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Introduction

In any sport or human endeavor, coaches regularly state ”play to your strengths.” One
might not guess that a land-locked, mountainous country like Switzerland would have
strengths that would give them a chance at winning the oldest, most competitive sailing
competition in the world, the America’s Cup. But it does!

In 2003, in the Harukai Gulf of New Zealand, a Swiss yacht called Alinghi was the
surprise winner of the America’s Cup. And in 2007, in the Mediterranean sea near
Valencia, Alinghi confirmed its dominance by defeating the New Zealand Team 5 to 2
in a breathtaking final match race.

Mathematics and computational science were involved in Alinghi’s first successes in
2003, when it won the Louis Vuitton Cup and then the America’s Cup by defeating the
defending Black Magic Team of New Zealand. Mathematics helped create the design
of the boat which brought the defender Alinghi its second triumph in Valencia in 2007.
Mathematical models were used in the design phase and again during the competition.

Of course mathematical models alone are not enough to guarantee success in a race
as competitive as the America’s Cup: a great team and much luck are needed. We know
that people and explorers have been sailing literally since the stone age. It may seem
astonishing that, with all the technological progress that has been achieved, sailing is still
such a challenge. Alinghi has shown that part of the progress that will likely be made
in the future rests on mathematical models and their numerical solution [3, 11, 12, 13].
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Figure 1: The Swiss yacht Alinghi, two-time winner of the America’s Cup (2003 and
2007). Photo by Ivo Rovira.

1 Mathematics for sailing

In the past few years, Computational Fluid Dynamics (CFD) has become an essential
tool in the design and optimization of racing sailboats and in particular America’s Cup
yachts. The prevalent role of CFD in the design process is demonstrated by the number
of numerical simulations on hull and appendage design as well as on sail optimization,
that each America’s Cup syndicate carries on during the boat design.

An America’s Cup yacht is an extremely complex system that should operate opti-
mally in a wide range of sailing conditions. To achieve an optimal configuration, the
design of an America’s Cup yacht must account for this complexity and requires to set
up suitable (experimental and numerical) models able to describe accurately the system.

America’s Cup design teams evaluate whether a design change (and all the other
design modifications that this change implies) is globally advantageous, based on a Ve-
locity Prediction Program (VPP), which can be used to estimate the boat speed and
attitude for any prescribed wind condition and sailing angle. A prediction of boat speed
and attitude can be obtained by modelling the balance between the aerodynamic and
hydrodynamic forces acting on the boat. For example, on the water plane, a steady sail-
ing condition is obtained imposing two force balances in x direction (aligned with the
boat velocity) and y direction (normal to x on the water plane) and a heeling moment
balance around the centerline of the boat:

Dh + T a = 0,

Sh + Sa = 0, (1)

Mh + Ma = 0,

where Dh is the hydrodynamic drag (along the course direction), T a is the aerodynamic
thrust, Sh is the hydrodynamic side force perpendicular to the course, Sa is the aerody-
namic side force, Mh and Ma are, respectively, the hydro mechanical righting moment
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and the aerodynamic heeling moment around the boat mean line. The angle βY between
the course direction and the boat centerline is called yaw angle. The aerodynamic thrust
and side force can be seen as a decomposition in the reference system aligned with the
course direction of the aerodynamic lift and drag which are defined on a reference system
aligned with the apparent wind direction. Similar balance equations can be obtained for
the other degrees of freedom.

Aerodynamic
Lift

Aerodynamic
Drag DA

Aerodynamic
Side Force SA

Side Force
Hydrodynamic

SH

Aerodynamic
Thrust TA

Hydrodynamic
DHDrag Hydromechanic

Righting Moment
RMH

Heeling Moment
Aerodynamic

HMA

Angle

Boat
Velocity

LA

Vb

BY
Yaw

Wind
Apparent

Apparent

Wind Angle
Wind
True

Angle TWA

AWA

WindTrueCourse
of the boat

Centerline
Boat

Figure 2: Forces and moments on the water plane.

All the terms in system (1) are modelled in the VPP as functions of boat speed, heel
angle and yaw angle. Suitable correlations between the degrees of freedom of the system
and the different force components can be obtained based on different sources of data:
experimental results, theoretical predictions and numerical simulations.

The role of advanced numerical simulations is to supply accurate estimates of the
forces acting on the boat in different sailing conditions in order to improve the reliability
of the prediction of the overall performance associated with a given design configuration.

