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Abstract

We present results of three-dimensional Direct Numerical Sim-
ulations (DNS) and Large Eddy Simulations (LES) of turbulent
gravity currents with a Discontinuous Galerkin (DG) Finite Ele-
ments method. In particular, we consider the three-dimensional
lock-exchange test case as a typical benchmark for gravity cur-
rents. Since, to the best of our knowledge, non-Boussinesq three-
dimensional reference DNS are not available in the literature for
this test case, we first perform a DNS experiment. The three-
dimensional DNS allows to correctly capture the loss of coherence
of the three-dimensional turbulent structures, providing an accurate
description of the turbulent phenomena taking place in gravity cur-
rents. The three-dimensional DNS is then employed to assess the
performance of di↵erent LES models. In particular, we have con-
sidered the Smagorinsky model, the isotropic dynamic model and
an anisotropic dynamic model. The LES results highlight the ex-
cessively dissipative nature of the Smagorinsky model with respect
to the dynamic models and the fact that the anisotropic dynamic
model performs slightly better with respect to its isotropic counter-
part.
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1 Introduction

Gravity currents, arising when a heavier fluid propagates into a
lighter one in a predominantly horizontal direction, are very com-
mon in geophysical flows. In atmospheric gravity currents the den-
sity di↵erence is typically caused by the temperature di↵erence be-
tween the cold front and the warmer surrounding air. In oceanic
flows, density di↵erences are caused instead by salinity and temper-
ature gradients, while in pyroclastic flows the density di↵erence is
due to the presence of suspended particles in the flow. A compre-
hensive description of environmental gravity currents can be found
e.g. in [33]. In gravity currents, the density di↵erence between the
lighter and heavier fluid can range from very small to very large. In
case of small density di↵erences, density variations in the momen-
tum equation can be neglected in the inertia term, but retained in
the buoyancy term, yielding the so called Boussinesq approximation,
see e.g. [20]. This approximation has been employed in most ex-
perimental and computational studies of gravity currents reported
in the literature, see e.g. [24], [29], [30]. However, in several of the
above listed phenomena, non-Boussinesq e↵ects become important.

Gravity currents appear to be a particularly interesting phe-
nomenon from the point of view of turbulence modelling, since a
wide range of interesting phenomena arise, such as breaking inter-
nal waves and Kelvin-Helmholtz instabilities. Moreover, in gravity
currents, especially in the non-Boussinesq regime, consistent den-
sity di↵erences are present. As a consequence, gravity currents can
also be a good candidate for the validation of turbulence models for
compressible flows with major density di↵erences.

The main purpose of the present work is to present the first
DNS results for a gravity current benchmark in the non-Boussinesq
regime. More specifically, a three-dimensional lock exchange prob-
lem analogous to that studied in [29] was simulated. With respect
to the two-dimensional DNS already present in the literature, see
e.g. [6], the three-dimensional DNS allows to e↵ectively capture the
vortex stretching and the loss of coherence of the three-dimensional
coherent structures, providing more insight in the turbulent phe-
nomena arising in gravity currents. The DNS results have then
been employed for the assessment of di↵erent subgrid LES models,
including more conventional ones, such as the Smagorinsky model
[34] and the isotropic dynamic model [19], and less conventional
ones, such as an anisotropic dynamic model [2].

The numerical framework chosen to implement the models is
that of a Discontinuous Galerkin discretization. Such a framework
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allows to generalize the concept of LES filter as a projection onto
the polynomial space related to the discretization, thus making it
possible to apply it to arbitrary unstructured meshes. This is con-
ceptually similar to what is done in Variational Multi-Scale (VMS)
models, see e.g. [25], [27].

The LES results confirm the excessively dissipative nature of the
Smagorinsky model with respect to the dynamic models and the fact
that the anisotropic dynamic model performs slightly better with
respect to its isotropic counterpart. As a result, we also extend to
the variable density case and to a three-dimensional configuration
the findings in [1], [9] on the importance of more complex dynamical
models for subgrid modeling also in the VMS framework.

The paper is organized as follows. Section 2 provides a brief
introduction of the mathematical model employed for the treatment
of turbulent gravity currents, while for a more detailed description
of the di↵erent subgrid turbulence models and of the Discontinuous
Galerkin method we refer to the appendix A and B, respectively.
The set-up of the DNS and LES experiments is described in section
3. The DNS results are discussed in section 4, while the LES are
presented in section 5 and their quality assessed in terms of the
corresponding DNS. Some conclusions and perspectives for future
work are presented in section 6.

2 The mathematical model

We provide in this section a short overview the mathematical model
we employ for the description of gravity currents. The model is
based on the Navier-Stokes equations, filtered with the same proce-
dure as in [1], [9]. The filtering operator, which is denoted by ·, is
in-built in the DG discretization approach and is described in detail
in appendix B. Here, we only point out that the filter · is defined
as the projection onto a space of piecewise polynomial functions of
degree p, where p denotes the degree of the piecewise polynomial
basis functions employed by the DG method. The choice of p im-
plicitly defines a spatial filter scale �, whose full definition is given
in appendix B.

The Favre filter operatore· (see e.g. [16]) is then defined implicitly
by the Favre decomposition, which is given for a generic function f
by

⇢f = ⇢ ef. (1)
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The filtered Navier-Stokes equations we employ can be written as:

@t⇢+ @j(⇢euj) = 0 (2a)

@t (⇢eui) + @j (⇢euieuj) + @ip� @je�ij

= �@j⌧ij + ⇢fi (2b)

@t (⇢ee) + @j

⇣

⇢eheuj

⌘

� @j (euie�ij) + @jeqj (2c)

= � 1

(� � 1)Ma2
@jQ

sgs
j � 1

2
@j

⇣

J sgs
j � ⌧kkeuj

⌘

+ ⇢fjeuj .

Here, e�ij and eqi are the filtered di↵usive fluxes, for which the fol-
lowing expressions are assumed:

e�ij = µ eSd
ij , eqi = ��@i eT , (3)

with eSij = @jeui + @ieuj and eSd
ij = eSij �

1

3
eSkk�ij . ⌧ij , Q

sgs
j and J sgs

j

are the subgrid stress tensor, the subgrid temperature flux and the
subgrid turbulent di↵usion flux, respectively, whose expressions are:

⌧ij = ⇢uiuj � ⇢euieuj , (4a)

Qsgs
i = ⇢uiT � ⇢eui eT = ⇢

⇣

guiT � eui eT
⌘

, (4b)

J sgs
i = ⇢uiukuk � ⇢euieukeuk = ⇢ûiukuk � ⇢euieukeuk

= ⌧(ui, uk, uk) + 2euk⌧ik + eui⌧kk. (4c)

In the last equality of equation (4c), the generalized central moments
⌧(ui, uj , uk) = ⇢ûiujuk � eui⌧jk � euj⌧ik � euk⌧ij � ⇢euieujeuk (see [17])
have been introduced.

These subgrid terms just introduced need modeling. In this
work, we have employed the Smagorinsky model [34], the isotropic
dynamic model [19] and the anisotropic dynamic model proposed
in [2]. A complete description of the subgrid models is given in
appendix A.

