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Abstract

This work stems from the need for accurate estimation of the curvature
function of an artery, that emerged within ANEURISK Project, a research
program that aims at investigating the role of vascular morphology and
hemodynamics on the pathogenesis of cerebral aneurysms. We develop here
a regression technique that exploits free knot splines in a novel setting,
to estimate 3-dimensional curves, and their derivatives. We thoroughly
compare this technique to a classical regression method, local polynomial
smoothing, showing that 3-dimensional free knot regression splines yield
more accurate and efficient estimates.

1 Introduction

We show how to efficiently estimate the curvature function of a 3-dimensional
(3D) curve, starting from its noisy and discrete observation. This work stems
from the need for accurate estimation of artery curvature, that emerged within
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ANEURISK Project1. This project involves researchers of several scientific
fields, and aims at investigating the role of vessel morphology, blood fluid-
dynamics, and biomechanical properties of the vascular wall, on the pathogenesis
of cerebral aneurysms.

Cerebral aneurysms are lesions of cerebral vessels characterized by a bulge
of the vessel wall. The origin of this pathology is still unclear. Possible ex-
planations discussed in the medical literature focus on the interaction between
biomechanical properties of artery walls and hemodynamic factors, such as wall
shear stress and pressure. The hemodynamics is in turn strictly dependent on
vascular geometry. This circle of ideas has motivated investigations on the shape
of aneurysms and on parent vessel morphologies, and their possible impact on
the genesis and development of this pathology. See e.g. Hoi et al. (2004), Hassan
et al. (2005), Castro, Putman, and Cebral (2006). ANEURISK Project belongs
to this line of research.

This paper, in particular, is devoted to the accurate estimation of vessel
curvature. It is well known in fact that vessel curvature strongly affects the
local hemodynamics. See for instance Caro, Doorly, and Tarnakasky (1996) and
Chandran (1993). More in general, the relevance of the curvature of a pipe, on
the inner fluid motion, has been extensively investigated since the pioneristic
works by Dean. See e.g. Dean (1927a), Dean (1927b), Smith (1976), Berger,
Talbot, and Yao (1983), and Chandran (1993). In particular, an adimensional
index called Dean number has been introduced, as an extension of Reynolds
number, in order to quantify fluid stability in a circular curved pipe. Let R be
the radius of the pipe section, and let Rcurv be the radius of curvature of the
pipe centerline; moreover, denote by µ the viscosity of the fluid at hand, by ρ

its density, and by U0 its mean velocity. The Dean number is

D =
2 ρU0 R

µ

(
R

Rcurv

)1/2

Blood dynamics can be really different for different values of D. This explains
why accurate estimation of the profile of the curvature radius of artery vessels
(or equivalently, the profile of the curvature curv = 1/Rcurv) is of fundamental
importance for the analysis of hemodynamics, and its possible consequences on
aneurysm pathology.

1ANEURISK Project is a joint research program involving MOX Laboratory for Modeling

and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Laboratory of

Biological Structures, Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Istituto

Mario Negri, Ranica, Ospedale Niguarda Ca’ Granda, Milano, and Ospedale Maggiore Poli-

clinico, Milano. The Project is supported by Fondazione Politecnico di Milano and Siemens-

Medical Solutions, Italia.

2



Figure 1: 3D image of an internal carotid artery with an aneurysm [patient 1].