2 Governing equations and numerical approximation

2.1 The flow equations

Let Ω denote the three-dimensional computational domain in which the flow equations
will be solved. If Ω̂ is a region surrounding the boat B, the computational domain is the
complementary of B w. r. to Ω̂, that is Ω = Ω̂\B. The equations that govern the flow
around B are the density-dependent (or inhomogeneous) incompressible Navier–Stokes
equations, which read:
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∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) − ∇ · τ (u, p) = ρg, (3)

∇ · u = 0, (4)

for x ∈ Ω and 0 < t < T , and where ρ is the (variable) density, u is the velocity field, p is
the pressure, g = (0, 0, g)T is the gravity acceleration, and τ (u, p) = µ(∇u+∇uT )−pI

is the stress tensor with µ indicating the (variable) viscosity. The above equations have
to be complemented with suitable initial conditions and boundary conditions. For the
latter we typically consider a given velocity profile at the inflow boundary, with a flat
far field free-surface elevation.

In the case we are interested in, the computational domain Ω is made of two regions,
the volume Ωw occupied by the water and that Ωa occupied by the air. The interface
Γ separating Ωw from Ωa is the (unknown) free-surface, which may be a disconnected
two-dimensional manifold if wave breaking is accounted for. The unknown density ρ
actually takes two constant states, ρw (in Ωw) and ρa (in Ωa). The values of ρw and ρa

depend on the fluid temperatures, which are considered to be constant in the present
model. The fluid viscosities µw (in Ωw) and µa (in Ωa) are constants which depend on
ρw and ρa, respectively.

The set of equations (2)-(4) can therefore be regarded as a model for the evolution
of a two-phase flow consisting of two immiscible incompressible fluids with constant
densities ρw and ρa and different viscosity coefficients µw and µa. In this respect, in
view of the numerical simulation, equation (2) represents a candidate for updating the
(unknown) interface location Γ, then equations (3)-(4) will provide a coupled system of
Navier–Stokes equations in the two sub-domains Ωw and Ωa:

∂(ρwuw)

∂t
+ ∇ · (ρwuw ⊗ uw) − ∇ · τw(uw, pw) = ρwg,

∇ · uw = 0,

in Ωw × (0, T ),

∂(ρaua)

∂t
+ ∇ · (ρaua ⊗ ua) − ∇ · τ a(ua, pa) = ρag,

∇ · ua = 0,

in Ωa × (0, T ). We have set τw(uw, pw) = µw(∇uw + ∇uw
T )− pwI, while τ a(ua, pa) is

defined similarly.
The free surface Γ is a sharp interface between Ωw and Ωa, on which the normal

components of the two velocities ua · n and uw · n should agree. Furthermore, the
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tangential components must match as well since the two flows are incompressible. Thus
we have the following kinematic condition

ua = uw on Γ. (5)

Moreover, the forces acting on the fluid at the free-surface are in equilibrium. This is
a dynamic condition expressing the property that the normal forces on either side of Γ
are of equal magnitude and opposed direction, while the tangential forces must agree in
both magnitude and direction:

τ a(ua, pa) · n = τw(uw, pw) · n + κσn on Γ, (6)

where σ is the surface tension coefficient, that is a force per unit length of a free surface
element acting tangential to the free-surface. Having surface tension is a property of
the liquid and depends on the temperature as well as on other factors. The quantity κ
in (6) is the curvature of the free-surface, κ = R−1

t1
+ R−1

t2
, where Rt1 and Rt2 are radii

of curvature along the coordinates (t1, t2) of the plane tangentially to the free-surface
(orthogonal to n).

The free-surface interface between air and water is tracked using the Volume of Fluid
(VOF) method [4]. The RANS equations, as well as all the partial differential equations
required in the turbulence, transition (see Section 2.2) and free-surface models, are solved
using a vertex-based finite volume method [15].

2.2 Turbulence and transition models

The flow around an IACC boat in standard race regime exhibits turbulent behavior
over the vast majority of the yacht surface. Turbulent flows are characterized by being
highly unsteady, three-dimensional, containing vortices and coherent structures which
stretch and increase the intensity of turbulence. Even more importantly, they fluctuate
on a broad range of scales (in space and time). This feature makes the so-called direct
numerical simulation (DNS) unaffordable. The adoption of a RANS (Reynolds Averaged
Navier-Stokes) model is then required to deal with the turbulent nature of the flow.