3 Set-up of the numerical experiments

and definition of diagnostic quantities

We have carried out the DNS and the LES of a three-dimensional
lock exchange problem at two di↵erent Reynolds numbers (Re =
3000 and Re = 6000), following the experimental setting of [29] for
the definition of the domain and the initial and boundary conditions.
Notice that, however, we have considered a density ratio �r = 0.7,
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Figure 1: Initial density datum for the lock-exchange test case.

thus working in a non-Boussinesq regime, contrary to what was done
in [29], where simulations in the Boussinesq regime were carried out.

The initial condition is presented in figure 1. The domain length
is L = 5, its height is H = 1, its width is W = 1, while the position
of the initial discontinuity is x0 = 2.5. The initial density datum is
characterized by a sharp transition layer. Moreover, a perturbation
is applied in the spanwise direction in order to ease the transition
to turbulence, so that

⇢0(x, y, z) =

8

>

<

>

:

1 if 0  x < a

1 + 100(�r � 1)(x/L+ 0.495� ⌘) if a  x < b

�r if b  x  L,

where a = L/2 � (0.005 + ⌘)L, b = L/2 + (0.005 � ⌘)L, ⌘ =
0.05 sin(2⇡ y

W ) and W is the width of the domain.
The initial pressure at the top of the domain is defined as in [9]:

ptopinit =
1

�Ma2
, (5)

where � is the ratio between the specific heats and Ma = 0.1. An
hydrostatic pressure profile is assumed in the rest of the domain.
The initial temperature profile is computed from density and pres-
sure using the equation of state for ideal gases. According to the
non-dimensionalization employed in the present work (which is the
same as in [9] and [8]), the Froude number can be expressed as:

Fr =
p

1� �r, (6)

where �r is the ratio between the densities on the left and on the
right with respect to the initial discontinuity.

We employ slip boundary conditions in the streamwise and ver-
tical directions, while periodic boundary conditions are imposed in
the spanwise direction.
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For the time discretization, a fourth order accurate, Strong Sta-
bility Preserving explicit Runge-Kutta method, see e.g. [35], has
been employed for all the simulations.

In order to analyze quantitatively the DNS results and to as-
sess the ability of the di↵erent LES models in reproducing them,
various diagnostic quantities have been considered. The temporal
evolution of the dissipated energy was computed integrating in time
the following equation:

dEd

dt
=

Z

⌦

⇢

⇢⌫



1

2
(@jui + @iuj)

2 � 2

3
(r · u)2

��

dx. (7)

It should be noticed that the contribution of the subgrid scale vis-
cosity ⌫sgs is added to the molecular viscosity ⌫ in the previous equa-
tion when an LES realized with the Smagorinsky model or with the
isotropic dynamic model is considered. Since, for the anisotropic dy-
namic model, the isotropic and deviatoric parts of the subgrid-scale
stress in the momentum equation are modeled together, the tempo-
ral evolution of the dissipated energy was computed integrating the
following equation:

dEd

dt
=

Z

⌦

⇢

⇢⌫



1

2
(@jui + @iuj)

2 � 2

3
(r · u)2

�

� @iuj⌧
d
ij

�

dx, (8)

where ⌧dij is the deviatoric part of the subgrid scale stress tensor.
The second diagnostic quantity we have considered is the time

evolution of the Reference Potential Energy (RPE). This quantity,
which has been first introduced in [42], corresponds to the minimum
potential energy that can be obtained through an adiabatic redis-
tribution of the fluid. Starting from the potential energy Ep and
the reference potential energy RPE, we can compute the available
potential energy (APE) as:

APE(t) = Ep(t)�RPE(t). (9)

As discussed in [42], the APE is the part of the potential energy
that can actually be transferred to kinetic energy because of the
turbulent mixing.

As pointed out in [42] and recalled in [29], the reference poten-
tial energy increases with time, thanks to the stratified mixing: the
RPE is, as a consequence, an e↵ective measure of how much mixing
has occurred in the fluid. We have computed the RPE following
the procedure outlined in [37]. We have introduced the density vari-
able ⇢̃ in the sample space [⇢m, ⇢M ], with ⇢m and ⇢M minimum and
maximum densities, respectively. The probability of density ⇢ to
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be in the interval [⇢̃, ⇢̃ + d⇢̃] is denoted by P (⇢̃)d⇢̃, where P (⇢̃) is
a probability density function. This function is estimated in prac-
tice dividing the density interval [⇢m, ⇢M ] into di↵erent bins. The
density field is then scanned and, for each element, we consider the
density value in each Gauss integration point. If the value falls into
a particular bin, a quantity equal to the Gauss weight associated to
the Gauss point is accounted for that bin. The probability density
function is then obtained normalizing the volume contained in each
bin by the volume of the whole domain, after the completion of the
whole scanning procedure.

The quantity Zr(⇢) is the height of the fluid of density ⇢ in the
minimum potential energy state, while dZr is the thickness of the
layer containing fluid of density between ⇢̃ and ⇢̃+ d⇢̃. If the layers
have the same horizontal surface A, the volume occupied by this
layer of fluid is:

AdZr|⇢ = |⌦|P (⇢̃)d⇢̃|⇢.

This equation is then integrated over ⇢̃ in order to obtain the profile
Zr(⇢):

Zr(⇢) = H

Z ⇢M

⇢
P (⇢̃)d⇢̃. (10)

Since the RPE is defined as the potential energy of the reference
state, whose vertical profile is given by equation (10), the following
equation was employed for its computation:

RPE =
1

Fr2
LW

Z H

0
⇢(Zr)ZrdZr, (11)

where ⇢(Zr) is the reference density expressed as a function of the
reference coordinate Zr.

We have also compared the results of the di↵erent simulations
in terms of instantaneous fields at di↵erent instants of time. We
have considered in particular density fields and Q�criterion fields.
This criterion has been introduced in [26] by identifying a vortex as
a spatial region where the Euclidean norm of the vorticity tensor
dominates that of the strain rate, i.e.:

Q =
1

2

✓

1

4
|⌦|2 � 1

4
|Sd|2

◆

> 0, (12)

where Sd
ij = @jui+@iuj�

1

3
(2@kuk)�ij and ⌦ij = @jui�@iuj . Notice

that the Q�criterion allows to distinguish between pure shearing
motion and the actual swirling motion of a vortex.
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Re = 3000 Re = 6000

3800000 3800000

Table 1: Number of DOFs associated to the DNS.

4 Results of the DNS experiments

In this section, the main results obtained from the DNS experiments
are presented, to be compared in the following section with the
corresponding LES results.

Concerning the spatial discretization, we have used as basis func-
tions piecewise polynomials of degree p = 4. Notice that overinte-
gration has been necessary in order to obtain stable simulations.
Indeed, a number of integration points corresponding to exact inte-
gration of polynomials of degree 12 has been employed.

In table 1 the total number of degrees of freedom associated to
the DNS is presented. The total number of DOFs employed for the
DNS at Reynolds Re = 3000 is of the same order of magnitude as
the one employed in [29] for the med � res1 simulation, realized
with approximately 5000000 DOFs. In [29], two more resolved sim-
ulations, denoted by med� res2 and high� res, respectively, were
also realized, but the authors stressed that the results of the three
simulations were quite similar to each other. As a consequence we
have decided to perform a simulation with a spatial resolution com-
parable to the med� res1 simulation. The total number of degrees
of freedom for the DNS at Reynolds Re = 6000 is the same as the
one for the DNS at Re = 3000: this implies that for Re = 6000 we
have an underresolved DNS.

