, T ] into N subintervals In = [tn, tn+1], for 0 ≤ n ≤ N , with

0 = t0 < t1 < · · · < tN = T , where tn is a generi time step. For the sake ofsimpliity, we onsider only uniform intervals δt = δtn = tn+1 − tn. In order tosimplify the notation, we indiate with U
n+1 = U(tn+1) and similarly F

n+1 =
F(tn+1).Among all possible hoies of time disretization shemes for a seond or-der equation, we employ a Newmark sheme, whih onsists of the followingequations:

MA
n+1 + K(Un+1) = F

n+1, (126)
U

n+1 = U
n + δtVn +

δt2

2
[(1 − ζ)An + ζAn+1], (127)

V
n+1 = V

n + δt[(1 − θ)An + θAn+1], (128)where V
n+1 is the approximation of U̇(tn+1) and A

n+1 is the approximation of
Ü(tn+1) [29℄.To guarantee the numerial stability of the sheme, the two parameters haveto satisfy the relation θ ≥ 1

2 and ζ ≥ 1
2 (θ + 1

2)2 [30℄. The hoie of parameters
θ = ζ = 1

2 leads to a seond order method (mid-point), that is a fully nondissipative sheme, so that, no mehanism exists to damp high frequenies dueto trunation errors [31℄.In our ase, we were interested in quasi-stati deformations of the struturesand, in order to avoid the spurious osillations in the solution, we hoose theparameters as θ = 0.5 and ζ = 1. With this hoie, the time sheme redues tothe �rst order Bakward Euler sheme for displaement equation, while for theveloity we still maintain the seon order onvergene [29℄. The degradation ofone order of the time sheme does not a�et the preision of the displaementsolution when looking for quasi-stati deformations. In ontrast, in the ase ofpropagation of waves, the dynamis of the phenomenon is important and thepreision of the time sheme beomes fundamental. With this in mind, the odewas made to handle the general ase so that these parameters ould be seleteddepending on the appliation.The use of sheme (126 � 128) in system (124) gives:
2

δt2
MU

n+1 + ζK(Un+1) =
2

δt2
M(Un + δtVn) + (1 − ζ)MA

n, (129)26



and
A

n+1 =
2

ζδt2
U

n+1 − 2

ζδt2
(Un + δtVn) − (1 − ζ)

ζ
A

n, (130)
V

n+1 = V
n + δt[(1 − θ)An + θAn+1]. (131)3.5 Linearization and solutionIn this work the solution of the algebrai system (129) is performed iterativelyusing the Newton-Raphson method [22℄ [28℄.Let us de�ne the funtion L (·) : R

r → R
r, where r is the total number ofdegrees of freedom, hene the dimension of system (129):

L (Un+1) =
2

δt2
MU

n+1 + ζK(Un+1) −
2

δt2
M(Un + V

nδt) − (1 − ζ)MA
n. (132)With suh an approah, solving system (129) is equivalent to �nding the root ofthe nonlinear equation:

L (Un+1) = 0 (133)Moreover, we observe that the term − 2
δt2 M(Un + V

nδt) − (1 − ζ)MA
n is aonstant vetor at eah time step n+1, beause it is omputed by using the knownvetor U

n. Let us onsider the �xed time step tn+1 where we are omputing thesolution. Hene, the index k refers to a generi iteration of the Newton-Raphsonmethod. Therefore we all U
n+1
k = Uk.The general formulation of the Newton-Raphson method provides an iterativeproedure to solve the nonlinear system (129). Given an initial guess U0, at eahiteration k we have to solve the linear system for the unknown δUk = Uk+1−Uk:

DUL (Uk)[δUk ] = −L (Uk). (134)After solving (134) in terms of δUk, we have to update the displaement Uk+1 =
Uk + δUk.To solve (134) we need to ompute the Frehet derivative or diretional deriva-tive of L (Uk) with respet to an inrement δUk [32℄:

DUL (Uk)[δUk ] = lim
ε→0

L (Uk + εδUk) − L (Uk)

ε
. (135)The displaement inrement δUk represents in R

3 the diretion along whih weare di�erentiating the funtion L . Referring to (132), we observe that
DUL (Uk)[δUk ] =

2

δt2
MδUk + ζDUK(Uk) [δUk] , (136)27



hene the term to linearize is DUK(Uk) [δUk], that omes from the stress tensor.In order to understand how to perform the derivative of suh a term, we reallthat
K(Uk) =

∫

Ωh
1

P(Uk) : ∇φ dΩ1 (137)where P is the �rst Piola-Kirhho� stress tensor, nonlinear in U, and φ is a testfuntion de�ned in Setion 3.3. As we pointed out above the linearization has tobe performed at eah iteration k of the Newton-Raphson method. To simplifythe notation, in the following alulation we neglet the subsript k referred asthe displaement vetor U and its variation δU. We observe that integration inspae on a �xed domain and funtional derivation ommute and from equation(137), we have
DUK(U)[δU] = lim

ε→0

1

ε

(

K(U + εH) − K(U)
)

=

= lim
ε→0

1

ε

(

∫

Ωh
1

P(U + εδU) : ∇φ dΩ1 −
∫

Ωh
1

P(U) : ∇φ dΩ1

)

=

=

∫

Ωh
1

lim
ε→0

1

ε

(

P(U + εδU) − P(U)
)

: ∇φ dΩ1 =

=

∫

Ωh
1

DUP(U)[δU] : ∇φ dΩ1. (138)In partiular, we observe that the �rst Piola-Kirhho� stress tensor maydepend on the unknown displaement U through the deformation gradient F1.In this ase, we may employ the hain rule to linearize P(F1(U)):
DUP(F(U))[δU] = DF1

P(F1)[δF1], (139)and
DF1

K(F1)[δF1] =

∫

Ωh
1

DF1
P(F1)[δF1]dΩ1. (140)It is useful to reall that, for a multi-mehanism model with weakly om-pressible materials (see setion 2.3 and following), the most general expressionof the nonlinear term K(F1) deomposes as

K(F1) = K1 vol(F1) + K1 iso(F1) + K1 vol(F1) + K2 iso(F1), (141)where
Kl iso(F1) =

∫

Ωh
1

Pl iso(F1) : ∇φ dΩ1, l = 1, 2; (142)
Kl vol(F1) =

∫

Ωh
1

Pl vol(F1) : ∇φ dΩ1, l = 1, 2. (143)28



3.5.1 Linesearh algorithmFinally, we observe that the Newton-Raphson method is loally onvergent, in thesense that it onverges only if the initial guess is �lose enough� to the solution. Inorder to improve the onvergene properties and be independent from the initialguess, we add a linesearh baktraking proedure [33℄ to the basi algorithm.This tehnique onsists in omputing at eah time step, a oe�ient αk to tunethe desendent step omputed by (134).When the desendent diretion δUk, is alulated aording to (134), and Ukis known, the oe�ient αk is omputed as a minimum of L (Uk + αkδUk):
αk = arg min

α∈R+
L (Uk + αδUk) (144)In pratial appliations there are spei� rules implemented to �nd αk, we usethe Goldenstein Rules [34℄.The generi steps of the total algorithm an be summarized as follows:1. Choose an initial guess U0 and a tolerane ε.2. Compute a desendent diretion δUk solving (134).3. Compute a suitable oe�ient αk through (144).4. Update the solution Uk+1 = Uk + αkδUk.5. Test for onvergene ||Uk+1 − Uk|| < ε.6. Exit if the test in 5. is true, go bak to 2. if it is false.4 Code validation, omparison with analyti solutionsThe numerial ode has been validated by omparing analyti solutions for asingle mehanism material with numerial results for the same problem. Theonstitutive laws used in the validation proedure were a Neo-Hookean and ex-ponential onstitutive laws.We onsider a ylinder with axis in the x diretion, with radius 0.5 cm andheight 1 cm. The lower base of the ylinder is onstrained to slide on the zy plane,so that it an shrink in diretion orthogonal to its axis, but it an't move in the

