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Summary

We propose a method to discover differential equations describing the long-term
dynamics of phenomena featuring a multiscale behavior in time, starting from
measurements taken at the fast-scale. Our methodology is based on a synergetic
combination of Data Assimilation (DA), used to estimate the parameters associated
with the known fast-scale dynamics, and Machine Learning (ML), used to infer the
laws underlying the slow-scale dynamics. Specifically, by exploiting the scale sep-
aration between the fast and the slow dynamics, we propose a decoupling of time
scales that allows to drastically lower the computational burden. Then, we propose
a ML algorithm that learns a parametric mathematical model from a collection of
time series coming from the phenomenon to be modeled. Moreover, we study the
interpretability of the data-driven models obtained within the black-box learning
framework proposed in this paper. In particular, we show that every model can be
rewritten in infinitely many different equivalent ways, thus making intrinsically ill-
posed the problem of learning a parametric differential equation starting from time
series. Hence, we propose a strategy that allows to select a unique representative
model in each equivalence class, thus enhancing the interpretability of the results.We
demonstrate the effectiveness and noise-robustness of the proposed methods through
several test cases, in which we reconstruct several differential models starting from
time series generated through the models themselves. Finally, we show the results
obtained for a test case in the cardiovascular modeling context, which sheds light on
a promising field of application of the proposed methods.
KEYWORDS:
Machine Learning, Data Assimilation, Artificial Neural Networks, Data-driven Modeling, Multiscale
Problems, Cardiovascular Modeling

1 INTRODUCTION

Mathematical models are built upon two types of sources, namely a priori information (physics principles, simplifying assump-
tions, empirical laws, etc.) and experimental data. The relative weight of the two sources should be properly balanced: the fewer
data are available, the stronger a priori assumptions are needed. By moving towards the Big Data era, mathematical models are
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fed with more and more data, reducing the necessity of strong a priori assumptions. The asymptote of this process is data-driven
modeling, that is to say the construction of a mathematical model for a given phenomenon solely on the basis of experimental
data, as opposed to physics-based modeling, that on the other hand makes use of data only to tune the parameters appearing in
equations written on the basis of a detailed study of the phenomenon by the modeler. Between pure physics or pure data, hybrid
approaches allow to circumvent the uncertainties inherent to physics-based models by making full use of the data available on
the system. This is particularly the case when developing estimation strategies of dynamical models1,2, with a particular concern
in identification - i.e. parameter estimation - of such systems3,4,5,6. Note that these strategies are also known as Data Assimilation
(DA) approaches in the engineering community since their introduction in environmental sciences in the late 70s7.
Data-driven modeling appears particularly advantageous when traditional modeling encounters limitations. A representative

case is given by systems whose behavior is well understood and accurately modeled, but for which the model parameters them-
selves feature a long-term evolution that is difficult to predict because the underlying mechanisms are not fully elucidated. This
motivates the idea of resorting to a data-driven approach to apprehend the slow-scale parameter evolution, while still relying on
the mathematical model at the fast scale. This is the specific focus of this paper. Examples are given by the long-term remodel-
ing of biological systems and by the development of diseases under the influence of factors such as lifestyle or environmental
conditions that are hardly within reach of mathematical modeling. In Sec. 1.3 we consider an example model inspired by the
development of hypertension.
Data-driven modeling poses the problem of finding the laws governing the evolution of a given phenomenon (a natural phe-

nomenon, an engineering process, a system of agents, etc.) starting from its observation. Here comes the challenge of leveraging
the information contained in large amounts of data to extract knowledge, by finding the principles hidden in data.
In the past few years, several algorithms have been proposed to automate the process – historically a human prerogative – of

discovering the laws hidden in experimental data. In this paper we consider data-drivenmodeling of time-dependent phenomena.
With respect to most Machine Learning (ML) techniques that are designed to learn the steady-state relationship between two
quantities, the introduction of the time variable dramatically increases the complexity of the problem since the object to be
learned is not a function, but, typically, a differential equation.

1.1 Learning time-dependent models from data
Data-driven algorithms capable of building black-box time-dependent models have been developed with the two following goals:

• Data-driven modeling: in this case data come from experimental measurements of a given phenomenon that one wants to
understand and possibly predict (this is the case considered in this paper);

• Data-driven model order reduction (MOR): in this case data are generated by an high-fidelity model and the goal is to
obtain a different model (hopefully with fewer variables and with a lower computational complexity) reproducing – up to
some error – the same input-output map8,9,10,11.

In most cases, the algorithms developed for one goal are also suited for the other one. Hence, in this section, we review the
algorithms proposed in the literature for either goal.
Symbolic regression12,13,14 is a technique to find a model, written as a differential equation in symbolic form, by means of an

iterative process consisting in the generation of candidate symbolic differential equations and in the selection of the best ones.
In15 the authors propose a data-drivenMOR technique for systems with linear state dependence, based on the idea of inferring

the frequency-domain response of the linear system from a collection of trajectories and to apply the Loewner framework16 to
interpolate the transfer function measurements at a collection of interpolation points.
Sparse Identification of Nonlinear Dynamics (SINDy, see17) is an algorithm that infers a dynamical system from a collection

of measurements on the system – the state, the time derivative of the state and the input at different times – under the assumption
that the right-hand side of the model depends on a few combination of predetermined functions of the input and the state (linear
combinations, products and trigonometric functions). In18 a similar ML technique is employed to predict metabolic pathway
dynamics from time series multiomics data. In19 a nonlinear differential equation is learned from data, by assuming a polynomial
formwith sparse coefficients by compressive sensing. In20 the authors proposed a method to infer an ODE (Ordinary Differential
Equation) representation of a model from time-dependent output data. The right-hand side of the ODE is represented as a linear
combination of multivariate polynomials of (at most) quadratic order in each state variable.
In21 an S-system (a class of models inspired by the mass-action kinetics) is trained by Bayesian model selection to learn a

time-dependent dynamics.
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Dynamic Mapping Kriging (DMK, see22) is an extension to the time-dependent case of Kriging23 or Gaussian Process (GP)
regression24,25. Kriging is a regression method that uses a GP, with a covariance function dependent on hyper-parameters to be
tuned from data, as prior for the outcome of a function. DMK consists in performing Kriging on a difference equation, where
the independent variables are the state and the input of a system at the current time step, and the dependent variable is the state
at the next time step.
In26 a technique based on Artificial Neural Networks (ANNs) to learn a time-dependent differential equation from a collection

of input-output pairs has been proposed. The authors also provided a universal approximation result stating that these ANN
models can approximate any time-dependent model with arbitrary accuracy. In27 this method has been extended by informing
the learning machine with some a priori knowledge on the system to learn, moving from a purely black-box framework to a semi-
physical (or grey-box) one. A similar ANN model is proposed in28, where an efficient algorithm for sensitivities computation
is discussed.
Learning algorithms for data-driven discovery of PDEs, either based on ANNs (see e.g.29,30,31) or GP32,33 have been proposed.

Those methods require the knowledge of the form of the equations and are thus better suited for the identification of parameters.
In34 the authors proposed an ANN-based algorithm to discover nonlinear time-dependent models from a collection of snapshots
of the state of the system, by minimizing the residual of some given multi-step time-stepping scheme. In35 the authors proposed
an ANN-based method to build a surrogate model, using the physical knowledge as a constraint. In36 the method of31 has been
applied to the identification of the constitutive relationship underlying a PDE, starting from snapshots of the solution.

1.2 Accounting for inter-individual variability
The above mentioned methods seek a unique model capable of describing the evolution of some quantities, based on a training
set composed of observed trajectories. In many applications, however, each trajectory is referred to a different individual of
some group (e.g. human beings). Since each individual is different, one should thus look for a family of models, rather than a
unique model; or, from another perspective, for a single model dependent on some parameters, accounting for inter-individual
variability.
Whereas parametric models are widely used in traditional physics-based modeling, the introduction of parameters raises

conceptual difficulties when dealing with data-drivenmodeling since, in a black-box framework, parameters cannot bemeasured.
Moreover, assuming that the learning algorithm is capable of assigning to each training individual a parameter value, then the
problem of interpretability comes into play.What is the physical meaning of such learned parameters? The lack of interpretability
also hampers the use of the learned models for predictive purposes since, without a clear physical meaning of the parameters,
one cannot easily determine the parameters associated with an individual not included in the training set.
In this paper we show how a wise interplay between ML and DA techniques can help to deal with those issues. We define

in such a way a framework to perform data-driven modeling of phenomena featuring inter-individual variability, without
renouncing to interpretability and predictivity of the learned model.

1.3 A motivating example: arterial network remodeling
To motivate the approach and to help fix the ideas with the notation, we provide in this section an example that can be treated
with the framework proposed in this paper. In Sec. 3.4 we consider again this example, by showing some numerical results.
Specifically, we consider the slow development of diseases related to the remodeling of the arterial network (such as hyper-
tension). Even if the dynamics at the fast scale (order of seconds) of the circulation of blood through the network has been
deeply studied and relatively well understood (different mathematical models, from lumped-parameters models37 to complex
three-dimensional fluid-structure interaction models38,39 are available), the mechanisms driving the long-term evolution of the
arterial network are not fully elucidated. Indeed, in spite of some important steps towards the understanding of the determinants
of vascular remodeling40,41, a comprehensive mathematical model capable of predicting the development and evolution of this
phenomenon is still missing.
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FIGURE 1 Visual representation of the two-stage Windkessel model of Eq. (1). In this electrical analogy, current represents
blood flux, while voltage represents blood pressure. The heart is represented as a current generator, while the arterial network
comprises dissipative and compliant elements, represented by resistances and capacitors, respectively.

