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Abstract

This work presents a new high performance open-source numerical code,
namely SPEED (SPectral Elements in Elastodynamics with Discontinuous
Galerkin), to approach seismic wave propagation analysis in visco-elastic
heterogeneous three-dimensional media on both local and regional scale.
Based on non-conforming high-order techniques, like the Discontinuous
Galerkin spectral approximation, along with efficient and scalable algo-
rithms, the code allows one to deal with a non-uniform polynomial degree
distribution as well as a locally varying mesh size. Validation benchmarks
are illustrated to check the accuracy, stability and performance features of
the parallel kernel, while illustrative examples are discussed to highlight the
engineering applications of the method. The proposed method turns out
to be particularly useful for a variety of earthquake engineering problems,
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such as modeling of dynamic soil structure and site-city interaction effects,
where accounting for multi-scale wave propagation phenomena as well as
sharp discontinuities in mechanical properties of the media is crucial.

1 Introduction

Physics-based numerical modeling of the seismic response of arbitrarily complex
earth media has gained major relevance in recent years, owing, on one side, to
the ever-increasing progress in computational algorithms and resources, and, on
the other side, to the growing interest towards the development of deterministic
scenarios as input within seismic hazard and risk assessment studies. In the
last twenty years there has been an impressive progress worldwide towards the
development of high-order numerical methods for the simulation of seismic wave
propagation under realistic tectonic and geo-morphological conditions. Such an
advancement was boosted by several international benchmarks, regarding, for
instance, the 3D seismic response of the Los Angeles basin (see e.g. [19]), of the
Grenoble Valley (e.g. [12, 82]), and of the Euroseistest site (Cashima project,
https://www-cashima.cea.fr/), as well as by innovative approaches to seismic
hazard and risk assessment, such as in the CyberShake project (e.g. [33]) and
in the Great Southern California ShakeOut Exercise (www.shakeout.org, e.g.
[41, 7]). Furthermore, such a progress in numerical techniques has concerned
not only forward but also inverse modelling, as attested by the growing number
of applications in tomography of the Earth’s interior as well as in seismic source
inversion (e.g. [86, 68, 27]).
These examples testify the increasing need for certified numerical models apt to
include the coupled effects of the seismic source, the propagation path through
complex geological structures and localized superficial irregularities, such as allu-
vial basins or/and man-made infrastructures. However, accounting for all these
features within a single model still poses challenging demands on computational
methods and resources due to the coexistence of very different spatial scales,
from a few tens of kilometers, with reference to the seismic fault, up to a few
meters, or even less, when considering some structural elements. Motivated by
these considerations, this work aims at developing a certified, flexible and highly
accurate numerical software package for elastodynamics problems.

In the past twenty years, Spectral Element (SE) methods have emerged as
one of the most effective and powerful approaches for solving three-dimensional
seismic wave propagation problems in highly heterogeneous media (see, e.g., pio-
neering applications by [78, 25, 49]) owing to its capability of providing fast and
highly accurate solutions along with its native orientation towards high perfor-
mance parallel computing. The SE method, introduced firstly in fluid dynamics
[67, 59], can be related to the N -version of the Finite Element (FE) method
[5, 6]. The main idea behind SE method is that the finite dimensional space
is made by high order (piecewise) interpolants, i.e., the Lagrangian polynomi-
als, sampled at the Legendre-Gauss-Lobatto (LGL) quadrature points. This
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discretization technique retains the geometrical flexibility of low-order finite el-
ements while featuring the accuracy typical of spectral methods. Indeed, one
of the key points of the SE method is the capability of providing an arbitrarily
accurate numerical solution by simply enhancing the polynomial approximation
degree [14]. Moreover, since it is based on the weak formulation of the elas-
todynamics equations, it naturally handles both interface continuity and free
boundary conditions, ensuring the computation of accurate surface and inter-
face waves.

Flexible numerical strategies in elastodynamics codes are nowadays manda-
tory due to i) the intrinsic multi-scale nature of seismic wave propagation prob-
lems, involving a relative broad range of wavelengths, ii) the complexity of the
geometric constraints and iii) the difficulties of dealing with complex three di-
mensional heterogeneous media while keeping the computational effort low. For
this reason, a non-conforming discretization approach, such as the Discontinu-
ous Galerkin (DG) technique (see e.g. [3, 76, 38]), has been coupled with a SE
method, in order to further improve its capabilities. In their general formula-
tion, DGSE methods can deal with a nonuniform polynomial degree distribution
(N -adaptivity), as well as a locally varying mesh size (h-adaptivity).
The DG method was first introduced by Reed and Hill [73] in 1973 for neutron
transport equation. Since then, there has been a growing and active devel-
opment of DG discretizazions for a large set of problems, including parabolic
and elliptic linear or non-linear partial differential equations [16]. The first ap-
plication of DG technique to hyperbolic systems of equations come from the
nineteens [26, 39, 28], while more recently, the analysis of the DG method has
been extended to acoustic or elastic wave propagation, e.g. [13, 35, 63, 69, 74].

The first attempt to use the N -version of the DG approach for seismic wave
propagation problems in heterogeneous media can be found in [42]. In this work
the DG paradigm (in its flux formulation) is applied elementwise on conforming
tetrahedral meshes and it is combined with the so-called Cauchy-Kovalewski
approach to guarantee arbitrary high-order accuracy in both space and time
variables. Nevertheless, the uncontrolled proliferation of degrees of freedom
makes this approach computationally expensive: a local time stepping scheme
is then needed to enhance the computational efficiency and the performance of
the method [24].

A similar DG method is employed by [89] for the numerical solution of three-
dimensional wave propagation problems in coupled elastic-acoustic media, using
a velocity-strain formulation. In this work an explicit expression of the upwind
numerical flux is derived as an exact solution for the relevant Riemann problem
at elemental interfaces.