x diretion (Dirihlet homogeneous boundary onditions on the x omponentof displaement). The upper setion of the ylinder is loaded in tration. Thelateral surfae is stress free (Neumann homogeneous boundary onditions). Thetest is arried out as a series of quasi-stati deformations and at eah time stepthe tration inreases linearly with time. A piture of results from the numerialsimulation is shown in �gure 6.
29



Figure 6: Example of the tension test arried on a ylinder with the isohori Neo-Hookean onstitutive law for a single-mehanism. The olor sale representsthe displaement in the axial diretion (x).4.1 Analyti solutionIn the ase of tension test of a ylinder loaded in the axial diretion, the deforma-tion λ1 along the axis is homogeneous, and the orresponding �rst Piola-Kirhho�stress tensor an be omputed analytially. The deformation inside the ylinderis uniform. The axial diretion and two orthogonal diretions are prinipal axisof strain and stress, hene the deformation gradient F is:
F =





λ1 0 0
0 λ2 0
0 0 λ3



 , (145)where λ2 and λ3 are prinipal deformations in diretions orthogonal to the axis.The jaobian of the motion is J = detF = λ1λ2λ3.The right Cauhy-Green strain tensor is:
C =





λ2
1 0 0
0 λ2

2 0
0 0 λ2

3



 , (146)and from (30) the unimodular Cauhy-Green strain tensor C = J−2/3
C.The kinematis invariants we need, an be written in terms of prinipalstrethes:

IC = trC = λ2
1 + λ2

2 + λ2
3; (147)

IC = trC = J−2/3IC; (148)
IIIC = detC = J2 = λ2

1λ
2
2λ

2
3. (149)Beause the test is symmetri in diretions y and z, orthogonal to the axis xof the ylinder, we have that λ2 = λ3, and using relation (149) we �nd:

λ2 = λ3 =

√

J

λ1
. (150)30



The strain energy funtion W of the material is omposed of a volumetriterm (Wvol) depending only on J and a deviatori term (Wiso) depending onlyon IC , the �rst modi�ed invariant of C:
W = Wiso(IC) + Wvol(J) (151)The �rst Piola-Kirhho� stress tensor P is obtained by evaluating ∂W

∂F
. Inthe present simple ase, from (44) the prinipal omponents of stress are:

P11 = 2F11
∂W

∂C11
, (152)

P22 = 2F22
∂W

∂C22
, (153)

P33 = 2F33
∂W

∂C33
. (154)4.2 Neo-Hookean onstitutive lawTo represent the material behavior of the deviatori part, we hoose the Neo-Hookean onstitutive law for a single-mehanism, given by (75), and for thevolumetri part we use expression (67). In the paper of Ne� and Hartmann [23℄a proof of the polyonvexity of the hosen strain energy funtion that guaranteesthe existene of an equilibrium solution is shown.After some alulations, the prinipal omponents of �rst Piola-Kirhho�stress tensor are obtained:

P11 =
µ

2

(

2λ1

J2/3
− 2λ2λ3(λ

2
1 + λ2

2 + λ2
3)

3J5/3

)

+
K

2λ1
ln J +

K

2
λ2λ3(J − 1), (155)

P22 =
µ

2

(

2λ2

J2/3
− 2λ1λ3(λ

2
1 + λ2

2 + λ2
3)

3J5/3

)

+
K

2λ2
ln J +

K

2
λ1λ3(J − 1), (156)

P33 =
µ

2

(

2λ3

J2/3
− 2λ1λ2(λ

2
1 + λ2

2 + λ2
3)

3J5/3

)