For the sake of simplicity, we consider a simple model to describe the evolution in the fast-scale dynamics, namely the
two-stage Windkessel model (see Fig. 1), which reads37

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d
dt
Pp(t) =

Pd(t) − Pp(t)
Rp Cp

+
Q(t)
Cp

t ∈ (0, T ],

d
dt
Pd(t) =

Pp(t) − Pd(t)
Rp Cd

+
Pvs − Pd(t)
Rd Cd

t ∈ (0, T ],

Pp(0) = Pp,0,
Pd(0) = Pd,0,

(1)

where we denote by x(t) = (Pp(t), Pd(t)) the state of the model, given by the proximal and distal pressures; we denote the
parameters of the fast-scale model by � = (Rp, Cp, Rd, Cd), respectively the proximal and distal resistance and compliance;Q(t)
is the blood flux. We suppose then to be able to measure the proximal pressure at a collection of time instants (t1,… , tK ) and
we collect all the measurements into the observation vector z = (Pp(t1),… , Pp(tK )).
When considering the fast time scale (i.e. the typical time scale of a heartbeat), the value of �, describing the properties of the

arterial network, is fixed. However, if we consider a longer time scale (days and above), � may evolve, possibly associated with
some disease. For instance, hypertension is linked to an increase of the arterial resistance Rd , which requires a higher systolic
pressure to preserve the cardiac output. We thus introduce a slow time variable � and we write �(�), assuming that the fast-scale
parameters are in fact functions of the slow-scale time variable.
We consider the following scenario. Suppose that we have a set of NP patients, periodically monitored over the long-term

horizon at times (�1 < �2 < ⋯ < �NS
). At each time �j (for j = 1,… , NS), the arterial pressure of the i-th patient (for

i = 1,… , NP ) is measured for a few seconds, collecting the observation vector zij . More precisely, we denote the measured
observation vector by z̃ij = zij + � ij , where � ij is the measurement error. The measurement z̃ij reflects the value of the fast-scaleparameters of the i-th patient at the slow-scale time �j , which we define as �ij ∶= �i(�j), where �i(�) denotes the slowly evolving
i-th patient’s parameters of the fast-scale model.
The goal is to learn a model for the slow-scale evolution of �(�) from the collection of noisy measurements {z̃ij}i=1,…,NP

j=1,…,NS
. As

mentioned before, all patients are different, and thus inter-individual variability must be taken into account.

1.4 Paper outline
The paper is organized as follows. In Sec. 2, we state in mathematical terms the problem that we deal with in this paper and we
introduce the associated notation. Then, we present the methods that we propose to solve such a problem, based on a decoupling
of the time scales. In Sec. 3, we show the effectiveness and the noise-robustness of the proposed methods by means of several
numerical test cases. Finally, in Sec. 4, we critically discuss the results obtained and we draw our conclusions.
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2 PROBLEM STATEMENT AND PROPOSED METHODS

In this section, motivated by the example of Sec. 1.3, we state the setting of the problem that we consider in this paper, in which
the example of Sec. 1.3 can be recast, before introducing and analysing our proposed methods.
We consider a collection ofNP individuals, such that the i-th individual is associated with �i(�) ∈  ⊂ ℝN� , which evolves

with a slow dynamics driven by an equation of the form
⎧

⎪

⎨

⎪

⎩

d
d�
�i(�) = g(�i(�), �i) � ∈ (0,T ],

�i(0) = �i0,
(2)

where �i ∈ A ⊂ ℝN� are parameters characterizing the i-th individual at the slow-scale, accounting for inter-individual
variability. In this paper, we always assume that

g ∈  ∶= {g ∈ 0(ℝN�×N� ;ℝN� ), Lipschitz continuous in �},
so that the models admit a unique solution for each initial state and parameter.
This slow-scale model is coupled with a fast-scale dynamics, for which �i(�) can be considered as a constant. Specifically, we

consider a collection of times (�1 < �2 < ⋯ < �NS
) over the long-term horizon, and we write �ij ∶= �i(�j), for j = 1,… , NS

and i = 1,… , NP . We consider a model for the fast-scale dynamics with the following form
⎧

⎪

⎨

⎪

⎩

d
dt
xij(t) = f (x

i
j(t), �

i
j , t) t ∈ (0, T ),

xij(0) = x
i
j,0,

(3)

where xij(t) ∈  ⊂ ℝNx is the fast-scale state. We recall that �ij are considered as constant parameters at this scale (we assume
T ≪ �j − �j−1). On this system, we consider an observation process given at the fast scale, namely

zij =

T

∫
0

ℎ(xij , t) dt, (4)

where zij ∈  ⊂ ℝNz and we define the measured observations as z̃ij = zij + �
i
j , where � ij ∼  (0,W ) are the measurement

errors that we assume to be i.i.d. and Gaussian with covariance matrix W . In the example of Sec. 1.3, the observation vector
contains direct measurements of the first entry of the state x at a collection of discrete times tk, for k = 1,… , K . This can be
written in the form of Eq. (4) by defining the observation map as ℎ(x, t) ∶= ∑K

k=1 x ⋅ e1 �(t − tk) ek, where ek denotes the k-th element of the canonical basis of ℝn and where � denotes the Dirac delta function (in fact, given a function f (t), we have
∫ T
0 f (t)�(t − tk) dt = f (tk)).
We assume that we have perfect knowledge about the equation driving the fast-scale evolution and that we want to identify a

model to describe the slow-scale evolution. Specifically, we assume that we know:
(K1) f, ℎ: the fast-scale evolution and observation laws;
(K2) {z̃ij}i=1,…,NP

j=1,…,NS
: the fast-scale measurements;

whereas we do not know:
(U1) g: the slow-scale evolution law;
(U2) {�i}i=1,…,NP : the slow-scale parameters of individuals;
(U3) {�i0}i=1,…,NP : the slow-scale initial states of individuals, for which we assume a prior distribution (�̄,��);
(U4) {xij,0}i=1,…,NP

j=1,…,NS
: the fast-scale initial states of individuals, for which we assume a prior distribution (x̄,�x).

The goal is to identify the unknown objects (U1)–(U4) from the known ones (K1)–(K2). We notice that this task is situated in an
intermediate position between the fields of DA, as we here seek to identify the parameters and the state for a known dynamics,
and ML, as we seek to discover the law driving the slow-scale (unknown) dynamics. We remark that the setting considered in
this paper differs from that of a standard parameters identification problem, in which one aims to identify unknown parameters
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of a known model from time series data (see e.g.3,4,42), for two main reasons. First, the observations z̃ij are taken at the fast-scale,while we are interested in inferring knowledge at the slow-scale. Secondly, we assume that we are agnostic of the model whose
parameters we aim to identify. As a matter of fact, we aim at simultaneously learning the parameters �i and the differential
equation (2).

2.1 General strategy
In this paper we propose to combine ML and DA concepts in order to address the problem presented above. Specifically, con-
cerning the task of learning the law g given the measurements {z̃ij}i=1,…,NP

j=1,…,NS
, we extend the strategy proposed in26. Hence, we

select a set of candidate laws n (where n indicates that the set is parametrized by a finite number of parameters), such that
n ⊂ , and we look for the model, inside the family n, that best fits the available data. This can be interpreted, by assum-
ing Gaussian distribution of the measurement errors, as the maximum-likelihood estimation of the evolution law g inside the
family n. This formalism allows to write the problem of identifying/learning the objects (U1)–(U4) in a unified minimization
framework, as we show in the next section.

2.1.1 A unified minimization framework
The maximum likelihood estimation of the unknown objects is found by minimizing the negative log-likelihood

(

ĝ, {�̂i}i, {�̂i0}
i, {x̂ij,0}

i
j

)

= argmin
g∈n

{�i}i∈A NP

{�i0}
i∈NP

{xij,0}
i
j∈

NP NS

NP
∑

i=1

(NS
∑

j=1

(1
2
|zij − z̃

i
j|
2
W −1 +

1
2
|xij,0 − x̄|

2
�−1
x

)

+ 1
2
|�i0 − �̄|

2
�−1
�

)

,
(5)

such that (2), (3) and (4) hold true. Here and in what follows, given a vector w ∈ ℝn and a symmetric positive-definite matrix
Q ∈ ℝn×n, we denote by |w|Q ∶= (wTQw)1∕2 the energy norm. Moreover, for the sake of brevity, we denote by {⋅}ij and {⋅}isets indexed by j = 1,… , NS and i = 1,… , NP , where the values taken by the indexes j and i are left implicit.
Problem (5) can be interpreted as that of finding the slow-scale law, the slow-scale parameter for each individual, and the

initial state at both scales such that the resulting outputs zij best approximate the measured outputs z̃ij . The last two terms of the
loss functional can be regarded as regularization terms.

2.1.2 Decoupling the two scales
Despite its solid foundation, the solution of Problem (5) may be unaffordable in practice, because of the huge number of differ-
ential equations that serve as constraints for the minimization problem. Indeed, Problem (5) is constrained by theNP slow-scale
differential equations (2) and theNP ×NS differential equations (3). Moreover, Problem (5) attempts to simultaneously identify
objects related to both the slow scale and the fast scale for each j = 1,… , NS and i = 1,… , NP .
To lower the complexity of Problem (5), we propose to exploit the scale separation between the fast and the slow dynamics,

and to split the problem into two steps:
(P1) The first step consists in finding an estimate for �ij , for each j = 1,… , NS and i = 1,… , NP , on the basis of the

measurements z̃ij , by solving the problem
(

�̂ij , x̂
i
j,0

)

= argmin
�ij∈
xij,0∈

(1
2
|zij − z̃

i
j|
2
W −1 +

1
2
|xij,0 − x̄|

2
�−1
x
+ 1
2
|�ij − �̄|

2
�−1
�

)

, (6)

such that (3) and (4) hold true.
(P2) Once the estimates {�̂ij}i=1,…,NP

j=1,…,NS
are available, we consider the problem
(

ĝ, {�̂i}i, {�̂i0}
i
)

= argmin
g∈n

{�i}i∈A NP

{�i0}
i∈NP

NP
∑

i=1

NS
∑

j=1

1
2
|�i(�j) − �̂ij|

2
�−1
�
, (7)

such that (2) holds true.
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We notice that (P1) involves only the fast-scale dynamics, whereas (P2) only the slow-dynamics. Indeed, the two scales have
been decoupled. As a consequence, in (P1), each individual and each slow-scale instant �j can be treated separately; the problem
can be solved for each j = 1,… , NS and i = 1,… , NP independently of each other. This allows for a possibly parallel solution
of (P1). Moreover, differently from Problem (5), in Problems (P1) and (P2) objects related to the fast and slow scales are never
simultaneously identified. In other words, the complex Problem (5) has been split into (NP NS + 1) simpler problems.
A further effect of splitting Problem (5) into two steps, is that Problems (P1) and (P2) feature different natures. While the

former is a purely DA problem, as it consists in the identification of the state and the parameters for System (3), the latter is a
learning problem, as the laws governing the slow-scale dynamics need to be discovered. This is a consequence of the decoupling
between the fast-scale, driven by a known dynamics, from the slow-scale, whose dynamics is governed by unknown laws.
Several identifications procedures are available in the literature for the solution of problems written in the form of (P1) (see

e.g.3,4,5,6). In this paper, we restrict our scope to measurements sampled in time, instead of continuous signals, and we consider
a state and parameter sequential estimation strategy43,2,6 based on the extended Kalman filter (EKF), an extension of the Kalman
filter (KF) algorithm to nonlinear systems, performed at each step, of Eq. (3)43,7. We recall that whereas KF is equivalent to
least square estimation for linear dynamics, EKF only gives an approximation of the least square estimation (P1) with, however,
the benefit of being “on the fly”. This is particularly adapted to the fast-scale dynamics where we can typically face real-time
monitoring constraints.