The SST (Shear Stress Transport) model proposed by Menter [9] is an eddy-viscosity
model defined as a combination of a k−ω model (in the inner boundary layer) and k−ε
model (in the outer region of and outside of the boundary layer). A blending function
ensures a smooth transition between the two models. The k − ε model has two main
weaknesses: it over-predicts the shear stress in adverse pressure gradient flows because
of too large length scale (due to low dissipation) and it requires near-wall modification
(i.e. low-Reynolds number damping terms). The k − ω model is better at predicting
adverse pressure gradient flow and the standard model of Wilcox [18] does not use any
damping functions. However, the disadvantage of the standard k − ω model is that it
depends on the free-stream value of ω [8]. In order to improve both the k − ε and the
k − ω model, Menter [9] combines the two models. Prior to that, it is convenient to
transform the k − ε model into a k − ω model using the relation ω = ε/(cµk).
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The two partial differential equations governing the turbulent kinetic energy k and
the turbulent frequency ω then reads:

D(ρk)

Dt
= Pk − Dk + ∇ · ((µ + σkµt)∇k), (7)

D(ρω)

Dt
= αρ

Pk

µt
− Dω + Cdω + ∇ · ((µ + σkµt)∇ω),

where Pk and PΩ are production terms, Dk and Dω destruction ones and Cdω results
from transforming the ε equation into an equation for ω. The coefficients in the SST
model are obtained by combining the value of the coefficients of the standard k − ω (in
the near wall region) to those of the k − ε model by using a blending function F1. We
refer to [9] for a detailed description of the model and its parameters.

Eddy-viscosity turbulence models, such as the one described here, are nowadays
widely adopted for the simulation of turbulent flows in engineering applications. Indeed,
they are able to recover with an acceptable accuracy the global behavior related to the
turbulence nature of a flow. In particular, in presence of walls, they supply an accurate
description of turbulent boundary layers.

The laminar-turbulent transition is a physical phenomenon as complex as turbu-
lence itself. It involves the nonlinear interaction of flow perturbations that is eventually
responsible for the evolution towards a fully turbulent behavior. Many models for tran-
sition prediction have been proposed in the past decades [17, 6, 16, 7]. However, only
recently transition models have been fully integrated into RANS solver. Among them,
the Langtry-Menter transition model [10] is based on a transport equation for the turbu-
lence intermittency γ which can be used to trigger transition locally. The intermittency
function is coupled with the SST turbulence model introduced above by turning on the
production term of the turbulent kinetic energy downstream of the transition point. In
addition to the transport equation for the intermittency, a second transport equation
is solved in terms of the transition onset momentum-thickness Reynolds number R̃eθt.
This is done in order to capture the non-local influence of the turbulence intensity, which
changes due to the decay of the turbulence kinetic energy in the freestream, as well as
due to changes in the free-stream velocity outside the boundary layer. This additional
transport equation is an essential part of the model as it relates the empirical correlation
to the onset criteria in the intermittency equation and allows the model to be used in
general geometries without interaction from the user.

2.3 Boat dynamics as a 6-DOF, buoyant rigid body

The attitude of a boat advancing in calm water or wavy sea is strictly correlated with
its performances. For this reason, a state-of-the-art numerical tool for yacht design
predictions should be able to account for the boat motion. This requires the coupling
between the fluid model and another one able to compute the structure dynamics. In
the case at hand, the structural deformations can be neglected and only the rigid body
motion of the boat using six degrees of freedom is considered.
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Following the approach adopted in [1, 2], two orthogonal Cartesian reference systems
are considered: an inertial reference system (O, X, Y, Z) which moves forward with the
mean boat speed and a body-fixed reference system (G, x, y, z), whose origin is the
boat center of mass G, which translates and rotates with the boat. The XY plane
in the inertial reference system is parallel to the undisturbed water surface and the
Z − axis points upward. The body-fixed x-axis is directed from bow to stern, y is
positive starboard and z upwards.

The dynamics of the boat in the 6 degrees of freedom is determined by integrating the
equations of variation of linear and angular momentum in the inertial reference system,
as follows

mẌG = F , (8)

¯̄T ¯̄I ¯̄T−1
Ω̇ + Ω × ¯̄T ¯̄I ¯̄T−1

Ω = MG, (9)

where m is the boat mass, ẌG is the linear acceleration of the center of mass, F is the
force acting on the boat, Ω̇ and Ω are the angular acceleration and velocity, respectively,
MG is the moment with respect to G acting on the boat, ¯̄I is the tensor of inertia of
the boat about the body-fixed reference system axes and ¯̄T is the transformation matrix
between the body-fixed and the inertial reference system (see [1] for details).