+
K

2λ3
ln J +

K

2
λ1λ2(J − 1) .(157)From (150), we an express λ2 and λ3 as funtion of J and λ1. As the lateralsurfae of the ylinder is stress free, P22 = P33 = 0. We an replae λ2 and λ3,for example in equation (156), thus we obtain a relation between J and λ1:

P22 =
µ

2





2
√

J
λ1

J2/3
−

2λ1

√

J
λ1

(λ2
1 + 2 J

λ1
)

3J5/3



+
K

2

√

λ1

J
ln J +

K

2
λ1

√

J

λ1
(J −1) = 0.(158)The solution of this algebrai equation gives J one the streth λ1 is �xed.Finally we ompute the prinipal omponent of stress in axial diretion:

P11 =
µ

2

(

2λ1

J2/3
−

2J(λ2
1 + 2 J

λ1
)

3J5/3

)

+
K

2λ1
ln J +

K

2

J

λ1
(J − 1). (159)31
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(a) Analyti and numerial solution of thetension test with Neo-Hookean onstitutivelaw. 1 1.5 2 2.5
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(b) Analyti and numerial solution of thetension test with Exponential onstitutivelaw.Figure 7: Comparison between the analyti and the numerial solution. Both graphsrepresent the prinipal omponent P11 of the �rst Piola-Kirhho� stresstensor versus the axial streth λ1.The tehnique used to derive the prinipal stress P11 follows that proposed inOgden [35℄.In Figure 7(a) the omparison between the analyti solution and the nu-merial solution of this tension test is shown. Material parameters are µ =
27.68 105 Pa and K = 107 Pa, for both the numerial and analyti solution.4.3 Exponential onstitutive lawIn this setion we use an exponential isohori onstitutive law to model a single-mehanism material. The orresponding strain energy funtion is given by ex-pression (85). For the volumetri part of the strain energy funtion we againuse (67). Also for the exponential ase, in Ne� and Hartmann [23℄ this hoie ofstrain energy funtion is shown to be polyonvex, thus guaranteeing the existeneof an equilibrium solution.If we proeed with alulations as in the previous setion, in this ase, the
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prinipal omponents of the �rst Piola-Kirhho� stress tensor are:
P11 =

α

2

(

e
γ

„

λ2
1+λ2

2+λ2
3

J2/3
−3

«

(

2λ1

J2/3
− 2λ2 λ3

(

λ2
1 + λ2

2 + λ2
3

)

3J5/3

))

+
K

2λ1
ln J +

K

2
λ2λ3(J − 1), (160)

P22 =
α

2

(

e
γ

„

λ2
1
+λ2

2
+λ2

3

J2/3
−3

«

(

2λ2

J2/3
− 2λ1 λ3

(

λ2
1 + λ2

2 + λ2
3

)

3J5/3

))

+
K

2λ2
ln J +

K

2
λ1λ3(J − 1), (161)

P33 =
α

2

(

e
γ

„

λ2
1
+λ2

2
+λ2

3

J2/3
−3

«

(

2λ3

J2/3
− 2λ1 λ2

(

λ2
1 + λ2

2 + λ2
3

)

3J5/3

))

+
K

2λ3
ln J +

K

2
λ1λ2(J − 1). (162)As for the Neo-Hookean material, during the tension test, the lateral surfaeof the ylinder is stress free, and P22 = P33 = 0. If we onsider equation P22 = 0and we replae λ2 and λ3 by means of (150), we obtain a relation between J and

λ1:
P22 =

α

2






e
γ

 

λ2
1
+2 J

λ1

J2/3
−3

!






2
√

J
λ1

J2/3
−

2λ1

√

J
λ1

(

λ2
1 + 2 J

λ1

)

3J5/3













+
K

2

√

λ1

J
ln J +

K

2
λ1

√

J

λ1
(J − 1) = 0. (163)For a hosen λ1, we an ompute J from (163) and the prinipal omponentof stress in the axial diretion an be obtained from:

P11 =
α

2






e
γ

 

λ2
1
+2 J

λ1

J2/3
−3

!