To overcome the drawbacks of the aforementioned approaches and to fully
exploit the capabilities of the SE method, in the framework of a joint research
activity between the Department of Structural Engineering and of Mathematics
of Politecnico di Milano, an improved non-conforming formulation has been pro-
posed and implemented in a new high performance open-source code, namely
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SPEED (Spectral Elements in Elastodynamics with Discontinuous Galerkin:
http://mox.polimi.it/it/progetti/speed/SPEED/Home.html). The code allows
one to perform simulation of seismic wave propagation in visco-elastic hetero-
geneous three dimensional media, by exploiting non-conforming grids and/or
variable approximation orders. With respect to the methods illustrated above,
the one presented herein is employed only at a subdomain level, thus minimiz-
ing significantly the computational cost per element (see critical discussion in
[22, 21, 20]). It is worth underlining that a similar approach has been already de-
veloped by [58, 57] for electromagnetic scattering problems. Nonetheless, in this
work coupling between different discretizations is made through mortar inter-
faces, whereas in our study a DG approach is used for glueing together different
subdomain discretizations. As it has been proven in [2], we recall herein that
the proposed formulation is stable, provides optimal approximation properties,
and yields low dispersion and dissipation errors.

In the first part of the paper we will focus on the model setting and the DGSE
formulation is presented in order to clarify the mathematical model implemented
in SPEED. In the second part a verification example will be illustrated to check
the correctness and accuracy of the simulation scheme and, subsequently, to
evaluate the performance features (efficiency and speed-up) of the parallel kernel.
Finally, some application examples will be presented to shed light on the main
advantages of the code and to testify its feasibility when dealing with challenging
issues, such as modeling of Dynamic Soil-Structure and Site-City interaction
effects. To the authors’ knowledge, understanding and quantifying these effects
in a fully coupled 3D numerical model is still at a research stage and has been
addressed only by a few studies [40, 84, 56]. Furthermore, the applications,
made possible by the improvements of the numerical scheme as well as of the
performance features of the code, represent a step further in promoting a novel
“from-the-seismic-source-to-the-structure” multi-scale computing approach for
seismic risk assessment.

2 Model problem and governing equations

In this section the fundamental equations of elastodynamics, as implemented in
SPEED, are described with emphasis on the non-conforming paradigm. For fur-
ther details, the reader is referred to [2]. Let us consider an elastic heterogeneous
medium occupying an open, bounded region Ω ⊂ R

3, with Lipschitz boundary
Γ := ∂Ω.
The boundary consists of the portions ΓD, where the displacement vector u is
prescribed, ΓN where external surface loads p apply, and ΓNR where suitable
non-reflecting boundary conditions are imposed (see e.g., [80]). We suppose that
ΓD, ΓN and ΓNR are disjoint, i.e. ΓD ∩ ΓN = ∅ and ΓN ∩ ΓNR = ∅ and either
ΓN or ΓNR can be empty.
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For a given displacement vector v, let σ(v) be the Cauchy stress tensor

σ(v) := λ(∇ · v)I + 2µε(v),

where ε(v) := 1/2(∇v +∇v⊤) is the strain tensor, I is the identity tensor and
λ, µ are the Lamè parameters. For a given density of body forces f , and a given
vector field p, we consider the linear elastodynamics system:

ρutt −∇ · σ(u) = f , in Ω× (0, T ], (1)

coupled with boundary conditions

u = 0 on ΓD, σ(u)n = p∗ on ΓN ∪ ΓNR, (2)

where n is the unit outward normal vector to Γ and p∗ := p on ΓN and

p∗ := ρ(VP − VS)(ut · n)n+ ρVSut on ΓNR. (3)

Here, VP :=
√

(λ+ 2µ)/ρ and VS :=
√

µ/ρ are the propagation velocities of P
and S waves, respectively. At the artificial model boundary ΓNR, waves travel-
ling out of the domain Ω need to be absorbed. However, the representation of
this (radiation) condition associated with the external boundaries is a delicate
issue, since, ideally, such boundaries should be able to propagate any incident
wave without reflections. In literature numerous numerical schemes have been
proposed (e.g., [29]). Here, we adopt a first order approximation (3) close to
the one proposed by Stacey [80] that is based upon a one-way treatment that
perfectly absorbs waves impinging at right angles to the boundary, but that is
less effective for waves that graze the boundary [15]. It should be mentioned that
the implementation in the code of more recent and efficient absorbing bound-
ary conditions, such as the Convolution Perfectly Matched Layer (CPML), is
expected to provide some improvements. As a matter of fact, CPMLs perform
much better than the paraxial conditions and can attenuate surface waves as
well as body waves with grazing incidence (for details see [60]).

Finally, to complete the system (1)–(3) we prescribe initial conditions u = u0

and ut = u1 for the displacement and the velocity field, respectively. We remark
that for heterogeneous media, ρ, λ and µ are bounded functions of the spatial
variable, not necessarily continuous, i.e., ρ, λ and µ ∈ L∞(Ω).
The main difficulty in the incorporation of visco-elasticity within time marching
codes relies in the implementation of a convolution process between stress and
strain, as required by a straightforward application of visco-elastic models in the
time domain. As an alternative, approximate techniques for modelling visco-
elastic media within the framework of discrete grid time domain schemes have
been proposed making use of a suitable modification of the equation of motion,
see e.g. [31]. This is the approach used in SPEED to account for spatially
varying visco-elastic materials, characterized by a suitable decay factor ξ [s−1],
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defined in the sequel. The governing equation (1) is then modified by introducing
two equivalent volume forces, leading to the following expression:

ρutt + 2ρξut + ρξ2u−∇ · σ(u) = f , in Ω× (0, T ]. (4)

It can be shown [53] that, with such replacement, all frequency components are
equally attenuated, resulting in a frequency proportional quality factor

Q = Q0
f

f0
,

where Q0 = πf0/ξ, with ξ being the decay factor and f0 a reference value
representative of the frequency range to be propagated.
Here and in the sequel we use the standard notation [1] to define the L2-inner
product for scalar, vector and tensor quantities, and the direct product of the
functional space X by itself will be denoted by X.

3 Discontinuous Galerkin spectral element discretiza-

tion

In this section we introduce the discontinuous Galerkin spectral formulation for
the problem (1)–(2). The non-conforming paradigm will be applied as in [2] at
a first (subdomain) level as explained in the sequel. For the sake of simplicity
we suppose Γ := ΓD ∪ ΓN . For the general case in which both viscous forces (4)
and absorbing boundary conditions (3) apply, we refer the reader to [61].