The computational grid for our computations was built starting
from a structured hexahedral mesh. Each hexahedron is divided
into Nt tetrahedra. The expressions for the equivalent grid spacings
are:

�x =
L

Nx
3
p

NtNp

, �y =
W

Ny
3
p

NtNp

, �z =
H

Nz
3
p

NtNp

, (13)

where L, W and H are the length, width and height of the com-
putational domain, respectively, Nx, Ny and Nz are the number of
hexahedra in the x, y and z directions and Np is the number of de-
grees of freedom per element when the polynomial degree is equal to
p. In table 2 we present the values of Nx, Ny and Nz for the DNS.
Following equations (13), the resolutions employed in the di↵erent
directions for the DNS at Re = 3000 and for the under-resolved
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DNS at Reynolds Re = 6000 are given by:

�DNS
x = 0.006, �DNS

y = 0.004, �DNS
z = 0.004. (14)

In order to verify if the DNS we are performing are well resolved,
we compare these equivalent grid spacings to the non-dimensional
Kolmogorov length scale. The dimensional form of the Kolmogorov
length scale can be estimated as follows:

⌘⇤ =

✓

⌫⇤3

✏⇤

◆

1
4

, (15)

where ⌫⇤ is the dimensional kinematic viscosity and ✏⇤ is the dimen-
sional kinetic energy dissipation. Notice that the symbol ⇤ identifies
dimensional quantities. Following [29], we define the kinetic energy
dissipation as:

✏⇤ =
cu⇤0

3

H⇤ , (16)

where c is a constant which, in most cases, assumes values in the
interval [0.6, 0.8], u⇤0 is a characteristic velocity and H⇤ is a char-
acteristic length, which in our case corresponds to the height of
the computational domain. In [29], the characteristic velocity is set
equal to the velocity of the gravity current head as:

u⇤0 =
1

2

s

g⇤(⇢⇤1 � ⇢⇤2)H
⇤

⇢⇤2
, (17)

where ⇢⇤1 and ⇢⇤2, with ⇢⇤1 > ⇢⇤2, are the dimensional densities on
the left and on the right of the initial discontinuity. The non-
dimensionalization is carried out in the present work using the buoy-
ancy velocity u⇤b defined as:

u⇤b =

s

g⇤(⇢⇤1 � ⇢⇤2)H
⇤

⇢⇤1
. (18)

As a consequence, u⇤0 can be rewritten as:

u⇤0 =
1

2

s

⇢⇤1
⇢⇤2

u⇤b =
1

2

r

⇢1
⇢2

u⇤b . (19)

We now rewrite equation (15) employing equations (16) and (19)
and highlighting the non-dimensional quantities:

⌘H⇤ =

 

(⌫H⇤u⇤b)
3

c
H⇤u⇤0

3

!

1
4

=

0

B

@

(⌫H⇤u⇤b)
3

c
H⇤

⇣

1
2

q

⇢1
⇢2
u⇤b

⌘3

1

C

A

1
4

. (20)
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Re = 3000 Re = 6000

Nx = 56, Ny = 18, Nz = 18 Nx = 56, Ny = 18, Nz = 18

Table 2: Number of hexahedra in the x, y, z directions associated to the DNS.

Simplifying, we get for the non-dimensional Kolmogorov length scale:

⌘ =

 

⌫3

c
8(
p
�r)3

!

1
4

, (21)

where, as before, �r = ⇢2/⇢1. For the kinematic viscosity, Suther-
land’s law is employed, obtaining:

⌫ =
T↵

⇢Re
. (22)

As a result we obtain the following values:

⌘3000 = 0.004, ⌘6000 = 0.002. (23)

If we compare the employed resolutions of equation (13) with the
non-dimensional Kolmogorov length scales of the previous equation,
we can claim that the DNS at Re = 3000 is quite well resolved,
while the simulation at Re = 6000 is under-resolved. While we plan
repeating the DNS at Re = 6000 at higher resolution as soon as
computational resources are available, in this work we will employ
it as a reference for the assessment of the di↵erent LES models,
since the number of DOFs involved in these simulations is Ndofs =
300000, thus one order of magnitude smaller with respect to that of
the under-resolved DNS (compare tables 1 and 3).

In figures 2(a) and 2(b) we show the density isosurfaces and the
Q = 5 isosurface for the Re = 3000 DNS at t = 9. We can see that,
for this lower Reynolds number, the flow field appears quite ordered
with the presence of few turbulent structures.

In figures 3(a) and 3(b) we have instead the density isosurfaces
and the Q = 20 isosurface for the Re = 6000 DNS at t = 4. The ap-
pearance of the vortices in figure 3(b) highlights, in this early phase
of the simulation, a quite regular flow with relatively few turbulent
structures even though, together with the Kelvin-Helmoltz span-
wise rollers, also some longitudinal and horseshoe structures begin
to appear.

In figures 4(a) and 4(b) we then consider the instantaneous den-
sity and Q profiles for the Re = 6000 DNS at a more advanced
instant of time, t = 9. In particular if we look at figure 4(b), we

11



(a)

(b)

Figure 2: Isosurfaces at t = 9 for Re = 3000 (DNS) (a) density isosurfaces
(⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored by density).
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(a)

(b)

Figure 3: Isosurfaces at t = 4 for Re = 6000 (DNS) (a) density isosurfaces
(⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 20 isosurface (colored by density).
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Re = 3000 Re = 6000

80000 300000

Table 3: Number of DOFs associated to the LES.

Re = 3000 Re = 6000

Nx = 15, Ny = 5, Nz = 5 Nx = 23, Ny = 8, Nz = 8

Table 4: Number of hexahedra in the x, y, z directions associated to the LES

can notice that the number of turbulent structures has considerably
increased and that the flow is much more irregular with respect to
the previous considered instant of time t = 4.

5 Results of the LES experiments

In this section, the main results obtained from the LES experiments
are presented and assessed in comparison to the corresponding DNS.

Concerning the spatial discretization, as for the DNS, piecewise
polynomials of degree p = 4 have been employed, while the poly-
nomial degree associated to the test filter operation, nedeed to the
dynamic models, was taken to be bp = 2. Also in the LES case over-
integration has been necessary in order to obtain stable simulations.

In table 3 the number of degrees of freedom associated to the
di↵erent LES is presented. The number of degrees of freedom of
the LES at Re = 3000 is of the same order of magnitude as the one
employed in [29] for LES at the same Reynolds number. Following
[32], the number of DOFs for the LES at Re = 6000 was obtained
from the number of DOFs associated to the Re = 3000 LES as

N6000
dofs = 2

9
4N3000

dofs .

As for the DNS, the computational grid was built starting from
a structured hexahedral mesh. The number of hexahedra in each
spatial direction, Nx, Ny and Nz, is presented in table 4.