The starting point of our study is a set of 3D angiographic images taken from
patients suspected to be affected by cerebral aneurysms. Our sample is currently
based on 65 patients treated at Ca’ Granda Hospital, in Milan (Italy). Some
of these patients are affected by an aneurysm on the Internal Carotid Artery
(ICA), other patients have an aneurysm downstream the ICA, in the so-called
Willis circle (see Ustun (2005)); finally, a few patients are healthy. The analy-
ses conducted so far within the ANEURISK Project focus on the ICA, which
is clearly recognizable in each of the 65 angiographies. This artery features a
great curvature variability not only between different patients, but also within
different parts of the vessel for the same patient. Starting from the 3D array
of grey-scaled pixels given by the angiography (with lighter pixels showing pre-
sence of flowing blood), the artery lumen, i.e. the volume occupied by flowing
blood, is identified by a reconstruction algorithm coded in the Vascular Model-
ing ToolKit (VMTK). See Antiga et al. (2003), and Piccinelli et al. (2007). The
outcome of this process yields a set of points in a three dimensional space, that
are computed as the centers of maximal spheres inscribed in the artery lumen.
This set of points identifies the vessel centerline. Moreover, an estimate of the
radius along the vessel is provided. Figure 1 shows the draw of the reconstruc-
tion of an ICA with its centerline (patient 1). There are two kinds of errors
that might occur in this procedure. Measurement errors, due to possible (in
general unavoidable) errors in the images, related for instance to a movement of
the patient during the image acquisition. Reconstruction errors, i.e. numerical
errors in the algorithm for the 3D reconstruction. Because of these errors, re-
constructed centerlines may be quite wiggly and thus need to be smoothed, and
so do the estimates of their derivatives, in order to obtain sensible estimates of
their curvature functions. We propose estimates of the 3D centerlines and their
curvature functions, based on free knot regression splines. We show that this
technique has many comparative advantages over a classical regression method,
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local polynomial smoothing. First of all, free knot regression splines are more
efficient than local polynomial smoothing, in the sense that they are able to
attain lower approximation errors fitting more parsimonious models. Moreover,
they better estimate the salient features of the centerline, as it is shown by com-
paring the estimates of centerline derivatives, obtained with the two different
techniques, and their rough estimates obtained by central differences. Because
of this, free knot splines are better able to detect special landmarks in the cen-
terline curvature, that are particularly important for our problem. Finally, the
proposed technique leads to data dimension reduction, a fundamental issue for
our highly dimensional dataset.

Local polynomial smoothing has been formerly used to obtain pointwise es-
timates of vessel curvature in Sangalli, Secchi, Vantini, and Veneziani (2007b),
where explorative analyses of vessel curvature and radius profiles supported the
existence of a strong relationship between vessel geometry and aneurysm loca-
tion. In particular, Functional Principal Component Analysis of ICA curvature
and radius profiles, followed by Quadratic Discriminant Analysis of principal
component scores, evidenced significant differences on the distribution of these
two geometric features for patients having an aneurysm along the ICA and pa-
tients having an aneurysm downstream its terminal bifurcation. The results of
this first study have been confirmed in Sangalli, Secchi, and Vantini (2007a),
where the same analysis are performed using centerline estimates based on free
knot regression splines.

The paper is organized as follows. In Section 2 we present the dataset and
the main features of the statistical model we deal with. In Section 3 we recall
the essentials of free knot regression splines for the case of functions with one
dependent variable, and then describe the extension to our 3D problem. In
Section 4 we illustrate the results, and discuss the properties of the estimates
obtained. Section 5 is devoted to an extensive comparison between the proposed
technique and local polynomial smoothing. Some conclusive considerations are
drawn in Section 6.

2 Data and model

For every patient i in our dataset (i = 1, . . . , 65), VMTK reconstruction of ICA
centerline is a set of points in R3, {(xij , yij , zij) : j = 1, 2, . . . , ni}, where x,
y and z denote the three space coordinates of each point. Points are ordered
moving downward along the ICA, from the point closest to its terminal bifurca-
tion (detected by VMTK) towards the proximal districts, i.e. aorta and heart.
The reason for this choice is that the terminal bifurcation of ICA is present
in each angiography, even if the portion of ICA captured by the angiography

4



−100 −80 −60 −40 −20 0

10
20

30
40

50
60

s

x

−100 −80 −60 −40 −20 0

10
20

30
40

50
60

s

y

−100 −80 −60 −40 −20 0

10
20

30
40

50
60

s

z

Figure 2: Reconstructed space coordinates of ICA centerline for patient 1, (x1j , y1j , z1j), versus the

abscissa parameter s1j , for j = 1, . . . , n1 (n1 = 1350).

varies from patient to patient (depending on where the angiographic image has
been centered). We associate the set of space coordinates with an index set
{sij : j = 1, 2, . . . , ni}, which measures an approximate distance along the ICA.
More precisely, si1 is the distance of the point (xi1, yi1, zi1) from the terminal
bifurcation of the ICA (as determined by VMTK), and

sij−sij−1 = −
√

(xij − xij−1)2 + (yij − yij−1)2 + (zij − zij−1)2 , for j = 2, . . . , ni.