2.1.3 Interpretation of the learned model
Before presenting an algorithm for the solution of Problem (P2) (which is treated in Sec. 2.2), we deal with the problem of
interpreting the solution of Problem (P2) itself. This is instrumental to the presentation of the proposed methods. Therefore, in
this section we assume the existence of an algorithm capable of solving Problem (P2) and we speculate about the interpretation
of its solution. Solving Problem (P2) serves indeed different purposes, which we list in what follows.
Understanding.
First, the function ĝ provides insight into the phenomenon under exam. Indeed, ĝ yields a description of the underlying laws
written in mathematical terms and as such it can provide understanding of the phenomenology. Moreover, an analysis of the
features of the function ĝ may reveal properties such as states of equilibrium, symmetry properties and relationships among the
variables that may not be immediatly identifiable from the observation of the experimental data.
Classification of training individuals.
By solving Problem (P2), a (possibly vector-valued) parameter �̂i is assigned to each individual. However, the physical meaning
of such parameters is not clear, as they are learned in a black-box manner. Moreover, the value of such parameters in the solution
of Problem (P2) is not unique: given a solution of Problem (P2), one can always find an equivalent solution with different values
of the parameters (we will deal extensively with this issue in Sec. 2.3).
Nonetheless, even if we cannot interpret such parameters in physical terms, we know that they characterize the variability

among the individuals. Indeed, one may be tempted to conclude that similar parameters reveal similarities among individuals
(that is to say, if �̂i ≃ �̂k, then the i-th and the k-th individuals are similar). In Sec. 2.3 we will show under which conditions
this conclusion is licit. In that case, the learned parameters {�̂i}i allow to classify the individuals.
For instance, in the example of Sec. 1.3, the parameter � may describe how the arterial network of a given patient remodels

in time, and thus it can be regarded as an indication of the severity of related pathologies.
Predictions.
The ultimate aim of mathematical models is making predictions. However, the lack of physical meaning of the parameter �
apparently undermines this possibility for the learned model ĝ. In fact, let us consider a new individual (i.e. not employed to train
the model), which we denote as the (NP + 1)-th individual; to solve Problem (P2) with the learned model ĝ, in order to predict
the evolution of �NP+1(�), one needs to know �NP+1. However, unlike the parameters of physics-based models that, having a
physical meaning, can be measured in practice, the parameters of data-driven models cannot be measured.
This inconvenience can be overcome by combining once again ML with DA (the latter acting this time at the slow-scale).

All we need is to observe the (NP + 1)-th individual for a (short) interval of time, on the slow-scale, � ∈ [0,T obs], with
T obs < T . During this observation time interval, we collect the observations z̃NP+1

j , associated with the slow-scale time instants
0 = �1 < �2 < … �Nobs

S
= T obs, and we find the estimates, by solving (P1), for the associated fast-scale parameters �̂NP+1

j .
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Then, by the slow-scale evolution of such parameters, we estimate the value of �̂NP+1, by solving the following DA problem
(

�̂NP+1, �̂NP+1
0

)

= argmin
�NP +1∈A

�NP +10 ∈

(Nobs
S

∑

j=1

1
2
|�NP+1(�j) − �̂

NP+1
j |

2
U−1 +

1
2
|�NP+1
0 − �̄|2

�−1
�
+ 1
2
|�NP+1 − �̄|2�−1

�

)

, (8)

subject to the constraint
⎧

⎪

⎨

⎪

⎩

d
d�
�NP+1(�) = ĝ

(

�NP+1(�), �NP+1
)

, � ∈ (0,T obs]

�NP+1(0) = �NP+1
0 .

(9)

In Eq. (8),U denotes the covariancematrix associatedwith the error introduced during the resolution of theDAProblem (P1).We
remark thatU can be estimated whenever Problem (P1) is solved, e.g., by an algorithm of the Kalman Filter family. Alternatively,
assuming that the error introduced by the DA algorithm can be considered as a white noise of magnitude � dB(�)

d�
(B(�) being

a Wiener process), we set U = �2∕Δ� I , where I is the N� × N� identity matrix. On the other hand, �̄ and �� respectively
denote the expected value and the covariance matrix associated with the slow-scale parameter �, estimated from the parameters
{�i}i=1,…,NP learned during the step (P2). Specifically, we set �̄ equal to the arithmetic mean of these parameters and�� equal
to their sample covariance.
We can finally employ the estimated slow-scale parameter �̂NP+1 to predict the evolution of �NP+1(�) in the time interval

(T obs,T ], by solving
⎧

⎪

⎨

⎪

⎩

d
d�
�̂NP+1(�) = ĝ

(

�NP+1(�), �̂NP+1
)

, � ∈ (T obs,T ]

�̂NP+1(T obs) = �̂NP+1
Nobs
S

.
(10)

To summarize, in a preliminary offline phase, we learn Model (2) from the observation of a set of training individuals, by
combining DA at the fast-scale with ML at the slow-scale. Then, in the online phase, we employ DA on both the fast-scale and,
for a short interval, on the slow-scale [0,T obs] to characterize the features of a new individual, so that the previously learned
model can be used to predict the evolution of this individual. The interplay that takes place, at different levels, between DA and
ML is summarized in Fig. 2.

2.2 Learning a differential equation from data
In this section we present an algorithm to numerically solve Problem (P2). The algorithm presented in this paper represents an
extension of the algorithm presented in26, whose goal is learning a (possibly parametric) time-dependent differential equation
from a collection of input-output time-series. However, in26, the parameters associated with the training data are assumed to be
known, while in this paper we need to learn them simultaneously to learning the model. The backbone of the algorithm proposed
in this paper is based on that presented in26. Therefore we recall here the main ideas and we highlight the differences, while we
refer to26 for the details common to both algorithms. The algorithm is based on a ANN-based representation of the function g,
which is trained by computing sensitivities through the adjoint method44. A similar approach is presented in28 under the name
of Neural ODEs, in which the state equation is discretized by means of a Runge-Kutta method45. Our algorithm represents a
generalization of this method to some extent, as it learns a parametric differential equation with unknown parameters, rather
than assuming that all the samples share the same dynamics.

2.2.1 Solution strategy
Following26, we parametrize g by a finite number of real parameters � ∈ ℝn and we define the set of candidate laws as n =
{(�, �) → g(�, �;�)∶ � ∈ ℝn}. For the moment, we do not detail how this parametrization is performed, in order to not restrict
ourselves to a specific case. To fix ideas, the reader can think of g as a polynomial in � and �, where � are the coefficients of the
polynomial.
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Problem (P2) can thus be rewritten as the following discrete constrained optimization problem
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
�∈ℝn

{�i}i∈A NP

{�i0}
i∈NP

NP
∑

i=1

NS
∑

j=1

1
2
|�i(�j) − �̂ij|

2
�−1
�

s.t. d
d�
�i(�) = g(�i(�), �i;�), � ∈ (0,T ], i = 1,… , NP

�i(0) = �i0, i = 1,… , NP ,

(11)

where {�̂ij}i=1,…,NP
j=1,…,NS

are given. To derive the gradient of the cost functional  =
∑NP
i=1

∑NS
j=1

1
2
|�i(�j)− �̂ij|

2
�−1
�
under the constraint

given by Eq. (2), we introduce a family of Lagrange multipliers �i ∈ 0([0,T ];) and we write the Lagrangian associated with
Problem (11)

(

�, {�i}i, {�i0}
i, {�i}i, {�i}i

)

=
NP
∑

i=1

NS
∑

j=1

1
2
|�i(�j) − �̂ij|

2
�−1
�
−

NP
∑

i=1

T

∫
0

( d
d�
�i(�) − g(�i(�), �i;�)

)

⋅ �i(�)d� −
NP
∑

i=1

(

�i(0) − �i0
)

⋅ �i(0)

=
NP
∑

i=1

NS
∑

j=1

1
2
|�i(�j) − �̂ij|

2
�−1
�
+

NP
∑

i=1

T

∫
0

�i(�) ⋅ d
d�
�i(�)d� +

NP
∑

i=1

T

∫
0

g(�i(�), �i;�) ⋅ �i(�)d� −
NP
∑

i=1
�i(T ) ⋅ �i(T ) +

NP
∑

i=1
�i0 ⋅ �

i(0),
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where the last inequality is obtained by integrating by parts the time integral. By setting to zero the variation of the Lagrangian
with respect to the variables {�i}i we get the adjoint equations, valid for i = 1,… , NP

⎧

⎪

⎨

⎪

⎩

− d
d�
�i(�) = ∇T� g(�

i(�), �i;�) +
NS
∑

j=1
�−1
�

(

�̂ij − �
i(�)

)

��j (�), � ∈ [0,T )

�i(T ) = 0,

(12)

Finally, by computing the variation of the Lagrangian with respect to the design variables we get the gradient of the cost
functional with respect to the design variables themselves

∇� =
NP
∑

i=1

T

∫
0

∇T�g(�
i(�), �i;�) �i(�)d�; ∇�i =

T

∫
0

∇T� g(�
i(�), �i;�) �i(�)d�; ∇�i0 = �i(0). (13)

Given the gradient of the cost functional, any gradient-based optimization (or training) algorithm can be used to find an approx-
imate solution of Problem (11). To produce the results shown in this paper, we employed the Levenberg-Marquardt algorithm
(see e.g.46), which is specifically designed for least-squares problems, coupled with a line-search for the step length, as illustrated
in26.
Following26, we discretize the state equations in (11) by means of the Forward Euler scheme. The choice of an explicit scheme

is aimed at lowering the computational cost of the training phase. To find the discrete version of the adjoint equations (12), we
write the Lagrangian associated with the fully discretized version of Problem (11) and we proceed as above (see26 for further
details).