The forces and moments acting on the boat are given by

F = F Flow + mg + F Ext,

MG = MFlow + (XExt − XG) × F Ext,

where F Flow and MFlow are the force and moment, respectively, due to the interaction
with the flow and F Ext is an external forcing term (which may model, e.g., the wind
force on sails) while XExt is its application point.

To integrate in time the equations of motion, the second order ordinary differential
equations (8-9) are formulated as systems of first order ODE. If we consider, for example,
the linear momentum equation (8), it can be rewritten as

mẎ G = F , (10)

ẊG = Y G, (11)

where Y G denotes the linear velocity of the center of mass. This system is solved using
an explicit 2-step Adams-Bashforth scheme for the velocity

Y n+1 = Y n +
∆t

2m
(3F n − F n−1),

and a Crank-Nicholson scheme for the position of the center of mass

Xn+1 = Xn +
∆t

2
(Y n+1 + Y n).

For a convergence analysis of the scheme (as well as for a detailed description of the
integration scheme for the angular momentum equation), we refer to [5], where it is
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shown that second-order accuracy in time is obtained. Moreover, the scheme features
adequate stability properties. Indeed, the stability restriction on time step is less severe
than the time step required to capture the physical time evolution.

In the coupling with the flow solver, the 6-DOF dynamical system receives at each
time step the value of the forces and moments acting on the boat and returns values of
new position as well as linear and angular velocity. In the flow solver, these data are used
to update the computational grid (by a mesh motion strategy based on elastic analogy)
and the flow equations are solved on the new domain through an Arbitrary Lagrangian
Eulerian (ALE) approach.

3 A model for the wind-sails fluid-structure interaction

3.1 Mathematical formulation

The sail deformation is due to the fluid motion: the aerodynamic pressure field deforms
the sail surfaces and this, in its turn, modifies the flow field around the sails. From a
mathematical viewpoint, this yields a coupled system that comprises the incompressible
Navier-Stokes equations with constant density ρ = ρair (3-4) and a second order elas-
todynamic equation which models the sail deformation as that of a membrane. More
specifically, the evolution of the considered elastic structure is governed by the classical
conservation laws for continuum mechanics.

Considering a Lagrangian framework, if Ω̂s is the reference 2D domain occupied by
the sails, the governing equation can be written as follows:

ρs
∂2d

∂t2
= ∇· σs(d) + f s in Ω̂s × (0, T ], (12)

where ρs is the material density, the displacement d is a function of the space coordinates
x ∈ Ω̂s and of the time t ∈ [0;T ], σs are the internal stresses while f s are the external
loads acting on the sails (these are indeed the normal stresses τ (u, p) · n on the sail
surface exerted by the flowfield). In fact, Ω̂s represents a wider (bounded and discon-
nected) domain which includes also the mast and the yarns as parts of the structural
model. The boundary of Ω̂s is denoted by ∂Ω̂s and [0;T ] ⊂ R

+ is the time interval of
our analysis. For suitable initial and boundary conditions and assigned an appropriate
constitutive equation for the considered materials (defining σs(d)), the displacement field
d is computed by solving (12) in its weak form:

∫

Ω̂s

ρs
∂2di

∂t2
(δdi)dx +

∫

Ω̂s

σII
ik (δǫki)dx =

∫

Ω̂s

fs i (δdi)dx, (13)

where σII is the second Piola-Kirchoff stress tensor, ǫ is the Green-Lagrange strain
tensor and δd are the test functions expressing the virtual deformation. The second
coupling condition enforces the continuity of the two velocity fields, u and ∂d

∂t
, on the

sail surface.
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Figure 3: Components considered in the structural model.

3.2 Constitutive equations

The structural model can be partitioned into three different elements: the sails, the
yarns and the mast (see Fig. 3). Each of these parts has different materials, different
stress conditions and, then, different constitutive equations.

The sails are modelled as thin elastic isotropic membranes, with large displacement
and small strains. This model implies a linear description for the material, but also
includes a non-linear term due to the geometry in the strain expression. The expression
of the Green-Lagrange strain tensor is non-linear in terms of the displacements, but
there is a linear relation between the strain tensor ǫ and the second Piola-Kirchoff
tensor σII. The mast is thought as an elastic beam under large displacements and small
strains. Once again the Green-Lagrange tensor is non-linear, while there is a linear
relation between the stress and the strain tensors. Finally the rigging is modelled as
elastic cables under large displacements and large strains. Both the Green-Lagrange
strain tensor and the stress-strain relation are therefore non-linear. Once the materials
properties are known both the stress and strain tensors can be written as non-linear
functions of the displacement d, respectively σII(d) and ǫ (d). These expressions close
the problem (13), thus allowing the determination of the displacements field d.

