
MOX-Report No. 23/2017

Computational models for hemodynamics

Quarteroni, A.; Vergara, C.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Computational models for hemodynamics∗

Alfio Quarteroni1,2, Christian Vergara2

May 18, 2017

1 Chair of Modelling and Scientific Computing, École Polytechnique Fédérale de
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1 Synonyms

Mathematical modeling of the cardiovascular system.

2 Definitions

Mathematical foundation and numerical approximation of the cardiocirculatory
system are addressed.

3 Background

Cardiovascular diseases represent the major cause of death in western countries,
leading to more than 17.3 million deaths per year worldwide (about half of all
deaths in Europe).

The cardiovascular system is composed by the heart, the vascular circulation
(both arteries and veins), and the microcirculation (capillaries), see Figure 1.
Here, the mathematical and numerical description of the first two components
is considered.

The heart is composed by four chambers, two atria that collect blood coming
from the vascular network, and two ventricles pumping blood into the vascular
network. Atria and ventricles are connected by valves which open up when the
atrial pressure is higher than the ventricular one allowing the blood to fill the
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Figure 1: Representative scheme of the cardiovascular system.

ventricles, and close when blood starts flowing back to the atria. Valves govern as
well the blood exchange between the ventricles and the vascular circulation. The
heart wall is composed by the internal thin endocardium, the thick myocardium
composed by fibers, and the external thin epicardium.

The pumping of blood into the vascular circulation is made possible by the
heart contraction which is triggered by the propagation of an electrical signal
(action potential), generating at the sino-atrial node in the right atrium, prop-
agating through the atria and the Purkinje network, and finally spreading in
all the ventricles myocardium. Electric propagation is due to the excitability
of the heart cells, which produce a variation in membrane voltage when stim-
ulated. The stimulation of an individual cell produces an action potential and
the corresponding current allows for the excitation of the neighbour cells, and
thus of the whole myocardium. The excitation of a heart cell corresponds to
migration of ions through the cell membrane. In particular, there is an inward
flux of extra-cellular calcium ions which allows for their binding with specific
substances in the cell producing the contraction of the cell itself and of all the
myocardium in a coordinated way.

The vascular circulation is composed by the arteries that bring the blood from
the heart to the lungs and the microcirculation, and by the veins that allow the
blood to return to the heart. Two circulations can be identified: the systemic
circulation (left ventricle → systemic arteries → capillaries → systemic veins
→ right atrium), and the pulmonary circulation (right ventricle → pulmonary
arteries → lungs → pulmonary veins → left atrium).

Blood is composed mainly of water and blood cells (red, white, and platelets).
The diameter of blood cells is approximately 10−3 cm, whereas that of the small-

2



est arteries and veins is about 10−1 cm. Thanks to heart contraction, blood is
pumped into the vascular circulation by means of discrete pulses with a pressure
in the ranges 70−130mmHg and 20−30mmHg for the systemic and pulmonary
arterial networks, respectively, and equal to about 10mmHg in the veins due to
the high resistance in the microvasculature. Blood Reynolds number in arteries
ranges from about 400 (in coronaries) to about 4000 (in the ascending aorta). In
any case, the pulsatile nature of blood flow prevents full transition to turbulence
to develop.

Blood flows in compliant vessels allow the proximal arteries to store a great
amount of blood during the systole (the peak of the heart pulsatility) and the
veins to act as reservoirs. This yields the propagation of a pressure wave along
the arterial network. Vessel wall displacements are quite large, reaching up to
10% of their diameter. The vessel walls are mainly elastic; they are made of
elastin, which is responsible for the linear behavior at small displacements, and
by collagen which forms stiff fibres that induce a non-linear response at large
strains.

4 The vascular circulation

4.1 Mathematical modeling

As stated above, blood flows in compliant vessels. From a mathematical point of
view, this process can be described as a fluid-structure interaction (FSI) problem.