The conventional negative sign highlights that we are moving upstream, i.e. in
opposite direction with respect to blood flow. Figure 2, for instance, displays the
reconstructed space coordinates of ICA centerline for patient 1, (x1j , y1j , z1j),
versus the abscissa parameter s1j , for j = 1, . . . , n1 (n1 = 1350). The number ni

of data points available for each patient ranges from 350 to 1380, and is almost
perfectly correlated to the approximate length |si ni − si 1| of the reconstructed
centerlines (correlation coefficient=0.999), which in turn varies from 27.219mm
to 110.136mm. In other words, the grid density of the 65 reconstructions is the
same. The average step of these grids is 0.079mm.

Our task is to estimate, for each patient i, the curvature of the true ICA
centerline ci(s) = (xi(s), yi(s), zi(s)), starting from its noisy reconstruction
{(xij , yij , zij) : j = 1, 2, . . . , ni}. To this aim, independently for each patient
(from now on we drop the subscript i), we consider the statistical model

(xj , yj , zj) = c(sj) + ej j = 1, . . . , n

ej = (e[x]
j , e

[y]
j , e

[z]
j ) with ej and ej′ independent for j 6= j′,

E(ej) = 0, V ar(ej) = σ2I

(1)

and want to estimate the curvature of c. The value of σ2, in the variance matrix
of the error term, is unknown, but assumed to be the same for each patient i,
for i = 1, . . . , 65. This assumption is justified by the fact that both the machine
used to take the 3D-angiographies and the algorithm used to reconstruct ICA
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Figure 3: First and second differences (top and bottom, respectively) of reconstructed space coordi-

nates of ICA centerline for patient 1.

centerlines are the same for each patient. Denoting by × the vector product,
the curvature of c(s) = (x(s), y(s), z(s)) is defined by

curvc(s) =
|c′(s)× c′′(s)|

|c′(s)|3 =
√(

x′(s)y′′(s)−x′′(s)y′(s)
)2+

(
y′(s)z′′(s)−y′′(s)z′(s)

)2+
(
z′(s)x′′(s)−z′′(s)x′(s)

)2

(
(x′(s))2 + (y′(s))2 + (z′(s))2

)3/2

where c′(s) = (x′(s), y′(s), z′(s)) and c′′(s) = (x′′(s), y′′(s), z′′(s)) are the first
and second derivatives of c. Rough pointwise estimates of first derivatives are
given by the first central differences

Dx(sj) =
xj+1 − xj−1

sj+1 − sj−1
Dy(sj) =

yj+1 − yj−1

sj+1 − sj−1
Dz(sj) =

zj+1 − zj−1

sj+1 − sj−1

for j = 2, . . . , n− 1; the second central differences

D2x(sj)=2
xj+1−xj

sj+1−sj
− xj−xj−1

sj−sj−1

sj+1 − sj−1
D2y(sj)=2

yj+1−yj

sj+1−sj
− yj−yj−1

sj−sj−1

sj+1 − sj−1

D2z(sj)=2
zj+1−zj

sj+1−sj
− zj−zj−1

sj−sj−1

sj+1 − sj−1

are instead too noisy to be of any use. See for instance Figure 3, which displays
first and second central differences of reconstructed space coordinates of ICA
centerline for patient 1.
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Sangalli et al. (2007b) obtained smooth pointwise estimates of first and se-
cond derivatives by first estimating the true centerline c by means of local poly-
nomial regression. In particular, pointwise estimates of true centerlines were
obtained fitting fourth-degree polynomials with a Gaussian kernel. Details are
given in Section 5. Estimates of derivatives, and hence of curvatures, were thus
obtained by pointwise differentiation of the fitted local polynomials.

Here we propose a different approach, based on free knot regression splines,
i.e. regression splines where the number and position of knots are not fixed in
advance, but chosen in a way to minimize a penalized sum of squared errors
criterion. Since our data are 3D, the idea is to fit simultaneously the three
spatial coordinates of the centerline

(
x(s), y(s), z(s)

)
, looking for the optimal

spline knots along the abscissa parameter s. This technique is described in
Section 3.