2λ1

J2/3
−

2 J
λ1

(

λ2
1 + 2 J

λ1

)

3J5/3











+
K

2λ1
ln J +

K

2

J

λ1
(J − 1), (164)As noted in Setion 4.2, the tehnique used to derive the prinipal stress P11follows the guideline proposed by Ogden [35℄.In Figure 7(b) the analyti and the numerial solution for this tensions test areshown. The same material parameters have been used to ompute the analytialsolution and the numerial simulation. These are α1 = 7.12 103 Pa, γ1 = 0.86,and K = 107 Pa. 33
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Figure 8: L∞ norm of (J − 1) with respet to di�erent values of the bulk modulus K.Neo-Hook Exponential
1st Meh. µ1 = 27.68 104 Pa α1 = 7.12 103 Pa, γ1 = 0.86

2nd Meh. - α2 = 31.28 103 Pa, γ2 = 1.87Table 1: Table of material parameters used in strain energy funtions (67, 75, 85).5 Material parametersThe strain energy funtion adopted herein is the sum of a Neo-Hookean materialplus an Exponential law, for the seond mehanism, as suggested in [24℄, [20℄. Thematerial parameters used for the double-mehanism are taken from the literature[20℄ and are listed in table 1.The volumetri oe�ient K (bulk modulus) of the strain energy funtion (seeexpression (67)) annot be measured by experiments, it multiplies the volumetripart of the strain energy funtion, giving rise to a penalty term, that allows thematerial only slight ompression. In Le Talle [36℄, we �nd the suggestion thatfor a FE displaement formulation it should be in the range:
Cs 102 ≤ K ≤ Cs 106, (165)where Cs is the harateristi shear modulus of the material. For smaller valuesof K there is a loss of auray in omputing the solution and for larger valuesthe ondition number of the assoiated disrete linear system beomes too large.In �gure 8 is shown the relation between the ompression modulus K and theompressibility the material exhibits when J moves away from 1.34



(a) Example of the tension test arriedon the ylinder with the isohori Neo-Hookean onstitutive law for a single-mehanism. The olor sale representsthe displaement in the axis diretion (x).Srolling is allowed on the lower base of theylinder.
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

λ
1

pr
in

ci
pa

l s
tr

es
s 

P
11

 [d
yn

e/
cm

2 ] 

 

 

NH + Exp
NH

(b) Comparison between the stress-straingraph for the tension test with a single anda double mehanism law. The blue lineis the behavior of a double Neo-Hook andExponential model, and the red dashedline in a single Neo-Hookean model. Thetwo urves overlap until the deformationthreshold ativates the exponential olla-gen mehanism.Figure 9: Tension test in ase of uniform deformations.In this work we use for the bulk modulus the value K = 107 Pa, that isinluded in range (165) when Cs = µ1 or Cs = α1.We observe that in [20℄ the hosen value of the ompression modulus is
K = 109 Pa, allowed by the use of a FE mixed (displaement and pressure)formulation.6 Numerial resultsSome simple numerial tests have been used to explain the behavior of the ol-lagen reruitment mehanism within the double mehanism model in the ase ofuniform deformations and non-uniform deformations. The tests were performedas a series of quasi-stati deformations.We onsider a ylinder with the upper surfae in tration, linearly varyingwith time, the lateral surfae is stress free, and the homogeneous Dirihlet bound-ary onditions are imposed on the omponent of displaement along the ylinderaxis x on the lower surfae. The initial length of the ylinder is 1 m and itsradius 0.5 m. A piture of the deformed ylinder is shown in �gure 9(a).In this test, the deformation is uniform, i.e. it is the same at eah point.Therefore, the deformation threshold sa = 0.5 is reahed simultaneously by allelements of the omputational domain. In �gure 9(b) a omparison of the stress-strain urve obtained with a double-mehanism and a single-mehanism model35