2.2.2 Choice of the space of candidate models
The only missing ingredient to define the algorithm for the numerical solution of Problem (P2) is the definition of the set of
candidate laws n. This choice is driven by the trade-off between two different desired features: on the one hand, the space n
should be rich enough to contain a law that can accurately explain the training data; on the the other hand, a too rich space would
lead to overfitting, that is to say the learned law would fit very accurately the training data, while featuring bad generalization
properties in new cases (see26 for a detailed discussion on this topic).
A class of function approximators that accomplishes a good trade-off between the accuracy in fitting data and the generaliza-

tion capability is that of ANNs47. As a matter of fact, ANNs are universal approximators in several function spaces, including
that of continuous functions (see e.g. the density results contained in48,49,50). Moreover, ANNs provide an effective way of tuning
the richness of the space n by suitably selecting the number of layers and of neurons.
Hence, we define n = {(�, �) → g(�, �;�)∶ � ∈ ℝn} where g(�, �;�) denotes an ANN where the input is given by (�, �)

and � ∈ ℝn represents the vector of ANN parameters, i.e. weights and biases47. The gradients ∇�g(�, �;�), ∇�g(�, �;�) and
∇�g(�, �;�), needed in Eqs. (12) and (13), are computed through the backward-propagation formulas, as given in47.

2.3 Learning an interpretable slow-scale dynamics
In Sec. 2.2 we have presented an algorithm for the solution of Problem (P2). In this section, we discuss the interpretation of the
solution of such a problem. We recall that, as mentioned Sec. 2.1.3, the solution of Problem (P2) serves three different purposes,
namely understanding the phenomenon though its mathematical description, classifying individuals and predicting the evolution
of new (not yet observed) individuals. The discussion is conducted through two test cases. In all the tests presented in this paper,
fully connected ANNs with hyperbolic tangent activation functions are employed.

2.3.1 Test Case 1: Non-uniqueness of representation of models
In order to assess the possibility of accomplishing the above mentioned purposes, we consider the following idealized situation.
We consider only the slow-scale equation, given by

⎧

⎪

⎨

⎪

⎩

d
d�
�(�) = g(�(�), �) � ∈ (0,T ],

�(0) = �0.
(14)
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Model Learning

FIGURE 3 Visual representation of the idealized situation considered in Sec. 2.3.

Hence, in this section we will simply denote � as the state and � as the parameter, without specifying the scale on which the
dynamics occur. Moreover, we assume that we are in a maximal information situation: namely, we assume that we have a
population of individuals (that we denote by Ω) such that all the possible values of initial condition and parameter are covered
(i.e. {(�0(!), �(!))}!∈Ω =  ×A ) and that we observe the evolution of �(�, !) for each ! ∈ Ω and � ∈ [0,T ], without noise
(we denote the observed data as �obs(�, !)). Finally, we assume that we are able to solve the following problem

(

ĝ, {�̂(!)}!∈Ω, {�̂0(!)}!∈Ω
)

= argmin
g∈

{�(!)}!∈A Ω

{�0(!)}!∈Ω

T

∫
0

∫
!∈Ω

1
2
|�(�, !) − �obs(�, !)|2

�−1
�
d!d�, (15)

subject to
⎧

⎪

⎨

⎪

⎩

d
d�
�(�, !) = g(�(�, !), �(!)) � ∈ (0,T ], ! ∈ Ω

�(0, !) = �0(!).
(16)

More precisely, we assume that we are able to find a triplet (ĝ, {�̂(!)}!∈Ω, {�̂0(!)}!∈Ω) that is a global minimum of the loss
functional of Problem (15). We notice that, indeed, this problem admits global minimizers, as the loss functional is bounded
from below by the value zero, which is attained by the triplet (g, {�(!)}!∈Ω, {�0(!)}!∈Ω) itself (namely, the exact solution).
The idealized situation above described is visually represented in Fig. 3. The triplet (g, {�(!)}!∈Ω, {�0(!)}!∈Ω) generates

the collection of data {�obs(�, !)}�∈[0,T ],!∈Ω, from which the triplet (ĝ, {�̂(!)}!∈Ω, {�̂0(!)}!∈Ω) is inferred. Hence, one may
tempted to conclude that we have g ≡ ĝ, �(!) ≡ �̂(!), �0(!) ≡ �̂0(!) for any ! ∈ Ω. However, while the latter conclusion is
clearly true (since �0(!) = �(0, !) is part of the training dataset), the first two conclusions may be wrong. Consider, for instance,
the following toy model

⎧

⎪

⎨

⎪

⎩

d
d�
�(�) = � �(�) � ∈ (0,T ],

�(0) = �0,
(17)

where we have g(�, �) = � � and we set  = A = ℝ. The data generated by Model (17) are given by �obs(�, !) = �0(!)e�(!)�
for any ! and �. Consider now the following model

⎧

⎪

⎨

⎪

⎩

d
d�
�(�) = 1

2
�̃ �(�) � ∈ (0,T ],

�(0) = �̃0,
(18)
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FIGURE 4 Test Case 1: training data. Each plot represents a training individual, characterized by a given pair (�0, �).

where we have g̃(�, �̃) = 1
2
�̃ � and �̃ ∈ Ã = ℝ. If we set �̃(!) = 2 �(!) and �̃0(!) = �0(!) for any ! ∈ Ω, then the

data generated by Model (18) are given by �obs(�, !) = �̃0(!)e
1
2
�̃(!)� = �0(!)e�(!)� for any ! and �. Therefore, the triplet

(g̃, {�̃(!)}!∈Ω, {�̃0(!)}!∈Ω) and the triplet (g, {�(!)}!∈Ω, {�0(!)}!∈Ω) generate the same data.
More generally, given any invertible and sufficiently regular function  ∶ A → Ã , and by setting g̃(�, �̃) = g(�,  −1(�̃)),

�̃(!) =  (�(!)) and �̃0(!) = �0(!) for any ! ∈ Ω, the two triplets generate the same data. Hence, the two models g and g̃
are indistinguishable solely on the basis on their output. This entails that Problem (15) (and, thus, Problem (P2)) is intrinsically
ill-posed, as it features many solutions. In other terms, even in the idealized case considered in this section, we do not have any
guarantee that the learned model g̃ and the learned parameters �̃(!) coincide with the original ones (g and �(!)). We remark
that this is a more subtle issue than the case when different combinations of parameters lead to the same dynamics, which
makes the parameters identification problem ill-posed. In the case considered here, indeed, different combinations of models
and parameters lead to the same dynamics. This makes the problem of learning the model itself ill-posed.
Nonetheless, we remark that, in the previous example, Model (17) andModel (18) are both valid mathematical descriptions of

the phenomenon and there is no apparent reason why the former should be preferable to the latter. As a matter of fact, due to the
black-box nature of Problem (15), the solution is totally transparent to the specific representation of the parameters �. Indeed,
the reformulation obtained through the invertible map  is associated with a mere change of variables and the underlying model
is essentially the same. Hence, we say that model g̃ is a trivial reformulation of model g, as it does not represent a substantially
different model. In Sec. 2.3.3, we will give a more rigorous definition of this concept.
To illustrate the practical implications of the existence of trivial reformulations, we consider again the Problem (17), which we

denote as Test Case 1. We considerNP = 20 training individuals, for which we randomly generate an initial state �i0 ∈ (1, 1.1)and a parameter �i ∈ (0, 1) by sampling from the two intervals with uniform probability, for i = 1,… , NP . Then, for each
individual, we synthetically generate the evolution �i(�) for � ∈ (0,T ] (with T = 1 s), by numerically approximating the
solution of (17). The obtained transients are represented in Fig. 4. Then, we subdivide the time interval [0,T ] into equally
distributed time instants (�1 < �2 < ⋯ < �NS

) with a time step of Δ� = 1 ⋅ 10−2 s, and we apply the algorithm of Sec. 2.2 in
order to solve Problem (P2), where we set �̂ij = �i(�j) (i.e. we assume, for simplicity, that the slow-scale states can be estimated
without error). Specifically, we train anANN (endowedwith a single hidden layer with three neurons) starting from the collection
of observations {�̂ij}i=1,…,NP

j=1,…,NS
, which, in this case, are not affected by noise. In this manner, we obtain a model ĝ and a parameter

�̂i for each of the training individuals. We remark that the proposed method is not restricted to single-layer ANNs, but more
complex ANN architectures can be employed.
In Fig. 5(a) we plot the value of the original parameter �i against the value of the corresponding learned parameter �̂i, for each

of theNP = 20 training individuals (colored circles). We notice that, even if we do not have �̂i = �i, a one-to-one relationship
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FIGURE 5 Test Case 1. In (a), the colored circles represent the original parameters �i plotted against the corresponding learned
parameters �̂i for the training individuals (i = 1,… , NP ). Conversely, the black crosses represent the original parameters �NP+k

plotted against the corresponding estimated parameters �̂NP+k for the testing individuals. In the first row of (b) we show the
evolution of �NP+1(�) (blue solid line), while the black dashed line represent the value of �̂NP+1(�) estimated by means of the
EKF algorithm (for � ∈ [0,T obs]) and its predicted value (for � ∈ (T obs,T ]). In the second row of (b), we show the evolution
of the estimation of the value of �̂NP+1, with the ±3� bands, where � denotes the standard deviation of the estimate.