As previously noticed, large displacements are allowed for all the components of the
structural model. In this view it is convenient to formulate the problem in a Lagrangian
framework always referred to the last deformed configuration and not to the original
(design) one.
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3.3 Wrinkle model

A particular problem arises when dealing with sails: the latter are described as mem-
branes with zero flexural stiffness and, thus, the idealized membrane cannot sustain any
compressive stress. When compressive stresses are about to appear in the membrane,
they are immediately released by out-of-plane deformations, i. e. the membrane wrin-
kles. This phenomenon has to be included in the model. The stress field after wrinkling
is modelled as a uniaxial tension field, in which one principal stress is tensile and the
other one is zero, moreover the wrinkle direction is assumed to be identical to that of
tension lines. In addition, the out-of-plane deformation caused by wrinkling is replaced
by the in-plane contraction, whose direction is perpendicular to that of wrinkle. Such
in-plane contraction is the zero-energy deformation because its direction coincides with
the principal axis corresponding to zero stress. In this context the wrinkled membrane
can be treated as a planar problem, and local buckling caused by wrinkling is simplified
to the in-plane contraction. For a thorough analysis about the wrinkle model used the
reader can refer to [14].

3.4 Numerical solution

Problem (13) has been solved numerically by a traditional finite element formulation,
even if the different nature of sails, mast and yarns requires the implementation of specific
techniques. The sails have been discretized using triangular three-points elements with
linear displacements and constant stresses and strains and the integration on the elements
has been performed using a one point Gaussian quadrature scheme. The yarns have been
discretized using one-dimensional two points linear elements while the mast has been
modelled by using one-dimensional cubic Hermite elements. The resulting formulation
of problem (13), after the introduction of the finite elements discretization, reads

M v̈(t) + K (v(t)) = F (t) (14)

where v are the finite elements nodal variables, M is the mass matrix, K (v(t)) contains
the non-linear elastic nodal forces and F are the nodal external loads. In the model
adopted the damping forces are assumed to be null.

3.5 Fluid-structure coupling algorithm

As previously introduced, the coupling procedure iteratively loops between the fluid
solver (passing sail velocities and getting pressure fields) and the structural solver (pass-
ing pressures and getting velocities and structural deformations) until the structure
undergoes no more deformations because a perfect balance of forces and moments is
reached. When dealing with transient simulations, this must be true for each time step
and the sail geometry evolves over time as a sequence of converged states. On the other
hand, a steady simulation can be thought as a transient one with an infinite time step,
such that “steady” means a sort of average of the true (unsteady) solution over time.
More formally, we can define two operators called Fluid and Struct which represent
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the fluid and structural solvers, respectively. In particular, Fluid can be any procedure
which can solve the incompressible Navier-Stokes equations while Struct should solve
a membrane-like problem, possibly embedding suitable non-linear models to take into
account complex phenomena as, for example, the structural reactions due to a fabric
wrinkle.

The fixed-point formulation can be reformulated with the new operators as follows:

Fluid (Struct(p)) = p (15)

In this formulation we can clearly recognize the structure of a fixed-point problem. A
resolving algorithm can be devised as follows. At a given iteration the pressure field on
sails p is passed to the structural solver (Struct) which returns the new sail geometries
and the new sail velocity fields. Afterwards, these quantities are passed to the fluid
solver (Fluid) which returns the same pressure field p on sails. Clearly, the “equal” sign
holds only at convergence. The resulting fixed-point iteration can be rewritten more
explicitly as follows:
Given a pressure field on sails pk, do:

(Gk+1, Uk+1) = Struct(pk)
p̄k+1 = Fluid(Gk+1, Uk+1)
pk+1 = (1 − θk)pk + θkp̄k+1

(16)

where Gk+1 and Uk+1 are the sail geometry and the sail velocity field at step k + 1,
respectively, while θk is a suitable acceleration parameter.