For the fluid (blood), well accepted hypotheses are incompressibility and
homogeneity. Its rheology could be considered Newtonian for medium and large
vessels [32] or non-Newtonian for small vessels such as coronaries or in presence
of stenosis [40].

The deformation of the vessel wall is mathematically described by the elasto-
dynamics equation. It is often assumed that a non-linear finite elastic law relates
the stress tensor to the strain, and a nearly incompressible behavior [23]. To
account for the preferred direction of the collagen fibres, anisotropic laws are usu-
ally considered. Unlike the fluid problem which is usually written in an Eulerian
framework, the vessel wall problem is generally written in a Lagrangian configu-
ration. To do so, given a function g defined in the current solid configuration Ωt,
we denote by ĝ = g ◦ L the same function in the reference configuration Ω, with
L denoting the Lagrangian map. F = ∇x is the deformation tensor, x are the
coordinates in the current configuration, J = det(F) represents the change of
volume between the reference and the current configuration. The stress tensor in
the reference configuration (First Piola-Kirchhoff stress tensor) is mapped into
the current configuration (Cauchy stress tensor), as follows: T̂s = JTsF

−T .
Figure 2 illustrates a representative situation with fluid and structure do-

mains, whose common boundary is the fluid-solid (FS) interface Σt: it coincides
with the physical fluid boundary and the internal vessel wall boundary. The
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mathematical coupled problem at each time reads as follows:

ρf

(
∂v

∂t
+ (v · ∇)v

)
−∇ ·Tf (v, p) = 0 in Ωt

f , (1a)

∇ · v = 0 in Ωt
f , (1b)

v =
∂d

∂t
at Σt, (1c)

Ts(d)n = Tf (v, p)n at Σt, (1d)

ρs
∂2d̂

∂t2
−∇ · T̂s(d̂) = 0 in Ωs, (1e)

df = d at Σt, (1f)

where v is the blood velocity, p the blood pressure, Tf the (Newtonian or non-
Newtonian) Cauchy fluid stress tensor, d the vessel wall displacement, and df the
fluid domain displacement; ρf and ρs denote the fluid and vessel wall densities.

Figure 2: Representation of the fluid domain on the left and structure domain
on the right. The bulge represents an abdominal aortic aneurysm.

In the coupled problem above, together with the Navier-Stokes equations
(1a)-(1b) and the elasto-dynamics equation (1e), three interface coupling condi-
tions are identified: the kinematic condition (1c) stating a no-slip assumption
between fluid and structure particles; the dynamic condition (1d) expressing
the action-reaction principle (III Newton law); and the geometric condition (1f)
enforcing the perfect adherence between fluid and structure domains.

Problem (1) should be completed with suitable initial condition for v, d and
ḋ, and boundary conditions. For the structure, the latter typically prescribe
at the artificial sections homogeneous Dirichlet and Neumann conditions in the
normal and tangential directions, respectively, and a Robin condition to account
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for the presence of the surrounding tissue at the external surface. For the fluid
problem, classical choices prescribe for example a Dirichlet condition for the
blood velocity at the inlet and an absorbing Neumann or resistance condition
at the outlet [30]. These values could be obtained either by means of clinical
measures or by coupling the 3D model with reduced ones (1D or 0D), obtaining
the so called geometric multiscale approach [39]. In both cases, the 3D problem
is often supplemented with defective conditions which prescribe only average in
space velocity or pressure data. Suitable numerical treatments are in this case
mandatory to solve a well-posed problem [39].

4.2 Numerical approximation

For the numerical solution of the FSI problem (1), segregated algorithms are
often considered, where the solution of the fluid and structure problems are
solved separately in an iterative way. This allows to use pre-existing solvers to
solve the coupled non-standard problem.