between the two classes of parameters is easily detectable. Hence, we can conclude that the ANN-based model, learned from
the data, is based on a different (but, possibly, equivalent) parametrization of the space of parameters.
In order to test the capabilities of the learned model to be used for classification and prediction purposes, we apply the

procedure introduced in Sec. 2.1.3. Specifically, we consider a new individual, for which we randomly generate an initial state
�NP+1
0 and a parameter �NP+1. Similarly to what was done for the training individuals, we synthetically generate the evolution
of the state �NP+1(�), for � ∈ (0,T ] by means of the original model (17). Then, we introduce an intermediate time instant
T obs = 0.5 s and we imagine to observe the evolution of the new individual in the interval [0,T obs]. In this time interval, we
apply the EKF algorithm through the learned model ĝ: more precisely, we solve Problem (8), in order to estimate the value
of the parameter �̂NP+1 and of the state �NP+1(�) (see Fig. 5(b)). We repeat the same protocol multiple times: we generate a
random initial state �NP+k

0 and a random parameter �NP+k, for k = 1,… , we generate the corresponding synthetic data, from
which, by means of DA, we estimate the values of �̂NP+k. In Fig. 5(a), we plot the obtained pairs (�̂NP+k, �NP+k). We notice
that the estimated values of �̂ are compliant with the one-to-one relationship between the parameters � and the parameters �̂
that emerged in the training phase. Therefore, since in practical applications one cannot observe �NP+k, while �̂NP+k can be
estimated, this provides a way of classifying the new individual. Indeed, the mere observation �̂NP+k allows to conclude that the
(NP + k)-th individual features characteristics similar to those of the individuals with a similar �̂.
As mentioned in Sec. 2.1.3, by exploiting the estimated value of �̂NP+1, the model ĝ can be exploited to predict the evolution

of �NP+1(�) for � ∈ (T obs,T ]. In Fig. 5(b) we report the prediction of �NP+1(�) obtained by numerically approximating the
solution of Problem (10). We repeat the same protocol for 1000 synthetically generated testing individuals, obtaining an overall
normalized L2 error between the prediction and the exact solutions of 3.8 ⋅ 10−3.
In conclusion, even if the learned model does not coincide with the original one (it is indeed a trivial reformulation of it),

thanks to the interplay betweenML and DA, it can still be employed to classify individuals and to make predictions. In Sec. 2.3.4
we will deal with the problem of unequivocally selecting a unique representative model within a class of trivially reformulations
of the same underlying model. However, before dealing with this topic, we show that something more subtle than a trivial
reformulation may hinder the interpretability of the results.
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FIGURE 6 Test Case 2: (a) original parameters �i plotted against the corresponding learned parameters �̂i and (b) evolution of
�NP+1(�), of �̂NP+1(�) and of the estimation of �̂NP+1. See caption of Fig. 5 for the notation.

2.3.2 Test Case 2: Non-trivial reformulations
Let us consider the following model, which we denote as Test Case 2, where the state is given by the two-dimensional vector
� = (�1, �2) ∈ ℝ2, while the parameter is one-dimensional

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d
d�
�1(�) = � �1(�) � ∈ (0,T ],

d
d�
�2(�) = 0 � ∈ (0,T ],

�1(0) = �1,0, �2(0) = �2,0.

(19)

Test Case 2 is obtained from Test Case 1 by introducing a further state variable, with a trivial dynamics (�2 is clearly constant
in �). However, even if the modification is only minimal, the results (shown in Fig. 6(a)) are significantly different from those
obtained for the Test Case 1 (see Fig. 5(a)). Indeed, for Test Case 2 the parameters of the original model g are not related with
those of the learned one ĝ by a one-to-one relationship.
At first sight, we are tempted to conclude that the algorithm of Sec. 2.2 failed its goal of finding a good description of the

training individuals. However, if we employ the learned model, as for Test Case 1, to predict the evolution of a new individual
(by observing it over the time interval [0,T obs], where T obs = 0.5 s, and by estimating the parameter �̂NP+1 through the EKF
algorithm), we still obtain good results (see Fig. 6(b)). As a matter of fact, by repeating the above mentioned protocol for 1000
synthetically generated individuals, we obtain an overall relative error of 3.7 ⋅ 10−3.
Since the obtained error is similar to that obtained for Test Case 1, we conclude that also for Test Case 2 the learned model

is a faithful mathematical description of the original one. However, the model learned in Test Case 2 cannot be obtained from
the original one simply by a change of variable in �. Hence, we say that model g̃ is a non-trivial reformulation of model g.
To provide an example that shows how a non-trivial reformulation of Model (19) can be obtained, we consider the following

model
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d
d�
�1(�) = (�̃ + �2(�)) �1(�) � ∈ (0,T ],

d
d�
�2(�) = 0 � ∈ (0,T ],

�1(0) = �̃1,0, �2(0) = �̃2,0.

(20)

If we set �̃(!) = �(!) − �2,0(!), �̃1,0(!) = �1,0(!) and �̃2,0(!) = �2,0(!) for any ! ∈ Ω, then it follows that Models (19) and
(20) generate the same data (i.e. �1(�, !) = �1,0(!)e�(!)� and �1(�, !) = 0).
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A less trivial example, where we do not have a constant state as in Model (19), is given by the following model
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d
d�
�1(�) = � �1(�) � ∈ (0,T ],

d
d�
�2(�) = −� �2(�) � ∈ (0,T ],

�1(0) = �1,0, �2(0) = �2,0.

(21)

A non-trivial reformulation of Model (21) is given by
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d
d�
�1(�) = (�̃ + �1(�)�2(�)) �1(�) � ∈ (0,T ],

d
d�
�2(�) = −(�̃ + �1(�)�2(�)) �2(�) � ∈ (0,T ],

�1(0) = �̃1,0, �2(0) = �̃2,0,

(22)

and by setting �̃(!) = �(!) − �1,0(!)�2,0(!), �̃1,0(!) = �1,0(!) and �̃2,0(!) = �2,0(!) for any ! ∈ Ω. It easy to check that, due
to the fact that the product �1(�)�2(�) is constant in time, the two models produce the same data.
We notice that in both cases (Models (19) and (21)) there is a quantity C(�) that is constant in time (we have C(�) = �2 and

C(�) = �1�2, respectively). This quantity is a constant value characterizing individuals, as much as the parameters �: in both the
above considered examples, indeed, the map between (�, C(�0)) and (�̃, C(�̃0)) is one-to-one. Conversely, in the formulations
considered above, the constant C(�) is embedded into the state, which could be reduced to a single variable. In other words,
we are trying to model more than necessary: the state could be reduced to the first variable �1(�), and the second variable �2(�)
can be obtained by solving C(�(�)) = C(�0). For this reason, we say that a model that admits (respectively, does not admit) a
non-trivial reformulation is non-minimal (respectively, minimal). In Sec. 2.3.3 we state rigorous definitions of these concepts.
To motivate the importance of model minimality, we recall that the parameter �̂NP+1 estimated through a non-trivial reformu-

lation g of a model ĝ is not related to the original parameter �NP+1 by a one-to-one relationship. Hence, it cannot be employed
to infer knowledge on theNP + 1 individual (classification purposes) and it hampers the intepretability of the learned model.

2.3.3 Definition of reformulation
In what follows, we identify a model written in the form of Eq. (14) with the triplet (g, ,A ). Moreover, we denote the solution
map associated with such a model as sg ∶  ×A × [0,+∞) →  , defined as sg(�0, �, �) = �(�), where �(�) is the solution of
Eq. (14). We introduce the following definitions.
Definition 1. We say that a function Ã∶  ×A → Ã is:

• trivial, if it is constant in its first argument; non-trivial, otherwise;
• non-pathological, if {Ã(�0, �)∶ � ∈ A } = Ã for any �0 ∈  ; pathological, otherwise.

Definition 2. We say that (g̃, , Ã ) is a reformulation of (g, ,A ) if there exists a non-pathological function Ã∶  ×A → Ã

such that:
g(sg(�0, �, �), �) = g̃(sg(�0, �, �), Ã(�0, �)) ∀ �0 ∈  , � ∈ A , � ≥ 0. (23)

Moreover, we say that (g̃, , Ã ) is a
• non-trivial reformulation of (g, ,A ), if (23) holds for some non-trivial non-pathological function Ã;
• trivial reformulation if all the non-pathological functions Ã satisfying (23) are trivial.

Definition 3. A model (g, ,A ) is minimal if it does not admit any non-trivial reformulation.
We remark that the hypothesis that the function Ã be non-pathological is needed to avoid pathological situations, such as

the case when a reformulation if obtained by a mere piece-wise redefinition of the coefficient. Moreover, we remark that the
definition of reformulation is motivated by the following result, for which the proof is given in A.
Proposition 1. Let (g̃, , Ã ) be a reformulation of (g, ,A ) through the map Ã∶  ×A → Ã . Then we have

sg(�0, �, �) = sg̃(�0, Ã(�0, �), �) ∀ �0 ∈  , � ∈ A , � ≥ 0. (24)
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We remark that minimality is an intrinsic property of models: it is not affected, for instance, by invertible transformations of
either the inputs, the outputs or the parameters (such as scaling or nondimensionalization). Even if, as shown in Test Case 2, the
methods proposed in this paper can be applied to any model (minimal and non-minimal ones), working with minimal models
enhances the quantity of information that can be extracted from the learned model. This leads to the issue of devising tests to
check minimality of models. Clearly, since the original model is not known in practical applications, the minimality of the model
to be learned cannot in practice be analytically checked through the Def. 3. In the case that some a priori knowledge about the
physical phenomenon is available, minimality could be deduced by means of physics-based considerations. The development
of a posteriori numerical tests aimed at checking model minimality will be the subject of future works.
We recall an important concept, that is identifiability of models51,52.