3.1 Non-conforming domain partitioning

The discretization approach as implemented in SPEED can be described as a
three-levels process.

1 Level. On a first level, the domain Ω is partitioned into R non-overlapping
polygonal subdomains, i.e. Ω =

⋃R
j=1Ωj, with sufficiently smooth boundary

Γj := ∂Ωj. This decomposition can be geometrically non-conforming, i.e., for
two adjacent subdomains Ωk, Ωi, the surface Λ := Γk∩Γi may not be a complete
side of either Ωk or Ωi (see Figure 1).

2 Level. On a second level, for each Ωk we define a conforming partition
Tk, such that Ωk =

⋃Rk

j=1Ω
j
k. The elements Ωj

k have typical linear size hk,

(hk = maxj h
j
k, with hjk = diam(Ωj

k)) and are obtained by mapping the ref-

erence cube Ω∗ = (−1, 1)3 with a suitable bilinear map F
j
k : Ω∗ → Ωj

k with

non-zero Jacobian Jjk. The global partition is then obtained as T =
⋃R

j=1 Tj and
must preserve the boundary decomposition introduced in (2). This second-level
partition is geometrically conforming in each Ωk, thus the intersection of two
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elements Ωj
k, Ω

i
k ∈ Ωk for j 6= i, is either empty, or a vertex, or an edge, or a

face of both Ωj
k and Ωi

k.

3 Level. The third level is represented by the so-called Legendre-Gauss-Lobatto
(LGL) points xi in each mesh element Ωi

k, see Figure 1. On the reference ele-
ment Ω∗, these points are defined as the tensor product of LGL points defined
in the interval [-1, 1], see [71]. Then, they are mapped on the physical element
Ωi
k by Fi

k.

Based on the aforementioned domain discretization we introduce in each Ωj
i

the space
QNi

(Ωj
i ) := {v = v∗ ◦ (Fj

i )
−1 : v∗ ∈ QNi

(Ω∗)},

where QNi
(Ω∗) is the space of vectorial functions defined over Ω∗ and such that

each component is an algebraic polynomial of degree less than or equal to Ni ≥ 1
in each space variable. We define the finite dimensional spaces

X(Ωi) := {v ∈ C0(Ωi) : v|Ωj
i
∈ QNi

(Ωj
i ), ∀Ω

j
i ∈ Ti},

and, finally,

Vδ(Ω) := {vδ ∈ L2(Ω) : vδ|Ωi
∈ X(Ωi), i = 1, ..., R : vδ|ΓD

= 0},

where δ := {h,N} with h := (h1, ..., hR) and N := (N1, ..., NR) are couplets of
discretization parameters. Each component hi and Ni represents the mesh size
and the degree of the polynomial interpolation in the region Ωi, respectively.
A nodal basis for Vδ is obtained introducing on each element Ωj

i the LGL points
and the corresponding degrees of freedom which allow to identify uniquely a
generic function in Vδ. In the spectral element approach the interpolation LGL-
points are used also as quadrature points; thus, we have

(f, g)
Ωj

i
≈ (f, g)

NI,Ωj
i
:=

(Ni+1)3
∑

k=1

(f ◦ Fj
i )(xk) · (g ◦ F

j
i )(xk)|det(J

j
i )|ωk, (5)

where ωk are the weights of the LGL quadrature formula [14] an NI stands for
numerical integration. The spectral shape functions Φi ∈ Vδ are defined such
that Φi(xj) = δij , i, j = 1, ..., (Ni + 1)3, where δij is the Kronecker symbol.
It is straightforward to see that by the definition of Vδ, the basis functions will
not be globally continuous on the whole domain and that the restriction of any
spectral function to Ωj

i either coincides with a Lagrange polynomial or vanishes.
Moreover, the support of any shape function is limited to the neighbouring
elements if the spectral node lies on the interface between two or more elements,
while it is limited to only one element for internal nodes.
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Figure 1: 3D example of non-conforming domain decomposition. The whole
domain is composed by different non-overlapping polygonal subdomains, made
by hexahedral elements. Highlighted are the boundary surfaces between different
subdomains. DG discretization allows to deal with a non-uniform polynomial
degree distribution (N−adaptivity, e.g., N1 = 2 in Ω1 and N2 = 3 in Ω2), as well
as a locally varying mesh size (h−adaptivity between sub-domains Ω1,Ω2,Ω3

and Ω4). The surface between two neighbouring sub-domains Ωk and Ωi, then
may not be a complete side of Ωk or Ωi (e.g. Λ and Λ′).

3.2 Discontinuous Galerkin weak formulation

In this section we present the variational formulation for the problem (1)–(2)
obtained using the Discontinuous Galerkin spectral element discretization de-
scribed in the previous paragraph.
We start defining an interior face as the non-empty interior of the intersection of
two neighbouring elements belonging to different subdomains. More precisely, let

Ωi
k ∈ Ωk and Ωj

m ∈ Ωm be two neighbouring elements, we set γℓ := ∂Ω
i
k ∩ ∂Ω

j
m,

where ℓ := ℓ(i, j, k,m). We express the skeleton S of the domain Ω as the union
of elementary components γℓ, more precisely, S :=

⋃M
ℓ=1 γℓ, for some positive

integer M . We remark that this decomposition is unique. For any pair of ad-
jacent elements Ωi

k and Ωj
m sharing a non-trivial edge γ, we denote by vi, σi

(resp. vj , σj) the restriction to Ωi
k (resp. Ωj

m) of regular enough functions v,

σ. We also denote by ni (resp. nj) the exterior unit normal to Ωi
k (resp. Ωj

m).
On each γ we define the average and jump operators for v, and σ as follows:

{v} :=
1

2
(vi + vj), [[v]] := vi ⊗ ni + vj ⊗ nj , (6)

and

{σ} :=
1

2
(σi + σ

j), [[σ]] := σ
ini + σ

jnj , (7)

where a⊗ b ∈ R
3×3 is the tensor with entries (a⊗ b)ij := aibj , 1 ≤ i, j ≤ 3, for

all a,b ∈ R
3. After multiplication of (1) by a test function v ∈ Vδ, integration
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by parts over each Ωj , for j = 1, ..., R, and using that

R
∑

k=1

(σ(u)n,v)∂Ωk\∂Ω
=

M
∑

ℓ=1

({σ(u)}, [[v]])γℓ + ([[σ(u)]], {v})γℓ ,

we deduce that:

(ρutt,v)Ω+(σ(u), ε(v))Ω−({σ(u)}, [[v]])S−([[σ(u)]], {v})S = (f ,v)Ω+(p,v)ΓN
.