After time discretization (e.g. BDF2 or Crank-Nicolson for the fluid and
Newmark for the structure), the fluid problem is linearized by means of a semi-
implicit approach, where the convective term is extrapolated from previous time
steps. This choice introduces a (mild) CFL-like restriction on the time step ∆t
to preserve absolute stability. We indicate with ∗ extrapolated quantities. Given
σf ̸= σs, a general segregated algorithm reads as follows:

For n ≥ 1, k ≥ 1, at time step tn/iteration k, until convergence or k = kmax,

1. solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn
(k) + ρf ((v

∗ − v∗
f ) · ∇)vn

(k) −∇ ·Tf (v
n
(k), p

n
(k)) = gn

f in Ω∗
f ,

(2a)

∇ · vn
(k) = 0 in Ω∗

f ,

(2b)

σfv
n
(k) +Tf

(
vn
(k), p

n
(k)

)
n∗ = σf

( α

∆t
dn
(k−1) + gn

fs

)
+Ts

(
dn
(k−1)

)
n∗ on Σ∗;

(2c)

2. then, solve the non-linear vessel wall problem with another Robin condition
at the FS interface:

ρsβ

∆t2
d̂n
(k) −∇ · T̂s

(
d̂n
(k)

)
= ĝn

s in Ωs,

(3a)
σsα

∆t
d̂n
(k) + T̂s

(
d̂n
(k)

)
n̂ = σsv̂

n
(k) + T̂f

(
v̂n
(k), p̂

n
(k)

)
n̂− σsĝ

n
fs on Σ,

(3b)
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where α and β are coefficients of the time discretization and the terms g account
for the quantities at previous time steps.

Due to the fact that ρf ≃ ρs, in hemodynamics the choice σf → ∞, σs = 0
and kmax = 1, i.e. the classical explicit Dirichlet-Neumann (DN) scheme used
e.g. in aerodynamics, is unconditionally absolute unstable (high added mass
effect, [6]). To obtain stable results in general, at least an implicit coupling
between the fluid pressure and the vessel wall displacement is mandatory [12].
More in general, implicit algorithms should be considered, where iterations are
solved until fulfillment of the interface conditions [38]. The convergence of the
DN scheme requires a very small relaxation parameter and thus it is very slow
[6]. To improve the convergence, suitable choices of the interface parameters σf
and σs could be considered, see e.g. [2, 46].

In any case, at each iteration the fluid problem is solved in a (known) moving
domain Ω∗

f . This corresponds to an explicit treatment of the geometric interface
condition (1f). This choice produces stable results in hemodynamics, due to the
restrained wall displacements [12]. For its solution, the fluid problem is often
written in the Arbitrary Lagrangian-Eulerian configuration, i.e. in a frame-
work moving with the fluid domain [20]. For the reconstruction of the latter,
an harmonic extension of the geometric interface condition is usually adopted.
The corresponding fluid linear system arising, e.g., after a Finite Elements dis-
cretization could be numerically solved e.g. with projection methods [7, 43] or
block-preconditioned GMRES iterations [10].

On the other side, the vessel wall problem is linearized by means of the
Newton method and the corresponding linear system arising at each iteration of
the segregated algorithm could be solved e.g. by the coniugate gradient method
preconditioned with FETI methods [3].

Instead of segregated algorithms, a different numerical approach to solve the
FSI problem (1) is a monolithic approach, where an exact or inexact Newton
method is applied to the whole non-linear FSI problem. The corresponding full
linear system is solved by means of GMRES iterations preconditioned e.g. with
additive Schwarz methods [4], global algebraic multigrid strategies [16], or block
preconditioners [19, 9].

5 The heart

5.1 Mathematical modeling

From the modeling point of view, the heart function is the result of the inter-
action between blood flow inside the heart chambers and the electro-mechanical
activity occurring in the myocardium. Mathematically, this is an FSI problem
similar to that presented in the previous section, with FS interface being by the
endocardium. However, a major difference is that unlike the vascular case where
the vessel wall is completely passive and its deformation is determined only by
the interaction with blood, here the structure problem has an active component

6



which produces the contraction. The forces generating this active component
of the displacements are provided by the electrical propagation of the action
potential.