In table 5 we report the computational cost for the di↵erent sim-
ulations in terms of CPU hours. We can notice that the cost of the
di↵erent LES is from two to three orders of magnitude smaller than
the cost of the corresponding DNS. The use of a turbulence model
leads to an increase of the cost of approximately one third with re-
spect to the corresponding no-model simulation. All the simulations
have been performed on the Marconi cluster at CINECA. 576 cores
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(a)

(b)

Figure 4: Isosurfaces at t = 9 for Re = 6000 (DNS) (a) density isosurfaces
(⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored by density).
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- Re = 3000 Re = 6000

DNS 133900 133900

No model 750 5400

Smagorinsky 875 6300

Isotropic dyn. 1115 7800

Anisotropic dyn. 1117 7800

Table 5: Computational cost (CPU hours) for the di↵erent simulations.

have been employed for DNS and for the LES at Re = 6000, while
288 cores have been employed for the LES at Re = 3000.

Considering the Re = 3000 case, the comparison between the
di↵erent LES density fields (figures 5(a), 6(a), 7(a), 8(a)) and the
density field of the DNS (figure 2(a)), highlights the excessively dis-
sipative behaviour of the Smagorinsky model. This fact is confirmed
also by the comparison in terms of the Q = 5 isosurface. In par-
ticular we can see that the Smagorinsky model (figure 5(b)) and,
to a lesser extent, also the anisotropic model (figure 7(b)) provide
less turbulent structures with respect to the ones provided by the
corresponding DNS (figure 2(b)).

Considering the Re = 6000 case at t = 4, if we look at the density
profile obtained with the Smagorinsky model (figure 9(a)), we can
notice that it is much smoother with respect to the DNS one, sug-
gesting the fact that the Smagorinsky model could be too dissipative
also in this case. This seems to be confirmed by the behaviour of the
Q = 20 isosurface. If we compare the Smagorinsky one (figure 9(b))
with that of the DNS (figure 3(b)), we can see that the Smagorinsky
model yields less turbulent structures with respect to the DNS. An
improvement can be obtained employing dynamic models, both in
the density and Q fields. In particular, figure 10(b) shows that the
dynamic isotropic model provides many more turbulent structures
with respect to the Smagorinsky model and allows the representa-
tion of the majority of the turbulent structures actually present in
the DNS, even if the structures in the Q field appear more scattered.
The same considerations can be made for the anisotropic dynamic
model (see figures 11(a) and 11(b) for the density and Q = 20 iso-
surface respectively), even if a slightly more dissipative character is
present, especially in the Q profile, with respect to the isotropic ver-
sion. Notice that, even though the introduction of a dynamic model
provides better results with respect to the Smagorinsky model, if
we look at the profiles of density and Q obtained with the no-model
LES (figures 12(a) and 12(b)) and we compare them with those ob-
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(a)

(b)

Figure 5: Isosurfaces at t = 9 for Re = 3000 (Smagorinksy model LES) (a)
density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored
by density).
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(a)

(b)

Figure 6: Isosurfaces at t = 9 for Re = 3000 (Isotropic dynamic model LES) (a)
density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored
by density).
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(a)

(b)

Figure 7: Isosurfaces at t = 9 for Re = 3000 (Anisotropic dynamic model LES)
(a) density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface
(colored by density).
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(a)

(b)

Figure 8: Isosurfaces at t = 9 for Re = 3000 (No model LES) (a) density
isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored by
density).
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tained with the dynamic models, it is not completely clear, from
these instantaneous fields, if the introduction of a dynamic model
leads to some improvement with respect to a simple no-model LES.

Considering then the Re = 6000 case at t = 9, if we compare
figures 13(b), which represents the Q = 5 isosurface obtained with
the Smagorinsky model, with the corresponding DNS field (figure
4(b)), we can confirm the fact that the Smagorinsky model is too
dissipative. As for t = 4, an improvement can be obtained employ-
ing a dynamic model, both in terms of density and Q (see figures
14(b) and 15(b)). Notice that, at t = 9, some di↵erences arise also
between the dynamic models results and the no-model LES results.
In particular, if we compare the Q = 5 field obtained with the
isotropic dynamic model (figure 14(b)) and the anisotropic dynamic
model (figure 15(b)) with the corresponding no-model field (figure
16(b)), we can see that the introduction of a model leads to the
presence of more coherent turbulent structures with respect to the
no-model case. However,it appears di�cult to conclude, based only
on analysis of the instantaneous fields, whether the introduction of
a dynamic model actually leads to better results with respect to the
no-model LES.

In order to allow for a fairer comparison of the LES results, we
have also filtered the DNS results a posteriori, to see if additional
informations on the performances of the di↵erent turbulence mod-
els can be obtained with respect to the comparison with the simple
DNS Q field. Since it would have been quite cumbersome to post fil-
ter the DNS results considering the same polynomial degree (p = 4)
and a coarser grid, we simply project the solution onto a lower di-
mensional polynomial space, in order to obtain a number of DOFs
similar to the one of the Re = 6000 LES. In figure 17 we present
the post-filtered DNS field for Re = 6000 and t = 9. If we compare
this field to the corresponding DNS field (figure4(b)), we can notice
that some small scale structures are less evident, as expected, even
though the larger scale structure can still be identifed. However if
we compare the DNS post filtered field of figure 17 with the corre-
sponding LES fields of figures 13(b), 14(b), 15(b), 16(b), we cannot
reach a satisfying conclusion about the performances of the di↵erent
models.

In order to try to better discriminate the behaviour of the di↵er-
ent LES models and their performances with respect to the DNS re-
sults, we consider the dissipated energy profiles as a function of time,
computed as in equation (7) for the no-model case, the Smagorinsky
model and the isotropic dynamic model, and as in equation (8) for
the anisotropic dynamic model. The dissipated energy profiles are
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(a)

(b)

Figure 9: Isosurfaces at t = 4 for Re = 6000 (Smagorinsky model LES) (a) den-
sity isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 20 isosurface (colored
by density).
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(a)

(b)

Figure 10: Isosurfaces at t = 4 for Re = 6000 (Isotropic dynamic model LES)
(a) density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 20 isosurface
(colored by density).
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(a)

(b)

Figure 11: Isosurfaces at t = 4 for Re = 6000 (Anisotropic dynamic model LES)
(a) density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 20 isosurface
(colored by density).
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(a)

(b)

Figure 12: Isosurfaces at t = 4 for Re = 6000 (No model LES) (a) density
isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 20 isosurface (colored by
density).
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(a)

(b)

Figure 13: Isosurfaces at t = 9 for Re = 6000 (Smagorinsky model LES) (a)
density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored
by density).
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(a)

(b)

Figure 14: Isosurfaces at t = 9 for Re = 6000 (Isotropic dynamic model LES) (a)
density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored
by density).
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(a)

(b)

Figure 15: Isosurfaces at t = 9 for Re = 6000 (Anisotropic dynamic model LES)
(a) density isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface
(colored by density).
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(a)

(b)

Figure 16: Isosurfaces at t = 9 for Re = 6000 (No model LES) (a) density
isosurfaces (⇢ = 0.72, 0.82, 0.85, 0.88, 0.98). (b) Q = 5 isosurface (colored by
density).
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Figure 17: Post-filtered DNS isosurfaces of Q = 5 at t = 9 for Re = 6000.
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presented both for Re = 3000 and Re = 6000 cases in figure 18.
Concerning theRe = 3000 case (figure 18(a)), we can confirm the

finding that the Smagorinsky model is far too dissipative: the dis-
sipated energy obtained with the Smagorinsky model (cyan curve)
is always greater than the DNS one (red curve). Considering the
isotropic dynamic model (blue curve), we can notice that its dis-
sipated energy profile is quite similar to the one provided by the
no-model LES (green curve). Even if slightly more dissipative, the
isotropic dynamic model is not able to recover the significant in-
crease in the dissipated energy of the DNS starting from t ' 7.
The anisotropic dynamic model (black curve) seems the one that
provides the better results in terms of dissipated energy: the initial
increasing in the DNS dissipated energy is quite well reproduced
even though also the anisotropic dynamic model underestimates the
energy dissipated in the DNS starting from t ' 7. The anisotropic
dynamic model curve seems the one closer to the DNS profile also
for t > 22.