Definition 4. Two parameters �1, �2 ∈ A are said indistinguishable for the model (g, ,A ) if
∃ �0 ∈  ∀� ≥ 0 sg(�0, �1, �) = sg(�0, �2, �). (25)

Moreover, we define I(�) = {�∗ s.t. � and �∗ are indistinguishable}.
Definition 5. We say that a model (g, ,A ) is identifiable if I(�) = {�} for any � ∈ A , that is

∀�0 ∈  , �1 ≠ �2 ∈ A ∃�∗ > 0 sg(�0, �1, �∗) ≠ sg(�0, �2, �∗) (26)
In fact, if a model is identifiable, then the map from the parameter-trajectory map � → {sg(�0, �, �)}�≥0 is one-to-one, for each

�0 ∈  . Conversely, if a model is not identifiable, then, for some choices of the initial condition �0 ∈  the DA assimilation
problem of identifying the parameter � from the trajectory {sg(�0, �, �)}�≥0 is ill-posed. Hence, in this paper we assume that
we work with identifiable models. We remark that for linear models identifiability can be assessed by standard criteria (e.g. by
studying the spectral properties of the observability matrix43). Nonetheless, in this paper we consider the more general case of
nonlinear parametric dynamical models.

2.3.4 Uniqueness of representation of models
Clearly, every model (even the minimal ones) admit trivial reformulations. Indeed, the parameter � is never measured and so it is
subject to changes of variables. This is linked to the black-box structure of the model learning Problem (P2). As a consequence,
the solution of Problem (P2) is not unique. In order to transform such a problem into a problem with a unique solution, we need
to select a representative model inside each class of trivial reformulations. In this section, we suggest a strategy to accomplish
this goal. Specifically, we restrict the space of candidate models n by imposing some a priori constraints on the dependence of
g on �.
Let us suppose that there exists a function, Γ{g(⋅, �)}(�), expressed as a combination of g and of its derivatives in � (of any

order) evaluated at some given points of , invertible in �. Then, we perform learning by restricting the search space to functions
g satisfying the constraint Γ{g}(�) = �. In what follows we will show that, in this way, the solution of the model learning
problem is unique.
This strategy can be interpreted as that of giving a physical meaning to the parameter �, which would be otherwise a black-box

object. As a matter of fact, the constraint Γ{g}(�) = � provides a definition of the parameter �. Let us consider the following
example.
Example 1. Select some �∗ ∈  , and set Γ{g}(�) = g(�∗, �). In this case, performing optimization under the constraint
g(�∗, �) = � is equivalent to defining the parameter as the time rate of change of the state at �∗.
The effectiveness of the proposed strategy is supported by the following proposition (the proof is given in A).

Proposition 2. Let (g, ,A ) be an identifiable model. Suppose that there exists an operator Γ{g(⋅, �)}(�), which acts on g as a
function of �, which is injective in �. Then, there exists a unique trivial reformulation of (g, ,A ) (that we denote by (g̃, , Ã ))
such that Γ{g̃}(�̃) = �̃ for any �̃ ∈ Ã .
From an implementative viewpoint, the constraint can be imposed in two alternative ways. The first (that we denote as weak

constraint) consists in adding to the loss function of Problem (P2) the following penalization term
w2

2 ∫
A

|� − Γ{g}(�)|2d�, (27)
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where w denotes a weighting constant. From a numerical viewpoint, we evaluate the integral by Latin Hypercube Sampling53
of the parameters space A . When computing the gradients of the loss function (see Eq. 13), the gradient of the penalization
term with respect to � is added to ∇� .
The second strategy (that we denote as strong constraint) consists in a manipulation of the ANN architecture, such that the

constraint is exactly satisfied. Let us consider for instance Example 1. In this case, we define the space n as
n = {(�, �) → (�, �;�) −(�∗, �;�) + �∶ � ∈ ℝn},

where(�, �;�) denotes an ANN, whose input is given by (�, �) and where � ∈ ℝn represents the vector of ANN weights and
biases. In this manner, the constraint � = Γ{g}(�) = g(�∗, �) for any � ∈ A is automatically satisfied by any function g ∈ n.
We notice that, in this case, the last layer of biases can be removed from the ANN since its action in canceled by construction.
We remark that, while the weak constraint strategy is always feasible, the strong constraint feasibility depends on the specific

form of the function Γ.

3 NUMERICAL ILLUSTRATIONS

In this section, we present the results of several numerical test cases, showing the effectiveness and the noise-robustness of the
proposed methods. All the results shown in this paper were produced within the MATLAB library model-learning (publicly
available in a GitHub repository†), which was suitably extended with the implementation of the methods proposed here.

3.1 Test Case 1: Gaining a unique solution
In order to assess the effectiveness of the strategy proposed in Sec. 2.3.4 to identify a unique representative model among a
class of trivial reformulations, we consider again Test Case 1, already considered in Sec. 2.3.1 (see Eq. (17)). Since this model
is minimal (in the sense of Def. 3), when learning from its data we obtain one of its infinitely many trivial reformulations. As a
matter of fact, by running the learning algorithm several times, with different random initialization of the ANN parameters, we
obtain a different model every time, as testified by Figs. 7(a), 7(b) and 7(c), which show, for three different models learned from
the same dataset, the values of the original parameters �i against the value of the corresponding learned parameters �̂i. Even if in
each case an underlying one-to-one relationship linking � to �̂ can be easily detected, this relationship is different in each case.
In order to obtain a unique solution, we consider the constraint Γ{g̃}(�̃) = �̃ for Γ{g̃}(�̃) = g̃(�∗, �̃), by setting �∗ = 1.1. By

Prop. 2, we know that there is a unique model (g̃, , Ã ), trivial reformulation of the model of Eq. (17), such that g̃(�∗, �̃) = �̃.
It is easy to check that this model has a right-hand side defined as g̃(�, �̃) = �̃ �∕�∗ and that the parameters of such model are
related to those of the original one by the relationship �̃(!) =  (�(!)) = �∗�(!).
We perform several runs of the learning algorithm of Sec. 2.2 with different random initialization of the ANN parameters,

both with the weak and with the strong constraint approach. Unlike the non-constrained case, this time (with both approaches)
we obtain the same model in every run (up to numerical errors). In Figs. 7(d) and 7(e) we show the �i vs �̂i plot obtained
with the weak and the strong constraint strategies, respectively. In both figures we superimpose (black line) the relationship
� =  −1(�̃) = �̃∕�∗, corresponding to the analytical exact solution of the learning problem. The remarkably good agreement
between the analytical solution and the learned parameters demonstrates the performance of the learning algorithm and of the
strategy proposed in Sec. 2.3.4 to select a unique representative model.
As noticed in Sec. 2.3.1, the original and the learned model right-hand sides are related by the relationship g(�, �) =

g̃(�,Γ{g}(�)) = g̃(�, �∗�) for any � ∈  and � ∈ A . In order to check that the learned models are consistent with this rela-
tionship, we show in Fig. 8 a comparison between the functions g(�, �) and ĝ(�,Γ{g}(�)) (where ĝ denotes the learned model)
in the portion of the state-parameter plane  ×A spanned by the training dataset. We can see that, with both the weak and the
strong constraint strategies, the results are consistent with the analytical solution, except for the region of the state-parameter
plane corresponding to low � and large �. The reason for this discrepancy lies in the fact that, when �i is low, the state of the
i-th individual never reaches the region where �i is large. Hence, the training dataset does not contain any information about the
behavior of the phenomenon in this region of the state-parameter plane and we cannot expect the data-driven apparatus to learn
anything that is associated with this region (extrapolation effect). Nonetheless, if the training dataset contains a sufficiently rep-
resentative collection of the possible behaviors of the phenomenon to be modeled, spanning the values of parameters and initial

†https://github.com/FrancescoRegazzoni/model-learning

https://github.com/FrancescoRegazzoni/model-learning
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FIGURE 7 Test Case 1: original parameters �i plotted against the corresponding learned parameters �̂i for the training individ-
uals (i = 1,… , NP ). The models considered in (a), (b) and (c) are obtained with the non-constrained strategy, the model of (d)
and (e) are obtained with the weak and the strong strategies, respectively. In (d) and (e), the black line represents the analytical
solution � =  −1(�̃).

conditions of interest and the time horizon of interest, even if the learned model is not reliable outside the state-parameter region
spanned by the training dataset, in practical applications the complementary of this region is never reached. Hence, in this case,
the risks associated with extrapolation do not represent a threat. However, it is important to be aware of this limitation. A good
practice would be to check a posteriori, when the learned model is used for prediction purposes, that the state-parameter pair
does not move “too far” from the region spanned by the training dataset (i.e. {(�̂ij , �̂i)}i=1,…,NP

j=1,…,NS
).

3.2 Test Case 1: Noise robustness of the learning algorithm
In the numerical tests considered so far, we have considered the case when measurements of the variables �i(�) are available
without error. However, in practical applications, measurements are never error-free. Moreover, in case the variables �̂ij areobtained as results of a DA algorithm (as in the framework proposed in Sec. 2.1), their values are affected by the error introduced
by the DA procedure. Hence, it is of utmost importance to investigate how much the proposed learning algorithm is robust to
noise.
With this aim, we consider again Test Case 1, this time by assuming that the available measurements are affected by noise.

Specifically, we set �̂ij = �i(�j) + "ij , where the observation errors "ij ∼ (0, U ) are independent and identically distributed. By
assuming that the stochastic variables "ij are the result of a discrete sampling of the white noise � dB(�)

d�
(where B(�) is a Wiener

process and � is the noise magnitude), we set U = �2∕Δ�. In particular, we set � = �offline to generate the training data (offline
noise) and � = �online to generate the data to test the learned model (online noise). In all the test cases presented in this paper,
we assumed the noise magnitude as given. A possible future development could be using suitable algorithms to automatically
estimate the noise magnitude (see e.g.54).
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FIGURE 8 Test Case 1: comparison between the original model right-hand side g(�, �) with the learned model right-hand side,
mapped back to the state-parameter plane of the original model (i.e. g̃(�,Γ{g}(�))). The last column shows the absolute error
between the two functions.