3 3D free knot regression splines

Consider an interval [a, b], split into subintervals by knots k1, . . . , knk
(with a <

k1 <. . .< knk
< b). Assume, for the moment, that the number and position of

knots are given. An order-m spline over [a, b], with knot vector k = (k1, . . . , knk
),

is a piecewise-polynomial of degree m − 1, with continuous derivatives of order
m − 2 at the knots. The set of all order-m splines over [a, b], with knot vector
k, forms a vector space. The dimension of such space is m + nk. This is given
by the balance between the number of parameters needed to identify (nk + 1)
polynomials of order m (one polynomial over each of the subintervals), and the
continuity constraints, prescribing m − 1 equations at each of the nk knots:
m(nk +1)−nk(m−1) = m+nk. A computationally convenient basis system for
this space is the b-spline basis system {b[k]

r,m(s) : r = 1, . . . , m+nk}. Any order-m
spline over [a, b] with knot vector k can thus be expressed as the expansion in
bases f(s) =

∑m+nk
r=1 λrb

[k]
r,m(s), for some coefficient vector λ =

(
λ1, . . . , λm+nk

)T .
Derivatives of splines are still splines (of appropriate order), with coefficients
directly computed from the coefficients of the original spline, and with the same
knot vector. In particular, denoting by v the (2m + nk)-vector with entries

v1 = . . . = vm = a,

vm+j = kj , for j = 1, . . . , nk,

vm+nk+1 = . . . = v2m+nk
= b,
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the first and second derivatives of f(s) are given by f ′(s) =
∑m+nk−1

r=1 λ
[1]
r b

[k]
r,m−1(s)

and f ′′(s) =
∑m+nk−2

r=1 λ
[2]
r b

[k]
r,m−2(s), where

λ[1]
r =

λr+1 − λr

vm+r − vr+1
for r = 1, . . . , m + nk − 1

and

λ[2]
r =

λ
[1]
r+1 − λ

[1]
r

vm+r − vr+2
for r = 1, . . . , m + nk − 2.

See de Boor (1978) for a systematic introduction to splines.
Now consider the problem of estimating the function f : R→ R in the model

wj = f(sj) + ej , with ej and ej′ independent for j 6= j′,

E(ej) = 0, V ar(ej) = σ2,

by means of an order-m spline with knot vector k. The regression spline is the
spline

f̂(s) =
m+nk∑

r=1

λ̂rb
[k]
r,m(s)

where λ̂ =
(
λ̂1, . . . , λ̂m+nk

)T minimizes the sum of squared errors:

SSE(λ) =
n∑

j=1

(
wj −

m+nk∑

r=1

λrb
[k]
r,m(sj)

)2
. (2)

In matrix notation, writing {B[k]
m }j,r = b

[k]
r,m(sj), w = (w1, . . . , wn)T and ŵ =

(f̂(s1), . . . , f̂(sn))T ,

SSE(λ) = (w −B[k]
m λ)T (w −B[k]

m λ)

λ̂ =
(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
w

ŵ = B[k]
m

(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
w = H w

where H = B
[k]
m

(
B

[k]T

m B
[k]
m

)−1
B

[k]T

m is an orthogonal projection matrix, with
tr(H) = m + nk. Thus, ŵ is obtained as orthogonal projection of w on the
space generated by the vectors of basis evaluations

(
b
[k]
r,m(s1), . . . , b

[k]
r,m(sn)

)T , for
r = 1, . . . , m + nk.

The order of the spline is usually chosen according to the problem at hand
and the scope of the analysis. Order-4 splines (corresponding to piecewise cubic
polynomials) are almost always sufficient when one is only interested in a smooth
estimate of the function f . When derivatives of f are also of interest, it is usually
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convenient to use order p + 2 or p + 3 splines, where p is the highest derivative
order that has to be estimated.