Considering the Re = 6000 simulations (figure 18(b)), the be-
haviour of the Smagorinsky model (cyan curve) is always too dissi-
pative, especially if we consider times t > 14. The no-model LES
(green curve) and the LES obtained with the isotropic dynamic
model (blue curve) present results with larger di↵erences between
each other than in the Re = 3000 case. The isotropic dynamic model
presents a more dissipative behaviour with respect to the no model
case. Both the isotropic and the anisotropic dynamic model (black
curve) appear to provide the best results with a good reproduction
of the initial (t < 5) and final (t > 20) DNS dissipated energy pro-
file, even if they are not able to capture the behaviour of the DNS
dissipated energy for t 2 [5, 20].

As an additional diagnostic, we have also computed the tem-
poral evolution of the maximum and minimum values of the ratio
⌫sgs/⌫ between the subgrid-scale viscosity ⌫sgs and the molecular
viscosity ⌫ over the whole domain (see figure 19). Figure 19(a) cor-
responds to the Re = 3000 case, while figure 19(b) to Reynolds
Re = 6000. Solid lines correspond to the di↵erent viscosities related
to the anisotropic model (for a three-dimensional problem we have
six di↵erent components of the tensor of the subgrid viscosities, see
appendix A.3), the blue dotted line corresponds to the isotropic dy-
namic model, while the cyan dotted curve refers to the Smagorinsky
model. The anisotropic dynamic model provides the larger peak val-
ues, the isotropic dynamic model intermediate peak values while the
Smagorinsky model the lowest values. We can notice that greater
di↵erences are present between the peak values of the isotropic and
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Figure 18: Dissipated energy as a function of time. (a) Re = 3000. (b) Re =
6000.
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the ansotropic dynamic models in the Reynolds Re = 3000 case
(figure 19(a)), with respect to the Re = 6000 case. This probably
means that, in the Re = 6000 case (figure 19(b)), the flow has a
more isotropic character than in the Re = 3000 case. Notice that,
for both the Re = 3000 and the Re = 6000 case and especially for
the anisotropic dynamic model, the maximum values of the ratio
⌫sgs/⌫ tend to a constant value toward the end of the simulation.
This trend is evident also for the Smagorinsky and the dynamic
isotropic models even if larger amplitude oscillations are present.

A similar behaviour is obtained if we consider the minimum val-
ues of the ratio ⌫sgs/⌫ (figure 20): as for the maximum values, fig-
ure 20(a) refers to Re = 3000 while figure 20(b) to Re = 6000.
We have not reported the curve relative to the Smagorinsky model
since it presents peak values nearly equal to zero, because of the
fact that the Smagorinsky model is purely dissipative and does not
allow backscatter. The dynamic model (blue dotted curve) presents,
in absolute value, smaller negative peak values with respect to the
anisotropic model (solid curves). Also in this case, the di↵erence be-
tween the peak values provided by the isotropic and the anisotropic
dynamic models is greater in the Re = 3000 case. Even if the
Smagorinsky model appears to be more dissipative with respect to
the other LES models if we look at the density isosurfaces and at the
dissipated energy profiles, its subgrid viscosity peak values are lower.
The Smagorinsky model is, in some sense, less selective with respect
to the isotropic and anisotropic dynamic models and introduces a
smaller, but more distributed dissipation. This last statement can
be checked representing, at a fixed instant of time, the field of the
ratio ⌫sgs/⌫ for the di↵erent turbulence models. In figure 21, which
refers to the Re = 3000 simulation at t = 4, we represent in red the
portion of the mesh in which the ratio ⌫sgs/⌫ takes values greater
than 0.3 for the Smagorinsky model (figure 21(a)), the isotropic
dynamic model (figure 21(b)) and the anisotropic dynamic model
(figure 21(c)). Notice that for the anisotropic dynamic model the
22 component of ⌫sgs/⌫ is represented, while the other components
present similar patterns. If we compare the fields provided by the
Smagorinsky model and by the isotropic dynamic model, we can
easily see that the portion of the mesh, for which the condition
⌫sgs/⌫ > 0.3 is verified, is much smaller in the isotropic dynamic
model case. For the di↵erent components of ⌫sgs/⌫, when employ-
ing the anisotropic dynamic model, the condition ⌫sgs/⌫ is verified
for a greater portion of the mesh with respect to the isotropic dy-
namic model case. However, the overall dissipation is smaller than
in the Smagorinsky model case (see figure 18): this is due to the
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Figure 19: Maximum value over the whole domain of ⌫sgs/⌫, as a function of
time. (a) Re = 3000. (b) Re = 6000.
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Figure 20: Minimum value value over the whole domain of ⌫sgs/⌫, as a function
of time. (a) Re = 3000. (b) Re = 6000.
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presence of backscatter, which is absent in the Smagorinsky model
case. If we look at figure 22, where the part of the mesh in which
the condition ⌫sgs/⌫ < �0.3 is verified is represented in blue, we
can notice that for the anisotropic dynamic model (figure 22(b))
this condition is satisfied for a large portion of the mesh, indicating
that this model well reproduces the backscatter phenomenon in the
shear layer at the interface between the two densities. Notice that
the presence of consistent backscatter in shear layers has already
been highlighted for example in [31]. The isotropic dynamic model
(figure 22(a)) introduces much less backscatter with respect to the
anisotropic counterpart.

As in [30] and [29], we now perform a comparison between the
di↵erent LES models employing the Reference Potential Energy
(RPE), introduced at the beginning of the present section. In figure
23, we show the RPE profiles as a function of time, obtained with
the DNS and with di↵erent turbulence models. Figure 23(a) refers
to Re = 3000, while figure 23(b) to Re = 6000. In the Re = 3000
case, we can notice that the Smagorinsky model (cyan curve) has the
worst performance, with a significant overestimation of the reference
potential energy. The RPE obtained with no model (green curve)
and with the isotropic dynamic model (blue curve) are similar to
each other and also quite similar to the DNS RPE. The anisotropic
dynamic model (black curve) provides a slight underestimation of
the RPE profile.

If we consider the Re = 6000 case, we can notice that, after
an initial slight underestimation of the DNS RPE, starting from
t > 15, the RPE provided by the anisotropic dynamic model (black
curve) is very similar to the DNS RPE (red curve), while the RPEs
provided by the no-model (green curve) and the isotropic dynamic
model (blue curve) are very close and greater than the DNS RPE.
The introduction of the Smagorinsky model (cyan curve) leads to
a deterioration of the results in term of RPE with respect to the
no-model simulation, with an overestimation of the RPE.