(a) Example of a tension test arriedon the ylinder with the isohori Neo-Hookean onstitutive law for a single-mehanism. The olor sale representsthe displaement in the axis diretion(x). The lower base of the ylinder isnow loked.
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(b) Comparison between the stress-strain graph for a tension test with asingle and a double mehanism law.The blue line is the behavior of a doubleNeo-Hookean and exponential model,and the red dashed line in a singleNeo-Hookean model. The two urvessmoothly separates beause the olla-gen reruitment is gradual throughoutthe ylinder.Figure 10: Tension test in ase of non-uniform deformations.is shown. The deformation λ1 is omputed as the urrent length over the initiallength of the ylinder and the stress P11 is the prinipal �rst Piola-Kirhho�stress omponent in the axial diretion x. The double-mehanism, omposed bya Neo-Hookean material for the �rst mehanism and an exponential material forthe seond, is ompared with a single Neo-Hookean material. It an be observed,in �gure 9(b), that the two urves overlap until the threshold value is reahed(whih orresponds to s = sa). Above this value, they are di�erent. In fat, at
s = sa the seond mehanism beomes ative in all the points of the ylinder.To test the behavior of the double-mehanism model for non-uniform defor-mation, we modify the previous tension test imposing a Dirihlet homogeneousboundary ondition on all the omponents of displaement at the lower base ofthe ylinder (see �gure 10(a)).In this ase, the deformation is not the same at all the points of the ylin-der. As the deformation is non-uniform, at eah time only some elements areativated. In �gure 10(b) we plot P11, the �rst Piola-Kirhho� stress omponentin the axial diretion x, versus the deformation λ1, omputed as in the previoustest. The blue urve represents a double-mehanism made of a Neo-Hookean andexponential material, and the red dashed urve is a single Neo-Hookean meh-anism. In this ase, we observe that before the ollagen reruitment, the twourves overlap, but the split-up is very smooth, due to the fat that the seondmehanism beomes ative smoothly within the elements of the omputational36
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6.1 In�ation of thik walled ylinder with narrowing radiusTo show the behavior of the full multi-mehanism damage model, we onsideran in�ation test arried on a straight tube, representing a portion of an artery,where the inner radius is dereasing along the axis. This geometrial feature mayrepresent an initial unhealthy situation of the artery.The in�ation test has been performed as a series of quasi stati in�ation,inreasing the internal pressure linearly with time. The length of the tube is 3m, the minimum and maximum inner radius are 0.3 and 0.1 m, and the outerradius is 0.5 m. The parameters used are sa = 0.5, for ollagen ativation,
se = 1.15, and sf = 1.1 for the elastin damage model. The geometrial domainused for the in�ation test is made of 68973 tetrahedra.The in�ation of the ylinder indues a non-uniform deformation within thetube. In partiular, the deformation is maximum at the inner of the ylinder andradially dereases toward the external surfae. Hene, the ativation of ollagenelements starts from the elements belonging to the inner surfae of the tube,where the ativation threshold is overome, and gradually involves ontiguouselements.Performing the test, we observe that the deformation �eld depends on thethikness of the tube. Where the arterial wall is thiker the deformation issmaller, and the subsequent ativation of ollagen involves only few elementslose to the lumen, while where the wall is thinner, the deformation is largerand all the ollagen elements are ativated. In left �gure 12, the elements inwhih ollagen has been reruited are plotted on the unloaded geometry. Theright �gure 12 shows the elements in whih the elastin is damaged. As for theollagen, we observe that where the arterial wall is thinner, the deformation isbigger and the damage of elastin elements happens earlier than in the rest of thetube, starting from the elements belonging to the lumen and propagating withinthe arterial wall.We underline that the threshold for the irreversible damage of elastin isgreater than the threshold for the ollagen ativation, i.e. the degradation ofthe �rst mehanism happens in the elements where the seond mehanism is al-ready present. From the point of view of the mehanial response of the material,this means that the elements where there is no more elastin are less sti� thanthe ontiguous elements where both mehanisms are present.In partiular, this happens where the arterial wall is thinner. The onse-quene is that the arterial wall beomes weaker and onsequently the deforma-tion larger. In �gure 13 we show the omparison between the unloaded geometryand the deformed geometry. In partiular the deformation of the portion of thetube where the elastin is damaged may be very similar to the initial stage of ananeurysm formation. Let us suppose that the portion of the artery where thewall is thinner represents a pathologial state, due to hemodynamial or geomet-rial fators. We may interpret our numerial results, as a predition that, inpresene of damage of elastin omponents, the portion of an artery where the38