Even though the final goal is to run an unsteady simulation, the fluid-structure proce-
dure has to run some preliminary steady couplings to provide a suitable initial condition.
The steady run iterates until a converged sail shape and flow field are obtained, where
converged means that it does exist a value of kc such that (15) is satisfied ∀ k > kc

(within given tolerances on forces and/or displacements). When running steady simu-
lations the velocity of the sails is imposed to be null at each coupling, thus somehow
enforcing the convergence condition (which prescribes null velocities at convergence).
This explains why convergence is slightly faster when running steady simulations with
respect to transient ones (clearly only when such a solution reflects a steady state phys-
ical solution).

4 Computational complexity

The numerical simulations finalized to the optimization of the yacht appendages require
the adoption of the finest turbulence and transition models, in order to correctly capture
the trade-off between viscous and pressure drag. In particular, the transition model
has been found to be essential to recover accurately the viscous drag which is highly
influenced by the laminar-turbulent transition location.

However, these models demands extremely fine grids, in particular in the near-wall
region and, therefore, the simulations for the appendages entail very large size computa-
tional grids (up to 30 millions elements). Since for each grid element we have 8 variables
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(3 velocity components, pressure, plus turbulent kinetic energy k, turbulent frequency

ω, intermittency γ and transition onset momentum-thickness Reynolds number R̃eθt),
the resulting algebraic system involves up to 240 million unknowns.

These simulations were run on the EPFL’s Mizar cluster (450 AMD Opteron pro-
cessors connected by a Myrinet network). A typical run required 30 hours to reach
convergence using 32 processors.

The hull dynamics simulations described in Section 2.3 usually require smaller grids
with up to 4 million elements. However, in this case one more equation is solved for the
volume fraction variable which describes the free-surface evolution and a mesh motion
problem has to be solved at each iteration in order to adapt the grid to the boat dynamics.
Moreover, when the free-surface computation is included in the model, the simulation
requires more iterations to converge. All these factors leads to a CPU time requirements
which are typically about 25 hours running on 32 processors.

Concerning the fluid-structural interaction analysis on downwind sails, the first sim-
ulations have been run with grids of about 3 millions of elements, with finer meshes over
the gennaker/spinnaker surfaces than over the main sail. This different discretization
was based on the assumption that the main sail is typically much stiffer and stable than
gennaker/spinnaker, thus it seemed more important to refine the mesh and increase the
accuracy around the lighter (more deformable) sails. However, further experiments have
shown that asymptotic solutions require much finer meshes, at least around 10 millions of
elements, and that high accuracy within the channel between the two sails is extremely
important to ensure reliable results. This suggested to set the same refinement over
the two sails, and the current standard is an element size of few centimeters over the
sail edges (where separations may occur) up to 10-20 centimeters over the sail surfaces
(which total area is more than 700 m2). Fluid-structure analyses on sails add impor-
tant complexities to the simulations on hull and appendages, because of the coupling
with a deformable structure (while the rest of the boat can reasonably be thought as
rigid). When dealing with steady simulations (where null sail velocities are imposed),
5-6 couplings are usually enough to get force variations below few Newton and deforma-
tions below 1%. However, when the flow is particularly unstable, the steady approach
is clearly not optimal and the simulation does not reach any kind of converged state. In
such cases it is better to switch to a transient scheme, where sails have their own veloc-
ities and the true sail dynamics can be modelled and evaluated. Transient runs usually
show evolving sails, which change their shape (more or less periodically) over time. In
this case, at least 60 seconds of real time must be considered in order to have a correct
idea about the behavior of the sails under the specified wind conditions. Choosing a
time step which reasonably cannot be larger than 0.5 seconds, at least 120 time steps
have to be solved with (at least) 3 sub-coupling per time step. In total, this means about
350-400 fluid-structural couplings, which is an extremely time consuming computation
if the fluid mesh is large and/or the number of available processors is small.
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5 Numerical Results

5.1 Appendages optimization

One of the design areas where CFD simulations play a crucial role is the optimization
of the appendages (keel, bulb, winglets and rudder) which should be shaped and sized
(within the degrees of freedom left by the strict IACC rules) in order to guarantee global
optimal performances.

Full-scale tests are still an invaluable ingredient of the design process: the final
step for taking every important design choice is always testing full scale on the real
boat. Several days of testing, with the two boats differing by the design detail under
investigation, are planned during every America’s Cup campaign by all the syndicates.

Nevertheless, intensive numerical simulations are carried on in order to analyze many
hundreds of different appendage shape candidates [12, 13].