To improve spline estimation, number and position of knots can be selected
by minimizing a suitable error functional, which takes into account the dimension
of the model being fitted. A possible model selector, in this case, is provided by
the so-called Stein’s unbiased risk estimate (see Stein (1981))

pSSE(λ,k) =
n∑

j=1

(
wj −

m+nk∑

r=1

λrb
[k]
r,m(sj)

)2 + Cσ̂2(m + nk)

= (w −B[k]
m λ)T (w −B[k]

m λ) + Cσ̂2(m + nk)

(3)

where C is a penalization constant, and σ̂2 is an estimate of errors variance. Re-
gression splines where the number and position of knots are not fixed in advance,
but chosen by a data-driven criterion such as (3), are called free knot regression
splines. Note that, once the optimal knot vector k̂ has been selected, and thus
the model has been chosen, the vector of fitted values ŵ is again obtained as
orthogonal projection of w on the space generated by the vectors of basis evalu-
ations, according to ŵ = H w, where H = B

[k̂]
m

(
B

[k̂]T

m B
[k̂]
m

)−1
B

[k̂]T

m . Algorithms
for the search of optimal knots have been proposed e.g. by Friedman (1991),
Stone, Hansen, Kooperberg, and Truong (1997), Luo and Wahba (1997), and
more recently by Zhou and Shen (2001), and Mao and Zhao (2003). In partic-
ular, the algorithm developed by Zhou and Shen (2001) strongly improved the
previous stepwise forward/backward knot selection procedures, which suffered
from knot confounding problems, by also including knot relocation moves. The
choice of C is of paramount importance for the accuracy of the estimation. High
values of C yield more parsimonious models, i.e. splines with fewer knots, but
with higher sum of squared errors, and viceversa. Several researchers suggest
particular values of C. For example, Luo and Wahba (1997) suggest C = 1.2,
Zhou and Shen (2001) recommend C = 2, whilst Friedman (1991) uses C = 3
for his MARS.

3.1 Extension to the 3D case

Let us now come to our 3D problem, described by model (1). The idea is to
estimate the true centerline c(s) by simultaneously fitting the three coordinate
functions, x(s), y(s) and z(s), with three order-m splines having the same knot
vector k̂, with knots chosen along the abscissa parameter s:

x̂(s) =
m+nk̂∑

r=1

λ̂[x]
r b[k̂]

r,m(s) ŷ(s) =
m+nk̂∑

r=1

λ̂[y]
r b[k̂]

r,m(s) ẑ(s) =
m+nk̂∑

r=1

λ̂[z]
r b[k̂]

r,m(s).
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As before, denote by B
[k]
m the (n× (m + nk))-matrix of basis evaluations. More-

over, denote by W the (n × 3)-matrix of observed values, W =
[
x
∣∣y∣∣z], where

x = (x1, . . . , xn)T , y = (y1, . . . , yn)T , z = (z1, . . . , zn)T , and by Ŵ the anal-
ogous matrix of fitted values Ŵ =

[
x̂
∣∣ŷ∣∣ẑ], where x̂ =

(
x̂(s1), . . . , x̂(sn)

)T ,
ŷ =

(
ŷ(s1), . . . , ŷ(sn)

)T , ẑ =
(
ẑ(s1), . . . , ẑ(sn)

)T . Finally, denote by Λ the
((m + nk) × 3)-matrix of λ coefficients Λ =

[
λ[x]

∣∣λ[y]
∣∣λ[z]

]
. For a fixed knot

vector k, the natural generalization of least squared errors criterion (2), for the
3D model (1), is given by

3DSSE(Λ) = tr
[
(W −B[k]

m Λ)(W −B[k]
m Λ)T

]

=
n∑

j=1

(
xj −

m+nk∑

r=1

λ[x]
r b[k]

r,m(sj)
)2 +

n∑

j=1

(
yj −

m+nk∑

r=1

λ[y]
r b[k]

r,m(sj)
)2

+
n∑

j=1

(
zj −

m+nk∑

r=1

λ[z]
r b[k]

r,m(sj)
)2

,

which leads to the least squared estimate Ŵ = B
[k]
m Λ̂, where

Λ̂ =
(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
W (4)

Thus, for the search of the optimal (Λ̂, k̂), we will use the following model selec-
tor:

3DpSSE(Λ,k)

= tr
[
(W −B[k]

m Λ)(W −B[k]
m Λ)T

]
+ C(m + nk)

=
n∑

j=1

(
xj −

m+nk∑

r=1

λ[x]
r b[k]

r,m(sj)
)2 +

n∑

j=1

(
yj −

m+nk∑

r=1

λ[y]
r b[k]

r,m(sj)
)2

+
n∑

j=1

(
zj −

m+nk∑

r=1

λ[z]
r b[k]

r,m(sj)
)2 + C(m + nk) .