Figure 12: Piture of ativated ollagen elements (left) and damaged elastin elements(right) for an in�ation test of a straight tube with narrowing radius. The�nal in�ation pressure is 31 KPa. The ativated and damaged elementsare plotted on the unloaded geometry.wall is thinner is very likely a site where an aneurysm will develop.7 Conlusion and disussionIn this paper we have presented the numerial implementation and results ob-tained for a multi-mehanism model suitable to simulate the non-linear and in-elasti behavior of erebral arteries. The theoretial model was �rst presentedby Robertson and oworkers [24℄.The biggest hallenge of this model is the need for two distint referene on-�gurations for elastin and ollagen. Our ontribution to the multi-mehanismmodel is the derivation of the Lagrangian formulation of the whole onstitutivemodel in the �rst (elastin) referene on�guration. Hene, it has been neessaryto map the stress tensor of the ollagen mehanism to the elastin referene on-�guration. The resulting non-standard formulation required partiular attentionin the ode implementation. The �nal non-linear system has been solved bymeans of the Newton-Raphson method with exat jaobian omputation [37℄.The multi-mehanism model presented in this paper has been implemented inthe Finite Element library LifeV [38℄.The main limitation of the model presented is to onsider the arterial wallhomogeneous, while its real struture is layered and eah layer is haraterized bya strong anisotropy due to a partiular orientation of ollagen �bers. Moreoverwe an underline that the modular proedure used to de�ne the strain energyfuntion an easily extended to the anisotropi ase as shown in [20℄, [25℄.Even with suh limitation, the numerial results obtained with our solvershow that the multi-mehanism model is able to apture the non-linear har-39



Figure 13: Comparison between the unloaded geometry and the deformed geometry ofa portion of a ylindrial artery with inner narrowin radius. In partiularthe deformation of the portion of the tube where the elastin is damagedmay be very similar to the initial stage of an aneurysm formation.ateristis of the arterial wall. At low levels of deformation the elastin (�rstmehanism) supplies weak resistane to the tension test, while when the ollagenenters the model, it renders the whole material sti�er, until the elastin damageours. We showed that the way the ollagen is reruited depends in a verygeneral way by the deformation �eld.We observed that in presene of a non-uniform deformation �eld, within theomputational domain, we may have some elements in whih only the �rst meh-anism is ative, elements in whih both �rst and seond mehanism are present,and elements in whih the seond mehanism is ative and the �rst is totallyor partially damaged. Regarding a single element, the ollagen ativation andthe elastin degradation are implemented as gradual phenomena, that do not in-due a disontinuity in the stress tensor governing the mehanial response of thespei� element. But ontiguous elements may have di�erent and disontinuousstress response, and suh a phenomenon may indue instabilities in the wholematerial behavior. This di�ulty is overome by using a well re�ned mesh.Finally a more realisti in�ation test has been shown. In this numerial sim-ulation, we observe that the ollagen reruitment and elastin deativation startfrom the lumen of the arteries, where the deformation is wider. In partiular, thenarrowing of the internal radius of the ylinder, may be interpreted as an initialunhealthy situation, that leads to an non-uniform damage of the elastin meh-anism and leads to an enlargement of the arterial segment. From a qualitativepoint of view the enlargement may represent the initial stage of an aneurysmformation, due to mehanial damage of elastin omponents of arterial wall.
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