Referring to Figure 3, left, the coupled problem occurring in the heart can
be formally written as in (1), where the FS interface is now Σ = Σendo and the
structure problem (1e) is replaced by the following electro-mechanical problem:

ρs
∂2d̂

∂t2
−∇ ·

(
T̂P

s (d̂) + T̂A
s

(
ĉ, d̂,

dd̂

dt

))
= 0 in Ωs, (4a)

T̂A
s = PAaf ⊗ âf , PA = A

(
ĉ, d̂,

dd̂

dt

)
in Ωs, (4b)

Cm
∂Vm

∂t
−∇ · (Σ∇Vm) + Iion (Vm,w, c) + ISAC (Vm,d) = Iext in Ωt

s, (4c)

∂w

∂t
= gw(Vm,w)

∂c

∂t
= gc(Vm,w, c) in Ωt

s. (4d)

Figure 3: Left: longitudinal section of a complete heart domain. Right: fluid
cavity in the left ventricle.

In this problem, (4a) represents the equation of elasto-dynamics for the my-
ocardium, where TP

s is the passive component of the stress tensor given by a
non-linear elastic law similar to that of arteries where however two preferential
directions (fibers and sheets) are often considered [22], and TA

s is the active
component of the stress regulated by the opening of calcium channels as a re-
sponse to the depolarization. Equations (4b) used the most classical form of
the active component, which acts in the fibers direction af and whose inten-
sity PA depends, through ordinary differential problems represented here by A,
on the ion (in particular calcium) concentration c, the displacement d, and the
deformation rate ḋ [26, 27, 17]. Equation (4c) is the classical monodomain prob-
lem to describe the evolution of the transmembrane potential Vm, where Cm is
the membrane capacitance multiplied by the surface area-to-volume ratio, Σ the
conductivity tensor, Iext and external applied current; Iion are the ionic currents
whose expression is suitably modeled by means of reduced models that provide
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a description of the action potential and disregard sub-cellular processes [13], or
first and second generation models that allow explicit description of the kinetics
of different ionic currents [21]; ISAC is the current activated by the deforma-
tion and provides a mechano-electrical feedback [28]. Finally, the monodomain
problem is coupled with the systems of ordinary differential problems (4d), rep-
resenting the cardiac cells model in the gating variables w, i.e. the percentage of
open channels per unit area of the membrane, and ion concentration variables c.
A more sophisticated model alternative to the monodomain one which allows a
better description of pathological scenarios, is the bidomain model, see e.g. [8].

The coupled electro-mechanical-fluidic problem (1a)-(1b)-(1c)-(1d)-(4)-(1f)
should be completed with suitable initial conditions for Vm,w, c,v, d and ḋ,
and boundary conditions. For the electrical problem, the latter usually prescribe
homogeneous Neumann conditions at Σepi and Σendo, whereas for the mechanics
a Robin condition similar to the vascular case is prescribed at Σepi, even if more
sophisticated models of interaction with the pericardium have been also proposed
[15]. Moreover, for the electrical problem, forcing terms in correspondence of
the junctions connecting the myocardium to the Purkinje network should be
considered to account for the propagation in such a network [45, 44]. For the
fluid problem, boundary interfaces are provided by the valves (except from the
interface between atria and vascular circulation), see Figure 3, right, where the
case of the left ventricle is depicted, Γm and Γa being the interfaces with the left
atrium (mitral valve) and arterial circulation (aortic valve). In this case, another
FSI problem should be considered between blood and valve leaflets [33, 5, 18].
However, often simplified valve models have been considered in order to reduce
the complexity of the problem, see e.g. [25, 1, 11].

5.2 Numerical approximation

For the numerical discretization of the electrical problem (4c)-(4d), a special
care should be taken in the choice of time and space discretization parameters,
which should be fine enough to capture the very steep and fast propagating
electrical front. Classical numerical strategies include semi-implicit methods
where the transmembrane potential Vm is treated explicitly both in the ODE
systems (4d) and in the ionic term Iion [24], and operator splitting-based methods
that separate the reaction operator from the diffusive one [35].