Now, imposing the continuity of tractions across S, i.e. [[σ]] = 0, yields to:

(ρutt,v)Ω + (σ(u), ε(v))Ω − ({σ(u)}, [[v]])S = (f ,v)Ω + (p,v)ΓN
. (8)

Since also [[u]] = 0 across the boundary, we can add further terms in (8) that
penalize and control the jumps of the numerical solution across S, such as:

− ([[uδ ]], {σ(v)})S +

M
∑

ℓ=1

ηℓ ([[uδ ]], [[v]])γℓ , (9)

where ηℓ are positive constants depending on the discretization parameters h

and N and on the Lamé coefficients. The terms in (9) do not affect consistency
of the method and are added with the purpose of providing more generality and
better stability properties to the scheme (see [76, 74]). Hereinafter we set

ηℓ := α{λ+ 2µ}Ahℓ/N
2
ℓ (10)

where α is a positive constant at disposal, {q}A is the harmonic average of the
quantity q and Nℓ := max(Nk, Nm), hℓ := area(γℓ) if γℓ = ∂Ωi

k ∩ ∂Ωj
m.

Then, the semi-discrete DG formulation reads: for all t ∈ (0, T ] find uδ :=
uδ(t) ∈ Vδ such that:

(ρ∂ttuδ,v)Ω +A (uδ,v)Ω = (f ,v)Ω + (p,v)ΓN
∀v ∈ Vδ, (11)

where

A (u,v)Ω =

R
∑

k=1

(σ(u), ε(v))Ωk
+

M
∑

ℓ=1

[

ηγℓ ([[u]], [[v]])γℓ

− ({σ(u)}, [[v]])γℓ − ([[u]], {σ(v)})γℓ

]

. (12)

Equation (11) corresponds to the symmetric interior penalty Galerkin (SIPG)
method [3]. Other formulations (e.g., non-symmetric or incomplete) can be
obtained similarly (see [3, 76, 74, 75] for more details). We remark that problem
(11) is well posed and admits a unique solution uδ ∈ H2((0, T ],Vδ) provided
that the bilinear form A(·, ·) is continuous and coercive with respect a suitable
energy norm. Moreover the discrete solution uδ satisfies optimal error estimate
with respect to the mesh size, see [2] for more details.
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3.3 Algebraic formulation and time integration scheme

The description of the discretization technique is completed by the discussion of
the algebraic formulation of (11) and by the introduction of the time integration
scheme adopted in SPEED.
We start by introducing a basis {Φ1

i ,Φ
2
i ,Φ

3
i }

D
i=1, for the finite dimensional space

Vδ, where D represents the degrees of freedom of the problem and Φ1
i :=

(Φi, 0, 0)
⊤, Φ2

i := (0,Φi, 0)
⊤ and Φ3

i := (0, 0,Φi)
⊤. Omitting the subscript

δ, we write the discrete function u ∈ Vδ as

u(x, t) :=
D
∑

j=1

Φ1
j (x)U

1
j (t) +Φ2

j (x)U
2
j (t) +Φ3

j (x)U
3
j (t).

Then, using the above expression, we recast equation (11) for any test function
Φℓ

i(x) ∈ Vδ, for ℓ = 1, ..., 3, obtaining the following set of discrete ordinary
differential equations for the nodal displacement U := [U1,U2,U3]⊤;

MÜ+AU = F, (13)

where Ü represents the vector of nodal acceleration and F the vector of externally
applied loads:

F := [F1,F2,F3]⊤, Fℓ
i := (f ,Φℓ

i)NI,Ω + (p,Φℓ
i)NI,ΓN

, for i = 1, ...D.

Rewriting equation (13) component-wise we have that





M1 0 0
0 M2 0
0 0 M3









Ü1

Ü2

Ü3



+





A11 A12 A13

A21 A22 A23

A31 A32 A33









U1

U2

U3



 =





F1

F2

F3



 ,

and as a consequence of assumptions on the basis functions given in section 3.1,
and by means of (5) we have that the mass matrix M has a diagonal structure
with elements

M ℓ
ij := (ρΦℓ

j,Φ
ℓ
i)NI,Ω for i, j = 1, ...,D, and ℓ = 1, ..., 3,

while the matrix A associated to the bilinear form A(·, ·) defined in (12) is such
that for i, j = 1, ...,D it holds

Aℓk
ij := A(Φℓ

j,Φ
k
i )NI,Ω for k, ℓ = 1, .., 3.

Now, we define V := U̇ the vector of nodal velocities, we prescribe initial con-
ditions U(0) = u0 and V(0) = u1 and we consider the system (13). Let us now
subdivide the interval (0, T ] into N subintervals of amplitude ∆t = T/N and set
tn = n∆t, for n = 1, ..., N .
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The Newmark method, see e.g. [72], applied to (13) consists in finding the
approximations {U(tn)}n to u(tn) such that for n ≥ 2,

[M +∆t2βA]U(tn+1) =

[

2M −∆t2(
1

2
− 2β + ϑ)A

]

U(tn)

− [M +∆t2(
1

2
+ β − ϑ)]U(tn−1)

+ ∆t2[βF(tn+1) + (
1

2
− 2β + ϑ)F(tn) + (

1

2
+ β − ϑ)F(tn−1)],

(14)

with

[M +∆t2βA]U(t1) =

[

M −∆t2(
1

2
− β)A

]

U(t0)

−∆tMV(t0) + ∆t2[βF(t1) + (
1

2
− β)F(t0)]. (15)

Notice that, at each time step tn+1 the solution of (15) can be obtained provided
U(tn) and U(tn−1) are known. Here, β ≥ 0 and ϑ ≥ 1

2 are parameters to be
chosen. We recall that for ϑ = 1

2 the Newmark scheme is second order accurate
in time, whereas it is only first order accurate for ϑ > 1