Notice that the RPE results presented in figure 23, are ob-
tained plotting the RPE every non-dimensional time unit. If we
present the plot of the RPE, for example obtained with the no
model LES in the Re = 3000 case, representing the RPE every 0.1
non-dimensional time units, we can notice that small-period oscil-
lations appear (see figure 24). We can easily see that the period of
these oscillations is approximately equal to 1 non-dimensional time
unit. It can also be observed that the time employed by an acoustic
wave to cover the length of the domain from 0 to L and then back
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(a)

(b)

(c)

Figure 21: Portion of the domain (in red), on the plane y = 0.5, in which the con-
dition ⌫sgs/⌫ > 0.3 is satisfied for Re = 3000 at t = 4. (a) Smagorinsky model.
(b) Isotropic dynamic model. (c) Anisotropic dynamic model (component 22 of
⌫sgs/⌫).
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(a)

(b)

Figure 22: Portion of the domain (in blue), on the plane y = 0.5, in which
the condition ⌫sgs/⌫ < �0.3 is satisfied for Re = 3000 at t = 4. (a) Isotropic
dynamic model. (b) Anisotropic dynamic model (component 22 of ⌫sgs/⌫).
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Figure 23: Reference Potential Energy (RPE) as a function of time. (a) Re =
3000. (b) Re = 6000.
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Figure 24: RPE as a function of time for Re = 3000, obtained from the no
model LES sampling the solution each 0.1 non-dimensional time unit.

from L to 0 is given by:

T2L = 2LMa = 2L0.1 = 1, (24)

in non-dimensional time units. As a consequence, we believe that
the small period oscillations are caused by the fact that we are
considering slightly compressible simulations in which acoustic per-
turbations can be induced by the abrupt start of the lock exchange
test. Indeed, these small period oscillations are instead absent in the
incompressible simulations available in the literature. The acoustic
perturbations have probably an influence on the computation of the
probability density function P (⇢), employed in order to derive the
RPE. We believe however that the presence of these small-period
oscillations does not a↵ect the general behaviour of the RPE, so
that the comparison of the results obtained with di↵erent turbu-
lence models in terms of RPE is significant.

Concluding, the Smagorinsky model has the worst performance,
with respect to both the instantaneous fields and the more quantita-
tive diagnostics, as the dissipated energy and the RPE. Considering
the other turbulence models, no model is able to correctly repro-
duce the large increase in the dissipated energy which is present in
the DNS results. However, the anisotropic dynamic model is the
one that, in particular in the Re = 6000 case, appears to provide
the best results in terms of the dissipated energy. Concerning the
RPE, in the Re = 3000 case, the no-model and the isotropic dy-
namic model RPEs are quite similar and also similar to the DNS
one. The anisotropic dynamic model provides a slight underestima-
tion of the RPE in the Re = 3000 case and also at the beginning
of the Re = 6000 simulation, but it appears to give the best results,
especially in the Re = 6000 case, toward the end of the simulation.
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6 Conclusions and future perspectives

We have carried out three-dimensional simulations of non-Boussinesq
gravity currents in the lock-exchange configuration. First, three-
dimensional DNS in the non-Boussinesq regime were performed at
two di↵erent Reynolds numbers. In the LES experiments we have
employed the Smagorinsky model, the isotropic dynamic model and
the anisotropic dynamic model, together with a no model run. The
considered diagnostics (instantaneous density and Q-criterion fields,
time evolution of the dissipated energy and of the Reference Poten-
tial Energy) allow to confirm the fact that the Smagorinsky model is
too dissipative. Concerning the other models, the dynamic models
(isotropic and anisotropic) seem to provide the best results in terms
of dissipated energy and Reference Potential Energy, with slightly
better results provided by the anisotropic dynamic model.

Concerning the possible future developments, a first goal is the
implementation of new turbulence models for variable density flows,
based on the work [18] and on the preliminary a priori analysis
reported in [10], in the same configuration as employed for the LES
carried out here, in order to see if an improvement of the results can
be obtained with respect to the results obtained with the turbulence
models already tested.

From a more numerical point of view, we also plan to implement
a semi-implicit time integration scheme, following [21], [39] and [15],
in order to improve the computational e�ciency, in particular when
considering very low Mach number flows. In order to improve ef-
ficiency, we then plan to perform p�adaptive simulations following
[40], [39] and [38].

A Subgrid-scale models

All the subgrid models we describe are built on the Boussinesq hy-
pothesis [32], which a�rms that the energy transfer mechanism from
the resolved scales to the subgrid scales is analogous to the molec-
ular di↵usion phenomenon, represented by the di↵usion term. A
term which has the same mathematical structure as the molecular
di↵usion term is then introduced in the NS equations to model the
subgrid stress tensor. More precisely, similarly to the molecular vis-
cosity, which is related to the magnitude of the molecular di↵usion,
a subgrid-scale viscosity is introduced in order to set the magni-
tude of the energy transfer between the resolved and the unresolved
scales.
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A.1 The Smagorinsky model

In the Smagorinsky subgrid model, first introduced in [34], the de-
viatoric part of the subgrid stress tensor ⌧ij in (2) is modelled by a
scalar turbulent viscosity ⌫sgs:

⌧ij �
1

3
⌧kk�ij = �⇢⌫sgs eSd

ij , (25a)

⌫sgs = C2
S�

2| eS|, (25b)

where CS is the Smagorinsky constant (equal to 0.1 in the present

work), | eS|2 =
1

2
eSij

eSij and � is the filter scale. The isotropic part

of the subgrid stress tensor can be modelled as:

⌧kk = CI⇢�
2| eS|2. (26)

The subgrid temperature flux (4b) is set proportional to the resolved
temperature gradient:

Qsgs
i = � 1

Prsgs
⇢⌫sgs@i eT , (27)

where Prsgs is a subgrid Prandtl number. The term ⌧(ui, uk, uk) in
the subgrid turbulent di↵usion flux J sgs

j (4c) is neglected by analogy
with RANS leading to:

J sgs
i ⇡ 2euk⌧ik + eui⌧kk. (28)

A.2 The Germano dynamic model

In the Germano dynamic model [19], the terms CS and CI of the
Smagorinsky model are no more chosen a-priori for the whole do-
main, but are computed dynamically as functions of the resolved
field. The deviatoric part of the stress tensor is the same as in the
Smagorinsky model:

⌧ij �
1

3
⌧kk�ij = �⇢CS�

2| eS| eSd
ij . (29)

The coe�cient CS is dynamically computed by introducing a test
filter operator ·̂ associated to a spatial scale b� which is larger than
the spatial scale � related to the filter ·. A Favre filter (see equation
(1)), denoted with ·̆, is associated to the test filter through the
following Favre decomposition:

c⇢f = b⇢f̆ . (30)
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If the test filter ·̂ is applied to the momentum equation (2b) we
obtain:

@t (b⇢ŭi) + @j (b⇢ŭiŭj) + @ibp� @jb�ij = �@j (b⌧ij + Lij) , (31)

where
Lij = \⇢euieuj � b⇢ĕuiĕuj (32)

is the Leonard stress tensor. If we assume that the deviatoric part
of the term at the right-hand side of equation (31) can be modelled
using an eddy viscosity model and we employ a least square ap-
proach as described in [1], we obtain for the Smagorinsky constant
CS the following expression:

CS =
Ld
ijRij

RklRkl
, (33)

where Rkl =
\

⇢�2| eS| eSd
kl � b⇢b�2| ĕS| ĕSd

kl.
The same dynamic procedure is applied to the isotropic compo-

nent of the subgrid stress tensor:

⌧kk = CI⇢�
2| eS|2, (34)

where the CI coe�cient is determined by:

CI =
Lkk

b⇢b�2| ĕS|2 � \
⇢�2| eS|2

. (35)

A similar approach is proposed for the subgrid terms in the en-
ergy equation. The subgrid heat flux is defined as:

Qsgs
i = �⇢�2| eS|CQ@i eT . (36)

The coe�cient CQ in equation (36) is then obtained as:

CQ =
LQ
i R

Q
i

RQ
k R

Q
k

, (37)

with RQ
i = \

⇢�2| eS|@i eT �b⇢b�2| ĕS|@i ĕT and LQ
i = [

⇢eui eT �b⇢ĕui ĕT temper-
ature Leonard flux.

Concerning the subgrid turbulent di↵usion flux, the term ⌧(ui, uk, uk)
in equation (4c) is not neglected as in the Smagorinsky model but
a scale similarity model is assumed and this term is approximated
as a subgrid kinetic energy flux:

⌧(ui, uk, uk) ⇡ ⇢ûiukuk � ⇢eui]ukuk. (38)
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The subgrid kinetic energy flux in equation (38) ⌧(ui, uk, uk) is then
modeled as a function of the gradient of the resolved kinetic energy:

⌧(ui, uk, uk) = �⇢�2| eS|CJ@i

✓

1

2
eukeuk

◆

. (39)

Introducing the kinetic energy Leonard flux:

LJ
i = \⇢euieukeuk � b⇢ĕuiĕuk ĕuk, (40)

the value of the constant CJ is computed as:

CJ =
LJ
i RJ

i

RJ
kRJ

k

, (41)

where RJ
i = \

⇢�2| eS|@i
�

1
2eukeuk

�

� b⇢c�2| ĕS|@i
⇣

1
2 ĕuk ĕuk

⌘

. Considering

equations (4c) and (39), the final expression for the subgrid turbu-
lent di↵usion flux is:

J sgs
i = �⇢�2| eS|CJ@i

✓

1

2
eukeuk

◆

+ 2euk⌧ik + eui⌧kk, (42)

where CJ is given by equation (41). It is important to point out that
all the dynamic coe�cients are averaged over each element in order
to avoid numerical instabilities; moreover, since the dynamic model
allows backscattering, a clipping procedure is applied to ensure that
the total dissipation, resulting from both the viscous and the subgrid
stresses, is positive.

A.3 The anisotropic dynamic model

We describe here the anisotropic dynamic model introduced in [2]
and extended to the compressible flows case in [1]. The main char-
acteristic of this anisotropic model is that it overcomes the limi-
tation of the alignment between the subgrid flux tensors and the
corresponding gradients, introducing tensorial proportionality coef-
ficients between the two.

If we consider in particular the momentum equation, the subgrid
stress tensor ⌧ij is assumed to be proportional to the strain rate
tensor through a fourth order symmetric tensor as:

⌧ij = �⇢�2| eS|Bijrs
eSrs. (43)

The coe�cient Bijrs is dinamically computed following the proce-
dure described in [1]. Bijrs is rewritten as:

Bijrs =
3
X

↵,�=1

C↵�ai↵aj�ar↵as� , (44)
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where aij is a rotation tensor and C↵� is a second order symmetric
tensor. As in [1] we set aij = �ij and the following expression is
obtained for Cij :

Cij =
Lij

✓

\
⇢�2| eS| eSij � b⇢b�2| ĕS| ĕSij

◆ (45)

and
⌧ij = �⇢�2| eS|Cij eSij , (46)

where no summation over the repeated indices is employed in the
last formula.

As for the isotropic version of the dynamic model, the coe�-
cients Cij are averaged over each element and a clipping procedure
is applied in order to ensure that the total dissipation is positive.
Notice that, in the anisotropic version of the dynamic model, the
deviatoric and isotropic parts of ⌧ij are modeled together.

The dynamic procedure employed for the subgrid-scale stress in
the momentum equation is applied also for the subgrid terms in the
energy equation.

The subgrid heat flux is expressed as:

Qsgs
i = �⇢�2| eS|BQ

ir@r
eT , (47)

with BQ
ir symmetric tensor. If BQ

ir is diagonal, considering the ref-
erence frame defined by the tensor a, the following equation is ob-
tained:

BQ
ir =

3
X

↵=1

CQ
↵ ai↵ar↵. (48)

Notice that the coe�cients CQ
↵ can be computed via the dynamic

procedure as in [1], obtaining:

CQ
↵ =

ai↵LQ
i

ar↵

✓

\
⇢�2| eS|@r eT � b⇢b�2| ĕS|@r ĕT

◆ . (49)

The subgrid kinetic energy flux, given by equation (38), is modeled
as:

⌧(ui, uk, uk) = �⇢�2| eS|BJ
ir@r

✓

1

2
eukeuk

◆

, (50)

with:

BJ
ir =

3
X

↵=1

CJ
↵ai↵ar↵. (51)
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The coe�cient CJ
↵ is dinamically computed as:

CJ
↵ =

ai↵LJ
i

M↵
, (52)

where

M↵ = ar↵

 

\
⇢�2| eS|@r

✓

1

2
eukeuk

◆

� b⇢b�2| ĕS|@r
✓

1

2
ĕuk ĕuk

◆

!

. (53)

Finally the subgrid turbulent di↵usion flux takes the following form:

J sgs
i = �⇢�2| eS|BJ

ir@r

✓

1

2
eukeuk

◆

+ 2euk⌧ik + eui⌧kk. (54)

B Numerical method

The filtered Navier-Stokes equations are spatially discretized by the
Discontinuous Galerkin finite elements method. The DG approach
is analogous to that described in [22]. In particular the Local Dis-
continuous Galerkin (LDG) method is chosen for the approximation
of the second order viscous terms (see [3], [4], [7], [11]). The Navier-
Stokes equations (2) are rewritten in compact form and introducing
an auxiliary variable G, so that

@tU+r · Fc(U) = r · Fv(U,G)
� r · Fsgs(U,G) + S (55)

G � r' = 0,

where U = [⇢ , ⇢euT , ⇢ee]T are the prognostic variables, ' = [euT , eT ]T

are the variables whose gradients enter the viscous fluxes (3), as well
as the turbulent ones and S represents the source terms. The fluxes
in (55) are written in the following compact form:

F

c =
h

⇢eu, ⇢eu⌦ e

u+ pI, ⇢eheu
iT

,

F

v =
⇥

0, e�, euT
e� � e

q

⇤T
,

and

F

sgs =



0, ⌧,
1

(� � 1)Ma2
Q

sgs +
1

2
(Jsgs � ⌧kkeu)

�

,

S = [0, ⇢f , ⇢f · eu] .