The design analyses that can be carried out by CFD simulations cover all the possible
design variables that define a set of appendages. The great advantage of the numerical
approach relies on the possibility to test several different configurations and to have a
complete picture of the flow behaviour at every time instant (see Figure 4).

Figure 4: Streamlines around the appendages.

Information about local distribution of flow quantities (such as, e.g. pressure, vor-
ticity and turbulence intensity) can be very useful to improve the hydrodynamic perfor-
mances. These information can be hardly obtained during a full-scale test and even in
a fully equipped experimental facility (wind tunnel or towing tank) each of these data
requires the setup of suitable measurement equipments. On the other hand, numeri-
cal simulations supply as outcome a complete database of relevant quantities about the
considered flow problem.

The fluid-dynamic mechanism underlying the benefits observed when winglets are
adopted can be highlighted comparing appendage configurations with and without winglets,
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Figure 5: Cut plane of the vorticity field in the appendage wake. Top row: without
(left) and with (right) winglets at 0 degree yaw angle. Bottom row: without (left) and
with (right) winglets at 1.5 degree yaw angle.

with the latter having a strong impact on the vorticity evolution in the appendage wake.
This effect is even stronger when increasing the yaw angle and therefore the lift induced
recirculation (see Figure 5). Indeed, this vorticity reduction can be related to a reduc-
tion of the induced drag on keel and bulb, which is considered to be the most important
beneficial effect induced by the presence of winglets.

The possibility to accurately predict the laminar-turbulent transition represents a
big step forward in naval hydrodynamics, in particular for appendage design. Indeed,
in this domain, the optimization process is often governed by trade-off analyses where
pressure and viscous drag play one versus the other. A typical example is given by the
comparison between a slender bulb and a shorter one (for constant ratio weight/volume).
If the former usually guarantees a lower pressure drag, this advantage is counteracted by
a larger viscous drag due to the larger wetted surface. For this comparison, an accurate
estimation of the transition location is required to predict the viscous component of the
drag with an acceptable precision. Indeed, bulb and keel are often designed to work in
a transitional regime where slight difference in shape can induce a significant change on
the location where laminar-turbulent transition occurs.
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Figure 6: Results of the CFD transition analysis: transition location on suction side
(left) and pressure side (right) of the appendages. Laminar regions are shown in red,
turbulent ones in blue.

As illustrated in Section 2.2, the transition model adopted is able to take into account
not only natural transition mechanisms but also transition due to free-stream turbulence.
In order to calibrate the model on the configuration we were interested in, experimental
measurements have been carried on in the NCR’s 9m × 9m wind tunnel in Ottawa
(Canada). A 1.5:1 model scale (larger than the full scale!) of the appendages was
necessary in order to match the actual Reynolds number. A large amount of experimental
data have been generated for the CFD calibration, including global and local (on each
appendage element) force components, transition locations on keel and bulb, sensitivity
analysis with respect to freestream turbulence intensity.

An example of simulation detecting the laminar-turbulent transition on the ap-
pendage surface for an upwind configuration is displayed in Figure 6. A quantitative
comparison versus experimental measurements of laminarity extension on the different
appendage elements is given in Table 1. These results show the ability of the model in
predicting with acceptable accuracy the transition location.

Component Wind Tunnel CFD

Bulb 7-15 % 8 %
Keel (Pressure side) 12-23% 24%
Keel (Suction side) 62 % 57%

Table 1: Comparison between experimental and numerical predictions for transition
location.
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5.2 Hull dynamics and free-surface

In the yacht design context, a numerical tool able to accurately predict forces and at-
titudes is of utmost importance since it may reduce the need of carrying out expensive
experimental sessions in towing tank facilities. In this respect, the numerical scheme
presented in Section 2.3 for the prediction of boat dynamics can be a powerful tool.
Many potential applications are being explored and range from the dynamic response
in waves to manoeuvring. We expect this kind of numerical investigation could become
the standard in the coming years.

Thus far, in the context of the America’s Cup design, this approach has been used to
reproduce towing tank experiments [5, 13]. Two IACC hull shapes, that will be referred
to as Hull 1 and Hull 2, have been considered. The two hulls have different bow designs
and towing tank experiments have been carried out to estimate drag and sink at different
boat speeds.

In Figure 7 we show the time history of the sink value starting from the initial sink
position, correspondent to the hydrostatic equilibrium, and evolving through a damped
oscillation towards the hydrodynamic equilibrium. The wave pattern around the two
hulls at convergence are displayed in Figure 8.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  2  4  6  8  10  12  14

Si
nk

 [
m

]

Time [s]

Hull 1
Hull 2

Figure 7: Time evolution of sink for the two hulls.