2 . For β = 0 the Newmark
scheme (15)-(14) requires at each time step the solution of a linear system with
the mass matrix M . However because M is diagonal it can be inverted at very
low computational cost and the scheme is essentially fully explicit. With ϑ = 1

2 ,
the explicit Newmark method corresponds to the standard leap-frog scheme

MU(tn+1) =
[

2M −∆t2A
]

U(tn)−MU(tn−1) + ∆t2F(tn), (16)

for n = 1, ..., N , with

MU(t1) =

[

M −
∆t2

2
A

]

U(t0)−∆tMV(t0) +
∆t2

2
F(t0).

We remark that the above scheme is stable if the time step ∆t satisfies a Courant-
Friedrichs-Lewy (CFL) condition ∆t ≤ CCFL∆x/VP , where ∆x is the shortest
distance between two LGL nodes and CCFL is a constant depending on the di-
mension, the order of the scheme, the mesh geometry and the polynomial degree.
Since ∆x ≈ N−2 (see [14]) it follows that CCFL ≈ N−2. The grid dispersion
and dissipation properties of the leap-frog method coupled with DG discretiza-
tion has been analysed in [2, 61], in particular it is shown that, heuristically,
5 points per wavelength are sufficient for providing negligible errors (less that
10−6). This makes the proposed scheme well suited for the approximation of
wave propagation problems as we are going to show in the next section.
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4 Engineering problems of seismic wave propagation
through the Discontinuous Galerkin approach

Non-conforming approaches, as the one described in the previous chapter, turn
out to be particularly useful in engineering problems of seismic wave propagation,
whenever complex geometries or sharp discontinuities of mechanical properties of
the media are to be accounted for. As a matter of fact, the computational burden
necessary to encompass within a single numerical model the intrinsic multi-scale
nature of seismic wave propagation problems, from the far-field to the near-field
and from the near-field to the soil-structure and site-city interaction effects, with
characteristic size of the elements varying from several kilometers to few meters,
has long limited the development of proper computational models.
The aim of this section is two-fold. On one side, verification tests, for both con-
forming and non-conforming meshes, are illustrated to check the correctness and
accuracy of the code. Furthermore, additional tests were performed to examine
the performance features, i.e., efficiency and speed-up, of the parallel kernel.
On the other hand, some challenging applications are presented to highlight the
main features of the code and its capabilities in tackling a variety of seismic
engineering problems.
In particular, two case studies are shown: first, the simulation of a dynamic soil-
structure interaction problem, with reference to the Acquasanta railway viaduct,
located in the neighbourhood of Genoa, NW Italy; second, the study of site-city
interaction effects in the Central Business District of Christchurch, during the de-
structive 22 February 2011 MW 6.3 earthquake. Both applications were selected
as representative benchmarks owing to the complexity of the mesh generation
and to the coexistence of very different spatial scales that characterize the fully
coupled dynamic problem.
The numerical models shown in the next sections have been created using the
commercial software CUBIT (http://cubit.sandia.gov/), that features a set of
advanced meshing algorithms suitable for handling 3D unstructured hexahedral
decomposition. Nonetheless, SPEED has been designed to handle any hexahe-
dral meshes, independently from the specific mesh generator. The resulting mod-
els usually reach a global number of several millions of degrees of freedom, requir-
ing a huge level of parallelization, so that the simulations need to be performed
at High-Performance Computing (HPC) Centers. Here, the Lagrange cluster
located at the HPC Center CINECA-CILEA (http://www.cilea.it/1/) was used
to perform the numerical simulations shown in this work. We remark that the
parallel kernel of SPEED, in the version presented here, is based upon the MPI
paradigm for managing communications between single processors, while recent
improvements of the code have led to a hybrid OpenMP-MPI programming for
boosting the performances. This latter release has been optimized on the Fermi
cluster at CINECA computing centre (http://www.cineca.it/en). It is worth
noting that in recent years there has been an increasing interest of the HPC
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Figure 2: Left hand side: LOH Benchmark test, only one of the four symmet-
ric quadrants is shown, the source (yellow star) is located at 2 km depth and
different colors mean different mechanical characteristics; in red the receiver
considered. Right hand side: moment rate function for the validation-test.

Table 1: Dynamic and mechanical parameters for the layer (L) and the halfspace
(HS) of the LOH test.

Layer Depth [m] Vp [m/s] VS [m/s] ρ [Kg/m3]

L 0-1000 4000 2000 2600
HS 1000-17000 6000 3464 2700

community towards graphic card computing (GPU) not only as a viable architec-
ture for general purpose computations but also as high performance approach for
massive parallel computations. Moreover, this programming paradigm has been
applied successfully for simulating seismic wave propagation (see e.g. [45, 46, 47]
and references therein for further details).

4.1 Verification, efficiency and speed up

As a verification test of SPEED, the benchmark [18] was considered. The prob-
lem, depicted in Figure 2, is known in literature with the acronym LOH (Layer
Over Halfspace) and it is currently a reference benchmark for different advanced
numerical codes for seismic wave propagation (see e.g., [43, 82]). The compu-
tational domain is Ω = [(−15, 15) × (−15, 15) × (17, 0)] km, with the top layer
having thickness 1 km. The characteristics of the materials are synthesized in
Table 1.

The seismic source (see [25] for implementation issues) is given by a point double
couple located at the center of the model:

f(x) = ∇δ(x− xS)M(t), (17)
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Figure 3: LOH conforming model, having size of 30 × 30 × 17 km: (Top) con-
forming mesh with 814.833 hexahedral elements, varying from size of 100 m,
in the first quadrant, to 300 m in the remaining part of the domain; (Bottom)
non-conforming model with 70.228 hexahedral elements, having size of around
400 m in the upper layer (1 km thickness) and size of around 650 m in the lower
layer (16 km thickness).

Table 2: Main characteristics of the conforming and non-conforming numerical
models for the LOH test, with the main parameters of the analysis performed
at Lagrange cluster, located at CILEA.