We add a random noise to the dataset used in Secs. 2.3.1 and 3.1 for Test Case 1, with different magnitudes of �offline, andwe run
the learning algorithm. For the sake of brevity in this section we only consider the strong constraint strategy, but similar results
are obtained with the weak constraint strategy too. In Fig. 9(a) we show the �i vs �̂i plot obtained for �offline ranging between
10−2 s1∕2 and 10−5 s1∕2. We notice that, as the noise decreases, the accuracy in the attribution of the parameters �̂i increases.
To quantitatively assess the noise-robustness of the method, we generate 1000 random test individuals and we add a random

noise (with different levels of magnitude �online), we apply the EKF algorithm in the time interval [0,T obs], in order to estimate
the parameters �̂i associated with those individuals, and finally we predict their evolution in the interval (T obs,T ]. In Fig. 9(b)
we show the overall normalized L2 error between the predictions and the exact solutions, for the different values of �offline and
�online. We notice that, when �online is large compared to �offline, the prediction error has a trend which is proportional to �online.
However, for low values of �online, the prediction error saturates to a level that depends on �offline. Indeed, the learned model ĝ is
an approximate surrogate for the laws governing the phenomenon (represented in this example by the original model g). As such,
the learned model is affected by a model error, that is to say it is endowed with a limited capability of describing and predicting
the behavior of the phenomenon. In conclusion, when �online ≫ �offline, the error introduced by the online noise prevails over
the model error, which explains the linear trend between �online and the prediction error. Conversely, when �online < �offline, the
model error comes into play and the decreasing trend of the prediction error ends.
We notice that in most practical applications, measurements are available with the same quality in the online and the offline

stage. Hence, we repeat the test performed in Fig. 9(b), by setting �online = �offline, that is by simultaneously decreasing the
offline and the online error. In order to provide a benchmark value for the errors obtained in this manner, we perform the same
test, this time by employing the original model g itself in the DA and in the prediction stage. The prediction errors so obtained
are reported in Fig. 10. Such errors represent the minimum error that can be attained for a given level of noise. Indeed, they
are obtained in the idealized case of absence of any model error (they are only affected by the online noise). In Fig. 9 we also
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FIGURE 9 Test Case 1: (a) original parameters �i plotted against the corresponding learned parameters �̂i for the training
individuals (i = 1,… , NP ), for different noise magnitudes �offline and (b) overall L2 relative prediction errors obtained for
different values of �offline and �online. In (b), each black cross represent a testing individual, the blue curve represent the arithmetic
mean, the red curve the geometric mean.

report the prediction errors obtained by replacing the ground-truth model g with its data-driven surrogates. The closeness of the
error curve obtained with the ANN-based model to that obtained with the original one demonstrates that the effect of the model
error introduced by replacing the original model with its surrogate is small compared to the error due to the noise. Hence, we
conclude that the learned model can be reliably used to interpret data and to make predictions for the phenomenon.

3.3 Test Case 3: Nonlinear second-order dynamics
In order to test the capabilities of the proposed method to deal with more complex test cases than the linear first-order dynamics
considered in the previous sections, we consider the following second-order nonlinear model

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d2

d�2
!(�) + � sin

(

!(�) − �1
)

+ �2
d
d�
!(�) = 0 � ∈ (0,T ],

!(0) = !0,
d
d�
!(0) =  0,

(28)

describing the dynamics of a nonlinear oscillator. The state of the model is given by �(�) = (!(�), d
d�
!(�)). The two parameters

�1 and �2 represent the steady-state value of the variable ! and the damping coefficient, respectively, while � = 5 s−2 is a
constant. We generateNP = 20 training samples, by randomly sampling the state space �0 ∈ [−1, 1]×[−0.1 s−1, 0.1 s−1] and the
parameters space � ∈ [−0.2, 0.2]× [0.5 s−1, 1.5 s−1] and by setting T = 10 s. For the time discretization we set Δ� = 1 ⋅ 10−2 s.
As in Sec. 3.2, we build several data-driven models with different values of �offline. For each model, we set a single hidden

layer with 8 neurons. Then, we randomly generate several test samples; we add noise to the model output; we perform DA in
the time interval [0,T obs], for T obs = 4 s; finally, we predict the evolution in the time interval (T obs,T ], for T = 10 s.
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FIGURE 10 Test Case 1: overall L2 relative prediction errors for different values of �online obtained by employing the original
model (left) and the learned models (center), by setting �offline = �online (we use the same conventions of Fig. 9(b)). Finally, we
show a comparison of the arithmetic and the geometric means of the prediction errors, for the original and the learned models
(right).
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FIGURE11Test Case 3: evolution of �NP+1(�), of �̂NP+1(�) and of the estimation of �̂NP+1. See caption of Fig. 5 for the notation.

We report in Fig. 11 the predicted evolution of the system state for a random sample, in the case �offline = �online = 10−4 s1∕2.
Then, in Fig. 12, we compare the overall L2 relative prediction errors obtained, for different noise levels, by employing the data-
driven models and the exact model of Eq. (28). Even if the errors obtained with the data-driven models are larger than those
obtained with the exact model, compared to Test Case 1, the error still converges to zero when the noise decreases.

3.4 Test Case 4: A synthetic test case of hypertension evolution
As a final test case (Test Case 3) we consider the example introduced in Sec. 1.3 as a motivation for the methods proposed in this
paper. In this test case, the fast-scale phenomenon is the blood circulation, which we here describe by means of the two-stage
Windkessel model of Eq. (1). The evolution of the fast-scale variables x(t) = (Pp(t), Pd(t)) is conditioned by the four parameters
� = (Rp, Cp, Rd, Cd), which evolve on a slower time scale �. In order to test the proposed methods, we synthetically generate
data that we use in place of experimental measurements. With this aim, we consider the following model for the slow scale
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FIGURE 12 Test Case 3: overall L2 relative prediction errors for different values of �online obtained by employing the original
model (left) and the learned models (center), by setting �offline = �online (we use the same conventions of Fig. 9(b)). Finally, we
show a comparison of the arithmetic and the geometric means of the prediction errors, for the original and the learned models
(right).

evolution of the parameters �
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d
d�
Rp(�) = 0 � ∈ (0,T ],

d
d�
Cp(�) = 0 � ∈ (0,T ],

d
d�
Rd(�) = � Rd � ∈ (0,T ],

d
d�
Cd(�) = −� Cd � ∈ (0,T ],

Rp(0) = Rp,0, Cp(0) = Cp,0, Rd(0) = Rd,0, Cd(0) = Cd,0.

(29)

Model (29) describes the evolution of hypertension due to a progressive increase of the distal arterial resistance Rd, while the
distal arterial capacitance Cd accordingly decreases so that the characteristic time constant of the arterial system (corresponding
to the product RdCd) is preserved. On the other hand, the properties of the proximal arterial system (i.e. Rp and Cp) are not
subject to long-term variations. The slow-scale coefficient � ∈ A ∶= [0, 1 ⋅ 10−2week−1] represents the disease severity (more
precisely, we have � = log(2)∕Tdouble, where Tdouble is the doubling time of Rd).

3.4.1 Synthetic data generation
We generate the data needed to test the methods proposed in this paper alongside the following steps, visually represented in
Fig. 13.

I. We generate 100 synthetic patients, each one characterized by an initial state �0 = (Rp,0, Cp,0, Rd,0, Cd,0) and by a degree
of disease severity �. Specifically, the i-th patient initial state �i0 and �i are randomly selected by sampling with uniform
probability the sets [Rmin

p , Rmax
p ] × [Cmin

p , Cmax
p ] × [Rmin

d , Rmax
d ] × [Cmin

d , Cmax
d ] (see Tab. 1) and A .

II. For each patient, we solve the slow-time model of Eq. (29), obtaining �i(�) for � ∈ (0,T ], with T = 50 weeks.
III. We suppose that we monitor each patient with a period of Δ� = 1 week. Hence, we subdivide the interval (0,T ] into the

time instants 0 = �1 < �2 <⋯ < �NS
= T , such that �j+1 = �j + Δ�.

IV. At each time �j (for j = 1,… , NS) and for each patient i, we simulate the fast-scale patient circulation, by solving the
Windkessel model (1) by setting � = �i(�j). We simulate 10 heartbeats, in order to let the dynamical system reach a limit
cycle, and then we record the result of the following 10 heartbeats. In this manner, we obtain zij , namely the observation
associated with the i-th patient at the j-th discrete slow-time. We recall that, in this test case, the observation vector
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Slow-scale model
Eq. (34)

Fast-scale model
Eq. (1)

I.

II.

III.

IV.

V.

FIGURE 13 Test Case 4: visual representation of the five steps followed to generate synthetic data (see Sec. 3.4.1).

TABLE 1 Test Case 4: Lower and upper bounds of the initial values of the slow-scale variables.
Parameter Value Parameter Value Units
Rmin

p 8.1757 ⋅ 10−2 Rmax
p 1.7326 ⋅ 10−1 mmHg smL−1

Cmin
p 3.1197 ⋅ 10−2 Cmax

p 3.1464 ⋅ 10−2 mLmmHg−1

Rmin
d 6.9006 ⋅ 10−1 Rmax

d 1.1599 mmHg smL−1

Cmin
d 1.1851 Cmax

d 2.1731 mLmmHg−1

z collects the measurements of the proximal arterial pressure at a discrete collection of time instants (t1,… , tK ), with
tk+1 − tk = Δt = 1 ⋅ 10−2 s (i.e., we have z = (Pp(t1),… , Pp(tK )).

V. In order to mimic the measurement error that unavoidably comes with any experimental measurement, we define the
measured observation as z̃ij = zij + �

i
j , where � ij ∼  (0,W ) are independent and identically distributed observation

errors. Similarly to what we have done in Sec. 3.2, we assume that the observation errors derive from a white noise of
magnitude � = 0.75mmHg s−1∕2. Hence, we setW = �2∕Δt = (7.5mmHg)2. Thismeans that any pointwisemeasurement
is affected by a relative error of the order of 10%.

Among the quantities generated through the above mentioned steps, the unique information available to the learning algorithm
consists in the noisy observations {z̃ij}ij . The goal is that of climbing back those steps, in order to obtain the initial state of each
patient, their degree of disease severity, and the laws governing the slow-scale arterial network remodeling. Although the data
employed for this test case are synthetically generated, the assumptions made here are consistent with an hypothetical clinical
use of the proposed procedure; indeed this type of measurements can be available, for patients with specific indications, with
the accuracy assumed above55.