For the electro-mechanical coupled problem (4), a possible splitting strategy
consists in solving first the electrical problem (4c)-(4d) with an explicit treatment
of the displacements, then update the active stress contribution (4b), and finally
solve the mechanics (4a) by means of Newton iterations [26]. An alternative,
more stable, scheme is obtained by updating the active stress contribution at
each Newton iteration [29]. A different scheme has been proposed in [31], where
the ODE systems (4d) are solved first, then Newton iterations are applied to the
mechanical problem (4a)-(4b), and finally the electrical problem (4c) is solved.

Once the solution of the electro-mechanical problem is obtained, it could be
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coupled by means of segregated schemes with the fluid solution in order to obtain
a numerical solution of the whole coupled electro-mechanical-fluidic problem
(1a)-(1b)-(1c)-(1d)-(4)-(1f). Alternative strategies are obtained by considering
block-preconditioned monolithic solvers for the solution of the whole coupled
problem [36].

6 Conclusions

Several books, monographs and review papers have been published in recent
years for the mathematical description of the cardiovascular system, see e.g.
[34, 41, 14, 42, 8, 37], highlighting the great interest of the mathematical, en-
gineering, and clinical communities on this topic. However, many important
related fields are still far from being throughly investigated and/or have not still
been coupled with the cardiovascular system. This is the case e.g. of the venous
system, metabolic system, respiratory system, cerebro-spinal fluid circulation,
nervous system, and limphatyc system. This opens new and attractive chal-
lenges for future development of mathematical and computational methods to
have a complete representation of the cardiovascular system.
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[11] M. Fedele, E. Faggiano, L Dedè, and A. Quarteroni. A patient-specific
aortic valve model based on moving resistive immersed implicit surfaces.
MOX-Report n. 23-2016, Department of Mathematics, Politecnico di Mi-
lano, Italy, 2016.

[12] M.A. Fernández, J.F. Gerbeau, and C. Grandmont. A projection semi-
implicit scheme for the coupling of an elastic structure with an incompress-
ible fluid. Int. J. Numer. Meth. Engrg., 69(4):794–821, 2007.

[13] R. FitzHugh. Impulses and physiological states in theoretical models of
nerve membrane. Biophys J, 1(6):445–466, 1961.

[14] L. Formaggia, A. Quarteroni, and A. Veneziani (Eds.). Cardiovascular
Mathematics - Modeling and simulation of the circulatory system. Springer-
Verlag Milan, 2009.

[15] T. Fritz, C. Wieners, G. Seemann, H. Steen, and O. Dossel. Simulation of
the contraction of the ventricles in a human heart model including atria and
pericardium. Biomechanics and Modeling in Mechanobiology, 13(3):627–
641, 2014.

[16] M.W. Gee, U. Kuttler, and W.A. Wall. Truly monolithic algebraic multigrid
for fluid-structure interaction. Int. J. Numer. Meth. Engrg., 85(8):987–1016,
2011.

[17] S. Goktepe and E. Kuhl. Electromechanics of the heart: a unified approach
to the strongly coupled excitationcontraction problem. Computational Me-
chanics, 45(2):227–243, 2010.

[18] J. De Hart, G.W.M. Peters, P.J.G. Schreurs, and F.P.T. Baaijens. A two-
dimensional fluidstructure interaction model of the aortic value. Journal of
biomechanics, 33(9):10791088, 2000.

[19] M. Heil. An efficient solver for the fully coupled solution of large-
displacement fluid-structure interaction problems. Comput. Methods Appl.
Mech. Engrg., 193:1–23, 2004.

10



[20] C.W. Hirt, A.A. Amsden, and J.L. Cook. An arbitrary lagrangian eulerian
computing method for all flow speeds. J. Comput. Phys., 69:277–324, 1974.

[21] A.L. Hodgkin and A.F. Hukley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. J Physiol,
117(4):500–544, 1952.

[22] G.A. Holzapfel and R.W. Ogden. Constitutive modelling of passive my-
ocardium: a structurally based framework for material characterization.
PHILOSOPHICAL TRANSACTIONS of the Royal society A, 367:3445–
3475, 2009.