Mesh Elements N LGL ∆t Cores Set up Total time
nodes [h] [h]

Conforming 814833 4 52.6 106 3 10−4 (20% CFL) 128 ≈ 0.42 ≈ 3.04
Non-conforming 70228 5 9.0 106 5 10−4 ( 7% CFL) 128 ≈ 0.58 ≈ 3.53

where xS = (0, 0, 2) km. The moment rate time variation M(t), shown in
Figure 2, is given by the following expression:

M(t) = M0(t/t
2
0) exp(−t/t0), (18)

where M0 is the scalar seismic moment, equal to 108 Nm, t0 is the “smoothness”
parameter, controlling the frequency content and amplitude of the source time
function, and t0 = 0.1 s. Further details on the problem setting as well as on
the source time function can be found in [18], together with the expression of
the semi-analytic solution. In this case two different models were considered and
implemented in SPEED, the first one relying on a conforming spectral element
discretization (Figure 3 top) and the second one using the DGSE approach
described earlier (Figure 3 bottom). The characteristics of the numerical models
and the main parameters of the analysis are listed in Table 2.
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We report in Figure 4 the velocity wave field recorded at point (6, 8, 0) km (see
Figure 2) on the top layer along with the reference solution (see [18]). In each
plot, we also report the relative seismogram misfit:

E =

∑ns

i=1 (uδ(ti)− u(ti))
2

∑ns

i=1 u(ti)
2

(19)

where ns is the number of time samples of the seismogram, uδ(ti) is the numerical
value of the seismogram at sample ti, and u(ti) is the corresponding reference
value. The maximum relative misfit with respect to the reference solution is less
than 1% for the conforming model and around 2% for the non-conforming one.
It is important to underline that the non conforming model has a sensibly lower
number of elements, nonetheless the accuracy of the solution is preserved (see
Figure 4). These results are promising, especially compared to those available
in literature (see e.g., [82, 43]). Further improvements of the results can be
achieved, for instance, choosing higher order polynomial degrees.
With reference to the two different models, represented in Figure 3, several
tests have been performed on the Lagrange cluster, by varying the number of
cores adopted for the computation, to evaluate the performance of the parallel
algorithm, in terms of efficiency and speed-up. The results, as histograms, are
plotted in Figure 5 against the ideal behaviour, considering the total computing
time.
The behaviour of the parallel kernel with 32 cores has been taken as the reference
solution, therefore, in this case, both efficiency and speed-up values are equal
to the ideal case. The efficiency and speed-up as a function of the number of
cores, varying form 64 to 512, point out the good performances of SPEED. For
instance, considering 512 cores, the efficiency is around 90% and 70% of the ideal
efficiency for the conforming and non-conforming model, respectively. A similar
performance can be observed also in terms of speed-up.

4.2 The Acquasanta Railway Bridge

As a first engineering application, a soil-structure interaction problem, concern-
ing the seismic response of the Acquasanta bridge, located on the Genoa-Ovada
railway, NW Italy, in the Genoa district, is considered. The structure is a typical
arch-bridge and it is remarkable both for the site features and the local geological
and geomorphological conditions. The foundations of several piers, indeed, rest
on weak rock and, moreover, some instability problems have been detected in
the past on the valley slope westward, towards Ovada, [79]. A detailed descrip-
tion of the structural characteristics of the bridge as well as of the geological
setting (see Table 3) can be found in [81]. A 3D numerical model was created
encompassing both the seismic source, the surrounding geological model and the
Acquasanta bridge.

15



Figure 4: Velocity field recorded at (6, 8, 0) km. Comparison in the Time
and Frequency domain between the semi-analytic solution (black line) and
the numerical one (coloured line). Relative misfit computed according with
equation (19) and, for the signal along x axis, with [54], (FEM : Frequency-
dependent envelope misfit; TEM : Time-dependent envelope misfit; TFEM :
Time-Frequency envelope misfit; FPM : Frequency-dependent phase misfit;
TPM : Time-dependent phase misfit; TFPM : Time-Frequency phase misfit.
Percentage values.). Left hand side: conforming model; Right hand side: non-
conforming model.
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Figure 5: Performance of the parallel algorithm implemented in SPEED, in
terms of efficiency and speed-up (total time), with reference to the conforming
and non-conforming models (see Figure 3).

Table 3: Mechanical characteristics of the geological configuration, surrounding
the Acquasanta bridge (see Figure 6).

VP [m/s] VS [m/s] ρ [kg/m3] Q

1100 635 2.400 125
Serpentino Jurassic | | | |

2300 1330 2800 150

1800 1200 2500 150
Calcescisti Jurassic | | | |

2300 1330 2800 150

Alluvial Deposits 300 173 1925 25
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As shown in Figure 6 and Figure 7, the considered problem, including both
the structure and its surrounding area, involves very different spatial scales, from
that of the geological model (hundreds of meters) to that of the bridge details
(tens of centimeters). Two different meshes were constructed, one relying on a
classical conforming spectral element approach, and another one using the non-
conforming approach previously described. In particular, the need to accomplish
the complex geometry of the Acquasanta viaduct and of the surrounding allu-
vial deposits as well implied, in the conforming approach, the adoption of a huge
number of deformed elements up to the bottom of the model. Using a standard
conforming mesh, indeed, such a multi-scale description can be obtained only
through subsequent refinements, yielding a significant increase of the number of
elements, a worsening of their quality and therefore the growth of the computa-
tional burden of the problem.