Here, ⌧ , Qsgs and J

sgs are given by (25), (27) and (28), respectively,
for the Smagorinsky model, by (29), (36) and (42) for the isotropic
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dynamic model and by (46), (47) and (54) for the anisotropic dy-
namic model.

To define the space discretization, a tessellation Th of ⌦ into
tetrahedral elements K is introduced such that ⌦ =

S

K2Th K and
K \K 0 = ; and the finite element space is defined as:

Vh =
�

vh 2 L2(⌦) : vh|K 2 Pp(K), 8K 2 Th
 

, (56)

where p is a nonnegative integer and Pp(K) denotes the space of
polynomial functions of total degree at most p on K. For each
element, the outward unit normal on @K will be denoted by n@K .
Given d the spatial dimension of the problem, the numerical solution
is now defined as (Uh,Gh) 2 ( (Vh)(2+d) , (Vh)4⇥d ) such that, 8K 2
Th, 8vh 2 Vh, 8rh 2 (Vh)d,

d

dt

Z

K
Uhvh dx�

Z

K
F

c(Uh) ·rvh dx (57a)

+

Z

K
(Fv � F

sgs)(Uh,Gh) ·rvh dx (57b)

+

Z

@K
F

c,⇤(Uh,U
+
h ) · n@Kvh d� (57c)

�
Z

@K
(Fv � F

sgs)('⇤,G⇤) · n@Kvh d� =

Z

K
Svh dx,

Z

K
Gh · rh dx+

Z

K
'hr · rh dx (57d)

�
Z

@K
'⇤

n@K · rh d� = 0,

where Uh = [⇢h , ⇢huh , ⇢heh]
T is the DG approximation of the solu-

tion into the element K, 'h = [uh , Th]
T are the quantities for which

the gradient is computed, Fc,⇤ is the numerical flux associated to
the convective term, while '⇤ and G⇤ are the numerical fluxes for
'h and Gh. The numerical fluxes are responsible for the coupling
between elements. Notice that the symbols Uh and U

+
h , when ap-

pearing as arguments of the numerical flux functions, assume the
meaning described in the following. Consider the element K, the
edge e 2 K and a point ⇠ 2 e, we have:

Uh = Uh(⇠
int(K)) = lim

x!⇠,x2K
Uh(x), (58a)

U

+
h = Uh(⇠

ext(K)) = lim
x!⇠,x/2K

Uh(x). (58b)
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If only piecewise constant basis functions are considered, the
weak formulation given by equations (57) defines implicitly the stan-
dard low order Finite Volume approaches. From this viewpoint,
the Discontinuous Galerkin method can be seen as an extension
to arbitrary order of accuracy of the Finite Volume method and,
as a consequence, the well known exact and approximate Riemann
solvers developed in the Finite Volume context can be successfully
employed for the construction of the numerical flux F

c,⇤ associated
to the convective terms (see [36] for a comprehensive review of Rie-
mann solvers). We have employed the exact Godunov Riemann
solver implemented as in [23].

As already anticipated, the definition of the numerical flux for
the viscous and subgrid terms is realized by means of the Local
Discontinuous Galerkin (LDG) method. In particular we have ex-
tensively employed the method proposed in [4], obtaining:

G⇤ =
1

2

�

Gh + G+
h

�

,

'⇤ =
1

2

�

'h +'+
h

�

,

where the symbols have the same meaning as in equations (58).
Concerning the choice of the polynomial basis, on each element,

the unknowns are expressed in terms of an orthogonal basis, yielding
what is commonly called a modal DG formulation. All the integrals
in equations (57) are evaluated using quadrature formulae from [14],
which are exact for polynomial orders up to 2p. This results in
a diagonal mass matrix in the time derivative term of (57) and
simplifies the computation of L2 projections to be introduced in
connection with the LES filters.

Notice that the fact that the quadrature formula employed for
the numerical integration are exact for polynomial degrees up to 2p
guarantees the exact integration of the mass matrix. However, the
same quadrature rules are insu�cient for the exact integration of the
convective flux terms, which present more complex non-linearities.
This may lead, expecially for high polynomial degrees (p > 4), to
severe aliasing errors which tipically cause instabilities and crash-
ing of the computation due to the generation of strong unphysical
oscillations, which are the cause of the violation of the constitutive
laws [5]. Notice that, in [5], it is pointed out that, also in the case of
low order polynomial degrees (p  2) and mid range polynomial de-
grees, such as p = 3, for which stability is not a problem due to the
presence of su�cient numerical dissipation, which counteracts the
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aliasing e↵ect, the aliasing terms may negatively influence the so-
lution: the interaction between discretization, aliasing and subgrid
model dissipation gives indeed rise to inaccurate results.

A possible solution to the aliasing issue is the so called polyno-
mial de-aliasing, first introduced in [28]: the numerical quadrature
precision is increased such that the convective flux integrals can be
evaluated exactly with respect to the machine precision. Notice
that, as discussed in [5], the introduction of a de-aliasing proce-
dure is important because in this way the physically based turbu-
lence models can better carry out their role of modeling the missing
subgrid-scale physics and are not relegated to countering the nu-
merical instabilities arising from aliasing errors.

In the following the filter operators · andb·, introduced in section
2, will be explicitly defined in the context of the DG finite elements
method. In particular, following a VMS approach, filter operators
are identified with an L2 projection, as suggested e.g. in [12], [13],
[41] and [1]. Given a subspace V ⇢ L2(⌦), let ⇧V : L2(⌦) ! V be
the associated projector defined by

Z

⌦
⇧Vu v dx =

Z

⌦
u v dx, 8u, v 2 V,

where the integrals are evaluated with the same quadrature rule
used in (57). For v 2 L2(⌦), the filter · is now defined by

v = ⇧Vhv. (60)

Notice that the application of this filter is built in the discretization
process and equivalent to it. Therefore, once the discretization of
equations (55) has been performed, only · filtered quantities are
computed by the model. To define the test filter, we introduce

bVh =
n

vh 2 L2(⌦) : vh|K 2 Pbp(K), 8K 2 Th
o

, (61)

where 0  bp < p, and we let, for v 2 L2(⌦),

bv = ⇧bVh
v. (62)

By our previous identification of the · filter and the discretization,
the quantities ⇢, ⇢eu and ⇢ee can be identified with ⇢h, ⇢huh and ⇢heh,
respectively. Therefore they belong to Vh, for which an orthogonal
basis is employed by the numerical method. As a result, the com-
putation of c⇢h, [⇢huh and d⇢heh is straightforward and reduces to
zeroing the last coe�cients in the local expansion. Assuming that
the analytic solution is defined in some infinite dimensional subspace
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of L2, heuristically, Vh ⇢ L2 is associated to the scales which are
represented by the model, while bVh ⇢ Vh ⇢ L2 is associated to the
spatial scales well resolved by the numerical approximation.

The spatial scales � and b� associated with the two filters (60)
and (62) can be computed as:

� =

✓

�x�y�z

Np

◆1/3

, b� =

✓

�x�y�z

Nbp

◆1/3

, (63)

where Np and Nbp are the number of degrees of freedom per element
associated to the polynomial degrees p and bp, respectively and �x,
�y and �z are equivalent grid spacings computed as in equations
(13). The filter scales are, as a consequence, piecewise polynomial
functions in space.
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