The numerical results show a good agreement in terms of forces and sink movement. A
comparison between the total drag on Hull 1 obtained with the numerical simulations
and the towing tank measurements at different boat speed is given in Figure 9, left. The
error is consistently lower than 2% for all boat speeds. A similar comparison for the
sink values at different boat speeds is presented in Figure 9, right. Again, we see a good
correlation between numerical and experimental results.
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Figure 8: Wave patterns for Hull 1 (left) and Hull 2 (right) with a boat speed of 10 kts.

Figure 9: Comparison between towing tank measurements and numerical predictions for
Hull 1: drag(left) and sink (right) vs. boat speed.

5.3 Sail trimming optimization

Finding the optimal trimming of all the cables and sheets governing the sails represents
a challenging task and a very useful goal to speed up the the design process, and this is
true because sails are always designed so that the best performances (in terms of driving
force, for instance) can be reached within some given wind and trimming ranges. For
this goal, an extensive campaign of simulations predicting the sails behavior before they
are built can provide the designers a number of extremely useful hints for considerable
enhancements, with evident benefits in terms of money and time saving. From the
practical point of view, most part of the simulations have been carried on by changing
the length of the main and the gennaker sheets, two cables which control the angle of
attack of the two sails with respect to the incident wind direction. In Figure 10 we report
a sequence of test cases where the air velocity vector field is plot on a 20 m height plane
for three different gennaker configurations. From left to right, the gennaker sheet (GS) is
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Figure 10: Final sail shapes for three different gennaker sheet (GS) trimmings (steady
simulations)

eased out from GS = −2.0 m to GS = +0.5 m with respect to the design configuration
which represents the reference for any adjustment and corresponds to GS = 0.0 m.
It can be noticed that the most pulled-in case (GS = −2.0 m) shows a large separated
region which extends from the leading to the trailing edge of the gennaker and this region
reduces as the GS is eased out. The last case (GS = +0.5 m) shows an attached flow
which follows the sail surfaces without any visible recirculation. In Figure 11 the driving
force is plot as function of the gennaker sheet trimming, and the simulation confirms
that the design setting (GS = 0.0 m) is the one which gives the larger driving force, so
the best performance.

Figure 11: Driving force as function of the gennaker trimming (steady simulations)
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5.4 Unsteady Sail Simulations

As introduced in section 3.5, unsteady simulations allow the investigation of the sail
dynamics (the real evolution of the sail shape over time) and the stability properties
of the structure. Moreover, the force history on sails, the frequencies of the structural
vibrations and any periodic oscillation can also be easily monitored. For all these rea-
sons, when the designers need a deeper investigation of the sail behavior, the unsteady
approach can become extremely useful and an important source of information which
can not be retrieved by simpler steady runs. In Figure 12 we compared the same sail
simulation at different times, highlighting with a red solid line the left boundary of the
big wake behind the gennaker. At T = 6.5 s it can be noticed that a small recirculation
bubble appears close to the gennaker leading edge and the driving force on sails reaches
its maximum value (see plot on the top-right corner). At T = 18.5 s the bubble has
clearly enlarged, pushing away the left wake boundary so that the incident flow is now
less deflected by the presence of the gennaker, this is clear by comparing the new wake
boundary with the dashed line referring to the precedent case and kept on the second
figure as reference. This reduced flow deflection leads to a smaller driving force acting
on sails (because of the third Newton’s law). Hence, unsteady simulations allow a truly
physical resolution of the fluid flow over the time and highlight the effects of the dynam-
ics of the turbulent wakes on many design parameters, like the evolution of the driving
force or the sail stability properties under the action of unsteady loads.

Figure 12: Fluid flow and driving force (in top-right corners) at two time instants,
T = 6.5 s (left) and T = 18.5 s (right), for an unsteady fluid-structure simulation.

Conclusions

We have presented a review of the main results on numerical fluid-dynamic modelling
obtained in the framework of the partnership between the Ecole Polytechnique Fédérale
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de Lausanne and the Alinghi Team during the last two editions of the America’s Cup.
We have highlighted the importance that CFD analysis is achieving in the design

process of a racing yacht, devoting a particular attention to those modelling techniques
that represent a step forward in this field.

Among them, we have presented and discussed through numerical examples the re-
cent advances in turbulence and transition modelling, boat dynamics and wind-sail fluid-
structure interaction.
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