On the other hand, the non-conforming strategy enables significant advan-
tages, namely:
i) varying the mesh size and scheme (h-adaptivity) between the deep and out-
cropping rock layer, in order to drastically reduce the number of elements in
that part of the model, as clearly showed in the top row of Figure 7.
ii) varying the polynomial approximation degree (N-adaptivity) between the
surface rock and the alluvial deposits, from N = 4 to N = 3, as sketched in the
middle zoom of bottom row of Figure 6. In this way it is possible to reduce the
number of unknowns of the problems, keeping the average element size of the
elements inside the alluvial deposits smaller than those at outcropping bedrock.
iii) varying both the mesh size and the polynomial approximation degree (h-
and N-adaptivity) between the bridge and the rest of the model, as highlighted
in the zooms of bottom row of Figure 6. In this case the structural elements of
the viaduct are described by a larger number of elements, while the adoption of
N = 2, instead of N = 3 (in the alluvial deposits) or N = 4 (at outcropping
bedrock), does not increase excessively the computational costs of the analysis.
It is worth remarking that, apart from the meshing strategy, there are no differ-
ences between the two numerical models in terms of model extension (2×1.75×
0.86 km), mechanical properties (Table 3) and seismic source. As regards the
latter, a point double couple at 540 m depth was considered. As highlighted
in Figure 6, the use of the non-conforming approach has allowed us to tailor
the spatial discretization (h-adaptivity) and/or the local polynomial degree (N-
adaptivity) to the different elements involved in a complex DSSI problem. This
results in a non-conforming model having approximately the half of the elements
of the conforming model. Furthermore, the hexahedral elements are character-
ized by a significant improvement of the quality metric (see Figure 7), and likely
of the numerical solution.
Figure 8 shows a quantitative comparison between the velocity time-history ob-
tained with the conforming and non-conforming models at a point located on the
deck of the bridge (Receiver R in Figure 6), according to time-frequency misfit
criteria proposed by [54]. An excellent agreement is found between the two solu-
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Figure 6: Progressive zoom of 3D models of Acquasanta bridge and the sur-
rounding geological configuration. Left hand side: Conforming mesh in which
different colors identify materials with different mechanical properties (see Ta-
ble 3). Right hand side: Non-conforming mesh, in which different colors identify
different sub-domains (h- and N- adaptivity), independently meshed and then
combined. Letter R denotes the location of the receiver adopted in the analysis.
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Figure 7: Transversal section of the two 3D models with zoom on the Acquasanta
bridge. The non-conforming mesh (right hand side) is characterized by a lower
number of hexahedra with a better level of quality metrics, here represented
as a function of the scaled Jacobian of the element (with 1 meaning excellent
quality).

tions confirming that the non-conforming approach preserves, or even improves,
the accuracy of the solution. Some representative results of the numerical sim-
ulation are depicted in Figure 9 in terms of snapshots of the displacement of
the Acquasanta bridge. It is possible to observe, through the snapshots, the
movement of the deck and piers of the bridge.

4.3 The Christchurch Central Business District (CBD)

The second application of SPEED focuses on the simulation of the seismic re-
sponse of the Central Business District (CBD), social and economic heart of
the city of Christchurch, heavily damaged during the MW 6.2 earthquake of 22
February 2011, characterized by a high density of tall buildings.
Between September 2010 and December 2011 the Canterbury Plains and, in
particular, the city of Christchurch, in the South Island of New Zealand, experi-
enced four major earthquakes, having MW greater than 6.0 and a huge number
of aftershocks [30]. On 22 February 2011, the most damaging and deadliest event
of the seismic sequence, a MW 6.2 earthquake, struck the city and the suburbs of
Christchurch, causing extensive destruction and more than 180 victims. Beyond
the causes and consequences of the event, different aspects drew the attention
of the scientific community on this particular earthquake. Among them it is
worth to emphasize: (i) the extremely severe strong ground-shaking observed
[8], (ii) the widespread liquefaction phenomena across the city [17], and (iii) the
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Figure 8: Time-frequency misfit according to [54] between the velocity time his-
tory obtained with the conforming and non-conforming models at the pointR lo-
cated on the deck of the bridge (see Figure 6). FEM: Frequency-dependent enve-
lope misfit; TEM: Time-dependent envelope misfit; TFEM: Time-Frequency en-
velope misfit; FPM: Frequency-dependent phase misfit; TPM: Time-dependent
phase misfit; TFPM: Time-Frequency phase misfit.

Figure 9: Snapshots (t = 0.3, 0.6 and 0.9 s, from left to right) of the simu-
lated displacement of the Acquasanta viaduct. Displacements are considered in
their absolute values. An amplification factor has been adopted for visualization
purpose.
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absence of evidence of the system of faults that generated the Canterbury seis-
mic sequence, prior to the September 2010 MW 7.1 Darfield event [34].
The main purpose of the application shown herein is the numerical evaluation,
by a fully coupled approach, of seismic wave propagation effects from the earth-
quake source, to the local geological features, up to the densely urbanized area
of Christchurch. In particular, a 3D model, encompassing both the regional
and local urban scale, was constructed to study the wave passage effects on
pounding-prone compounds of buildings as well as the influence of a densely
urbanized area on the spatial variability of strong ground motion, and on the
observed variability of damage in apparently homogeneous areas. In fact, a
densely urbanized area located in an alluvial basin could affect the seismic wave
field, both in a passive way, as the buildings and their foundations are obstacles
to the seismic wave front, and in an active way, behaving like an extended surface
source area, consisting of closely spaced sources of translational and rotational
motions [85, 77, 83].
In this application, we exploit the non-conforming techniques, integrating the
numerical model of the Canterbury Plains (see [36]) with a realistic inventory of
buildings, namely, a set of around 150 buildings within the Christchurch CBD,
as illustrated in Figure 10. As a starting point, the real configuration of the CBD
has been considered, taking information on height and floor-plan dimensions of
the buildings within an area having a dimension of about 1 km × 1 km. Also
the foundations, for an average depth of 10 m, and the surrounding soil, for a
depth of 50 m, have been taken into account. Assuming a mesh size of around
5 m, the CBD is described by a number of about 500000 hexahedral elements.
The numerical mesh of the CBD has been successively included into the model of
the Canterbury Plains, the latter having a global extension size 60 km×60 km×
20 km and a number of around 500000 hexahedral elements with maximum size,
at bedrock, of around 1.500 m, be enabling the contact between elements hav-
ing, on one side, size of around 5 m (CBD model) and, on the other side, 50 m
(Canterbury Plains), see Figure 10.
The resulting model reaches therefore a global number of hexahedral elements of
more than one million. The buildings, modeled as homogeneous blocks, could be
considered as shear beams, as recalled by different authors [85, 83]. According
to [83], the following relation between VS and the interstory height HS can be
obtained:

VS = 28HS . (20)