3.4.2 Data-driven model for hypertension development
Starting from the noisy observation {z̃ij}ij , we build a data-driven model by following the procedure proposed in Sec. 2.1 and
visually represented in Fig. 13.
Specifically, we select NP = 25 training patients. For each of them and for each slow-scale time instant �j , we consider the

noisy observation z̃ij , collecting the proximal arterial pressure measurements along 10 heartbeats. By solving Problem (P1) by
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ML
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FIGURE 14 Test Case 4: visual representation of the procedure followed to generate a data-driven model for hypertension
development (see Sec. 3.4.2). In the top part of the figure we represent in black the noisy measurement of Pp associated with a
given patient i and a to given slow-time instant �j . The colored line represent the time evolution of estimated values of the system
state (Pp and Pd) and of the four parameters (Rp, Cp,Rd and Cd). The shadowed areas represent the ±3� bands, where � denotes
the standard deviation of the estimate. By combining the estimated values of the parameters obtained for all patients and for all
the slow-time instants, we obtain an estimate of their slow-scale evolution, represented in the bottom-right part of the figure.

means of the EKF algorithm, we obtain an estimate of the slow-scale parameter vector for the i-th patient at time �j , denoted by
�̂ij . By collecting the estimated parameters for all i and j, we obtain the slow-scale training dataset, a subset of which is displayed
in Fig. 13.
Next, we employ this dataset to train a data-driven model. Specifically, since hypertension is related to an increase of the

peripheral system resistance, we focus on the variable Rd. Hence, we solve Problem (P2) for �(�) ∶= Rd(�) by means of
the algorithm proposed in Sec. 2.2. In order to guarantee the uniqueness of the solution for Problem (P2) and to enhance the
interpretability of the results, we adopt the constraint of Example 1, for �∗ = R*

d ∶= 0.75mmHg smL
−1, by following the strong

constraint strategy. We set N� = 1, and we train an ANN with a single 3-neurons hidden layer. In this manner, we obtain the
data-driven model ĝ and the slow-scale parameters {�̂i}i.
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FIGURE 15 Test Case 4: original parameters �i plotted against the corresponding learned parameters �̂i for the training
individuals (i = 1,… , NP ).

In order to a posteriori check the quality of the obtained results, in Fig. 15 we show the learned parameters �̂i, plotted against
the ground-truth parameters of the original model �i, used to the generate the data. We can see that, thanks to the proposed
methodologies, we have successfully classified patients, by ranking them according to the disease severity.
Then, we consider the 75 synthetic patients generated in Sec. 3.4.1 but not included in the training set, in order to check the

capability of the learned model to interpret unseen data and to make predictions. Hence, we apply the EKF algorithm in the
time interval [0,T obs], with T obs = 25weeks, to estimate the value of the parameter �̂ for the testing patients. Then, we use the
estimated parameter to predict the future evolution of the patient state in the time interval (T obs,T ]. In this manner, we obtain
an overall relative L2 error between the prediction and the exact solutions equal to 1.06 ⋅ 10−2.
The computations were run on a standard laptop (single core Intel i7-6500U). The execution of the EKF algorithm took

nearly 140ms for each run, for a total of nearly 7 s for each patient (as we have NS = 50 checkpoints per patient). Therefore,
preprocessing the 25 patients used to train the ANN required less than 3 minutes. The ANN training took instead 160 s. In
conclusion, the whole offline phase took nearly 5 minutes. Concerning the online phase, for each patient the EKF algorithm
needs to be run on the fast scale model up to T obs, taking nearly 3.5 s; then the EKF algorithm is run on the slow scale model,
which is then used to forecast the evolution of the patient. These steps only took 20ms for each patient.
Finally, we notice that thanks to the application of the constraint of Example 1, the otherwise black-box parameter �̂ is endowed

with a physical meaning. In particular, it owns a measure unit (arterial resistance per time unit) and it corresponds to the time
rate of change of arterial resistance when its value is equal to R*

d. This allows to provide a practical definition of the parameter:
its numerical value (expressed asmmHg smL−1week−1) can be estimated as the increase of arterial resistance occurring in one
week, when the patient has resistance equal to R*

d. Thanks to the enhanced interpretability, this will facilitate the use of such
data-driven models in clinical practice.

4 CONCLUSIONS

In this paper we considered the problem of discovering differential equations describing the long-term evolution of phenomena
featuring two temporal scales, starting from experimental measurements related to the fast-scale dynamics. We proposed to split
the problem into two steps. The first step deals uniquely with the fast scale, and consists in estimating the fast-scale parameters
by means of DA methods. Then, in the second step, we employ the reconstructed slow-scale evolution of these parameters to
build a data-driven model for the dynamics occurring at this slow time scale.
With this aim, we proposed a ML algorithm that builds a data-driven model starting from time series data of a phenomenon

featuring inter-individual variability. In practice, this algorithm discovers a differential equation, depending on one parameter
or more, that approximates the time evolution of the individuals belonging to the training set. Moreover, this algorithm also
learns the most likely value of such parameters for each of the training individual. We remark that this algorithm can be easily
generalized to the case when the slow-scale phenomenon features a time-dependent input, similarly to what was done in26.
Then, we investigated the issue of interpretability of the learned model. In particular, we have highlighted that the problem of

learning from time series a differential equation featuring one parameter or more never has a unique solution. Indeed, since the
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parameters are not directly measured, each model is associated with an equivalence class of models that can be obtained from
the original one by an invertible transformation of the parameters into a new parametrization of the parameters themselves (we
call such models trivial reformulations of the original one). Motivated by this, we have proposed a strategy to select a unique
representative model inside each class of trivial reformulations of a given model. This is obtained by adding a constraint to the
candidate class of models, either in weak or in strong form.
Moreover, we have shown that models can be split into two categories: minimal and non-minimal. Models belonging to the

second class feature a disadvantage when one tries to build a data-driven model for the underlying phenomenon. In fact, non-
minimal models admit, besides trivial reformulations, what we call non-trivial reformulations. Non-trivial reformulations are
mathematical models, written as parametric differential equations, that can produce the same output of the original model, but
that cannot be obtained from it simply by an invertible transformation of the parameters. For this reason, it is preferable to work
with minimal models. Although minimality is an intrinsic property of a model, we recall that a non-minimal model can typically
be reduced to a minimal one by removing variables that can be obtained as a combination of other variables. In other words, one
should try not to learn a model with more variables than necessary; otherwise the dynamics would occur on trivial manifolds
in the state space, leading to the existence of non-trivial reformulations. The development of criteria that allow to check the
minimality of a model will be the subject of future works.
Once the training phase (offline phase) is accomplished, the learned model serves multiple purposes. First, it provides under-

standing of the phenomenon to be modeled. Secondly, by performing DA through the learned model, one can estimate the values
of the parameters associated with an individual not included in the training set (online phase). In case the model is minimal, then
the parameters obtained in this manner allow to classify the individual, as their values may be used to detect patients that have
similar features. Thirdly, once an estimate of the parameters associated with an unseen individual is available, then the learned
model can be used to predict the future evolution of such individual. We remark that, while classification is only possible when
working with minimal models, the learned model can be employed to predict the future evolution of unseen individuals both
when working with minimal and with non-minimal models.
Finally, we considered several test cases to show the effectiveness of the proposed methods and algorithms. Specifically, we

synthetically generated time series by numerically approximating the solution of various differential models, including linear and
nonlinear, first-order and second-order dynamics. Then, we employed our algorithm to learn parametric differential equations
describing the measured data. We showed that, by suitably employing DA on the learned models in order to estimate the asso-
ciated parameters, the future evolution of individuals not included in the training set can be accurately predicted. Moreover,
numerical tests demonstrate that, when the noise added in the online and in the offline phases decreases, the prediction accu-
racy increases. Finally, we have shown that the strategy proposed to make the model learning problem well-posed succeeds in
selecting a unique model among the equivalence class of trivial reformulations of the original model, thus enhancing the inter-
pretability of the learned model. Moreover, this strategy also provides a physical meaning to the parameters associated with the
learned model, which would otherwise be a black-box object without any clear physical interpretation.

APPENDIX

A PROOFS OF THE PRESENTED RESULTS

We give in this appendix the proofs of Props. 1 and 2.
Proof of Prop. 1. Let us consider a generic �0 ∈  and � ∈ A . Let us denote �(�) ∶= sg(�0, �, �). In virtue of Eq. (23), we have

d
d�
�(�) = g(�(�), �) = g̃(�(�), Ã(�0, �)), � ≥ 0. (A1)

By the uniqueness of the solution of this ODE system, if follows that sg̃(�0, Ã(�0, �), �) = �(�) for any � ≥ 0.
Proof of Prop. 2. Let us define

Ã(�0, �) ∶= Γ{g}(�), g̃(�, �̃) ∶= g(�,Γ{g}−1(�̃)) ∀ � ∈  , � ∈ A (A2)
and let Ã be the image of Ã. Clearly, the model (g̃, , Ã ) is a trivial reformulation of (g, ,A ).
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Let us suppose that (g, ,A ) admits another trivial reformulation, which we denote by (g, ,A ), satisfying Γ{g}(�) = � for
any � ∈ A . Then, by Eq. (23), there exists a function B∶ A → A such that

g(�, �) = g(�, B(�)) ∀ � ∈  , � ∈ A . (A3)
By definition of identifiability, there exists a function ℎ such that, for any �0 ∈  and � ∈ A

� = ℎ({sg(�0, �, �)}�≥0) = ℎ({sg(�0, B(�), �)}�≥0),

where the second equality follows from Prop. 1. The function B is thus invertible (in particular, we have B−1(�) =
ℎ({sg(�0, �, �)}�≥0)).
By combining Eq. (A2) with Eq. (A3), we obtain

g̃(�, �̃) = g(�, B(Γ{g}−1(�̃))) ∀ � ∈  , �̃ ∈ Ã . (A4)
Therefore, we have �̃ = Γ{g̃}(�̃) = Γ{g}(B(Γ{g}−1(�̃))) = B(Γ{g}−1(�̃)), for each �̃ ∈ Ã . By applying the function B−1(⋅) at
both sides, we get B−1(�̃) = Γ{g}−1(�̃), which entails B(⋅) ≡ Γ{g}(⋅). Moreover, the sets A and Ã coincide, being defined as
the image of the maps B(⋅) and Γ{g}(⋅), respectively. Finally, by setting B(Γ{g}−1(�̃)) = �̃ in Eq. (A4), we get g̃ ≡ g.
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