[23] G.A. Holzapfel and R.W. Ogden. Constitutive modelling of arteries. Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466(2118):1551–1596, 2010.

[24] J.P. Keener and K. Bogar. A numerical method for the solution of the
bidomain equations in cardiac tissue. Chaos, 8:234–241, 1998.

[25] T. Korakianitis and Y. Shi. A concentrated parameter model for the human
cardiovascular system including heart valve dynamics and atrioventricular
interaction. Medical Engineering & Physics, 28(7):613–628, 2006.

[26] M.P. Nash and A.V. Panfilov. Electromechanical model of excitable tissue to
study reentrant cardiac arrhythmias. Progress in Biophysics and Molecular
Biology, 2-3(85):501–522, 2004.

[27] S.A. Niederer, P.J. Hunter, and N.P. Smith. A quantitative analysis of
cardiac myocyte relaxation: A simulation study. Biophysical Journal,
90(5):1697–1722, 2006.

[28] S.A. Niederer and N.P Smith. A mathematical model of the slow force
response to stretch in rat ventricular myocytes. Biophysical Journal,
92(11):4030–4044, 2007.

[29] S.A. Niederer and N.P Smith. An improved numerical method for strong
coupling of excitation and contraction models in the heart. Progress in
Biophysics and Molecular Biology, 96(1–3):90–111, 2008.

[30] F. Nobile and C. Vergara. An effective fluid-structure interaction formu-
lation for vascular dynamics by generalized Robin conditions. SIAM J Sc
Comp, 30(2):731–763, 2008.

[31] L.F. Pavarino, S. Scacchi, and S. Zampini. Newton–krylov-bddc solvers for
nonlinear cardiac mechanics. Computer Methods in Applied Mechanics and
Engineering, 295:562–580, 2015.

[32] K. Perktold, E. Thurner, and T. Kenner. Flow and stress characteristics in
rigid walled and compliant carotid artery bifurcation models. Medical and
Biological Engineering and Computing, 32(1):19–26, 1994.

11



[33] C. Peskin. Flow patterns around heart valves: A numerical method. J.
Comput. Phys., 10(2):252–271, 1972.

[34] C. Peskin. The immersed boundary method. Acta Numerica, 11:479–517,
2002.

[35] Z. Qu and A. Garfinkel. An advanced algorithm for solving partial dif-
ferential equation in cardiac conduction. IEEE Transaction on Biomedical
Engineering, 46(9):1166–1168, 1998.

[36] A. Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-Baier. Integrated heart
- coupling multiscale and multiphysics models for the simulation of the
cardiac function. Comput. Methods Appl. Mech. Eng., 314:345–407, 2017.

[37] A. Quarteroni, A. Manzoni, and C. Vergara. The cardiovascular system:
Mathematical modelling, numerical algorithms and clinical applications.
Acta Numerica, 26:365–590, 2017.

[38] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial
Differential Equations. Oxford Science Publications, 1999.

[39] A. Quarteroni, A. Veneziani, and C. Vergara. Geometric multiscale mod-
eling of the cardiovascular system, between theory and practice. Comput.
Methods Appl. Mech. Engrg., 302:193–252, 2016.

[40] A.M. Robertson, A. Sequeira, and R.G. Owens. Rheological models for
blood. In Cardiovascular mathematics, edited by L. Formaggia, A. Quar-
teroni, A. Veneziani, Chapter 6, pages 211–241. Springer, 2009.

[41] N. P. Smith, D. P. Nickerson, E. J. Crampin, and P. J. Hunter. Multiscale
computational modelling of the heart. Acta Numerica, 13:371–431, 2004.

[42] C.A. Taylor and C.A. Figueroa. Patient-specific modeling of cardiovascular
mechanics. Annual Review of Biomedical Engineering, 11:109–134, 2009.

[43] R. Temam. Sur l’approximation de la solution des équations de Navier–
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