Considering a typical interstory height of around 4 m, a value of VS equal
100 m/s was adopted for the building material. A larger value of VS , equal
to 400 m/s, was adopted for the foundations, while VP = 2.5VS was considered.
The density and the quality factor Q of the buildings is equal to 300 kg/m3 and
10, respectively. The latter, corresponds to a critical damping ratio ξ = 0.05.
These values are in agreement with values adopted in other 2D studies (e.g.
[90, 87]).
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Figure 10: Peak Ground Velocity (PGV) along two representative directions
across the CBD, namely West-East (W-E) and South-North (S-N), with (red
line) or without (black line) the presence of the cluster of buildings. The distance
between adjacent receivers is equal to 7.5 m. The multi-scale problem has been
addressed through a non-conforming approach sketched in the top row, while the
seismic source model has been adapted from a press release by the GNS (New
Zealand Institute of Geological and Nuclear Sciences).
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In order to evaluate the effect of the densely urbanized area of the CBD on the
propagation of seismic waves, Figure 10 shows the Peak Ground Velocity (PGV )
values, computed along two directions across the CBD, namely South-North (S-
N) and East-West (E-W), with and without the presence of the buildings. It
is noted that constructive and destructive interference between the building-
foundation system and the surrounding soil may either reduce or amplify the
ground motion, increasing the spatial variability of the surface response within
the CBD. Looking at the variability of surface earthquake ground motion, it
is worth noting the active role played by the buildings cluster, in substantial
agreement with the words of Trifunac [85]: this urban setting of buildings indeed
is not merely an obstacle to the wave propagation field, but plays an active role,
acting as an “extended surface source area consisting of a large number of closely
spaced sources of translational and rotational motions”.
To shed light on the issues regarding SCI effects, Figure 11 reports some snap-
shots of the simulated displacement wavefield, with particular reference to re-
sponse of the CBD buildings. In this example, SCI turns out to produce scat-
tering and focusing effects, increasing the ground motion variability within the
CBD area, at a very small scale, and, hence, the consequent rotational motions
at the base of the buildings themselves. Furthermore, these snapshots point out
that pounding effects, related to the different vibration modes of the nearby
buildings, are realistically reproduced by the numerical simulations.

5 Concluding remarks

In this work a new high performance spectral element code has been presented,
namely SPEED (SPectral elements in elastodynamics with Discontinous Galerkin)
to approach the 3D modeling of complex seismic scenarios. Relying on non-
conforming high order spectral elements, suitable for handling non-matching
grids as well as variable approximation orders, the code has been proved to
be capable of accommodating sharp discontinuities or difficult geometrical con-
straints in an extremely efficient and versatile way. This capability turns out to
be extremely useful in a variety of practical seismic engineering wave propaga-
tion problems. After checking the accuracy of the proposed technique through
a classical benchmark, a couple of challenging engineering applications has been
presented. The seismic response of a railway viaduct under complex geotechnical
setting is a meaningful example of how SPEED could easily deal with advances
dynamic soil structure interaction (DSSI) problems. The second case study could
be considered even more challenging, aiming at studying the seismic response
of the central business district (CBD) of Christchurch, located in the alluvial
plain of Canterbury in New Zealand. The recent seismic sequence, started with
the Darfield earthquake in September 2010 and endured several months, caused
more than 180 casualties and devastated the entire region. We focused on the
most devastating event of the whole sequence, namely the Lyttleton event (22
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Figure 11: Snapshots (t = 6, 8, 10 and 12 s, from top to bottom) of the simulated
displacement of the buildings of the CBD, with zoom on significant structures
or compounds. Displacements are considered in their absolute values. On the
ground, between buildings, is visible the displacement wave-field. An amplifica-
tion factor has been adopted for visualization purpose.
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February 2011), simulating the kinematic rupture along the fault and studying
the wave propagation through the complex deep soft sediments up to the high
and middle rise buildings located inside the CBD of Christchurch.
Both these application examples showed that SPEED may enable great ad-
vantages for modeling complex multi-scale seismic scenario, by relaxing certain
constraints imposed by standard conforming SE methods and, therefore, reduc-
ing the efforts devoted to the mesh creation preserving, however the accuracy of
spectral approximations.
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pazzini M., Kristekova M. 2010. Quantitative comparison of four numerical
predictions of 3D ground motion in the Grenoble valley, France. Bulletin of
the Seismological Society of America, 100(4): 1427–1455.

[13] Chung E.T., Engquist B. 2006. Optimal discontinuous Galerkin methods for
wave propagation. SIAM Journal on Numerical Analysis, 44: 2131–2158.

[14] Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. 2006. Spectral methods
- Fundamentals in single domains. Springer-Verlag.

[15] Clayton R., Engquist B. 1977. Absorbing boundary conditions for acoustic
and elastic wave equations. Bulletin of the Seismological Society of America,
67: 1529–1540.

[16] Cockburn B., Karniadakis G.E., Shu C.W. 2000. Discontinuous Galerkin
Methods: Theory, Computation and Applications. Springer-Verlag.

[17] Cubrinovski M., Bray J.D., Taylor M., Giorgini S., Bradley B., Wother-
spoon L., Zupan J. 2011. Soil liquefaction effects in the central business
district during the February 2011 Christchurch earthquake. Seismological Re-
search Letters, 82(6): 893–904.

27



[18] Day S.M., Bradley C.R. 2001. Memory-efficient simulation of anelastic wave
propagation. Bulletin of the Seismological Society of America, 91(3): 520–
531.

[19] Day S.M., Graves R., Bielak J., Dreger D., Larsen S., Olsen K.B.,
Pitarka A., Ramirez-Guzman L. 2008. Model for Basin Effects on Long-
Period Response Spectra in Southern California. Earthquake Spectra, 24(1):
257–277.

[20] De Basabe J.D., Sen M.K. 2010. Stability of the highorder finite elements
for acoustic or elastic wave propagation with high order time stepping. Geo-
physical Journal International, 181(1): 577–590.

[21] De Basabe J.D., Sen M.K., Wheeler M.F. 2008. The interior penalty dis-
continuous Galerkin method for elastic wave propagation: grid dispersion.
Geophysical Journal International, 175(1): 83–93.

[22] De Basabe J.D., Sen M.K. 2007. Grid dispersion and stability criteria of
some common finite element methods for acoustic and elastic wave equations.
Geophysics, 72(6): T81– T95.
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