(5)

Note that the penalization term in (5) does not intend to take into account error
variance, as was instead the case in (3). Hence, the penalization constant C in
(5) cannot be compared with the penalization constant C in (3). This choice is
related to the specific problem we deal with. Recall that the value of σ in the
variance structure of the error term is assumed to be the same for each patient.
Since we are here mainly interested in equally smoothing the ICA centerlines
of the 65 patients, we will simply focus on choosing the best value of C for the
overall dataset, without bothering with finding a sensible a priori estimate of σ.
We discuss the choice of the penalization constant C in Section 4.1.

It should also be noted that, likewise in the 1D case, the matrix of fitted
values Ŵ is obtained as orthogonal projection of the columns of the matrix of
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observed values W on the space generated by the vectors of basis evaluation(
b
[k̂]
r,m(s1), . . . , b

[k̂]
r,m(sn)

)T , for r = 1 . . . , m + nk̂,

Ŵ = B[k̂]
m

(
B[k̂]

m

T
B[k̂]

m

)−1
B[k̂]

m

T
W = H W ,

In particular, the 3D the spline estimator, likewise the 1D spline estimator, is a
so called-linear estimator, i.e. there exists a linear operator S, independent of
W , such that the fitted values Ŵ are obtained according to Ŵ = S W . For these
estimators it is common to take, as Degrees of Freedom (DF) of the model, the
trace of the linear operator S, or alternatively, tr(ST S) or tr(2S − ST S). See
e.g. Buja, Hastie, and Tibshirani (1989) and Hastie and Tibshirani (1990), who
first introduced this notion. We will thus consider, as DF of the spline estimator,
the trace of the orthogonal projection matrix H, i.e. m + nk̂ (note that when
the linear operator is an orthogonal projection matrix, as in this case, the three
alternative definitions of DF coincide).

Remark 1 If the three coordinates in the error term were assumed to be cor-
related, and thus V ar(ej) = σ2I in (1) was changed in V ar(ej) = Σ, for some
symmetric positive-definite matrix Σ, then the natural generalization of least
squared errors criterion (2) would become

3DSSE(Λ) = tr
[
(W −B[k]

m Λ)Σ−1(W −B[k]
m Λ)T

]
(6)

It is easy to show that

argmin(Λ)

{
tr

[
(W −B[k]

m Λ)Σ−1(W −B[k]
m Λ)T

]}

= argmin(Λ)

{
tr

[
(W −B[k]

m Λ)(W −B[k]
m Λ)T

]}

=
(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
W

so that the least square estimate Ŵ = B
[k]
m Λ̂ does not depend on Σ. Thus,

also in this more general case we could use the model selector (5). It turns out
that the solution Λ̂ =

(
B

[k]T

m B
[k]
m

)−1
B

[k]T

m W , not only minimizes (6), for any
symmetric positive-definite matrix Σ, but also minimizes the general variance∣∣(W −B

[k]
m Λ)(W −B

[k]
m Λ)T

∣∣, where | · | denotes the determinant.

3.2 Algorithm for the search of optimal knots

For the search of optimal knots we modified Zhou and Shen (2001) algorithm, in
order to deal with our 3D problem. For computational convenience, we look for
optimal knots among the grid values s1, . . . , sn. This is not a limitation, since,
as noted in Section 2, the grids are very fine. We start with a set of initial knots
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which are evenly spaced along the grid. A more accurate selection of initial
knots, along the lines of Zhou and Shen (2001), would speed up the algorithm,
but is not necessary, as pointed out by the same authors. The algorithm then
alternates between the following two steps.

Knot addition. Let k = (k1, . . . , knk
) be the current knot vector, and Λ the

corresponding estimate of the coefficient matrix. Set k0 = a and knk+1 = b.
If k is the initial knot vector, then each of the subintervals [kr, kr+1], for r =
0, . . . , nk, is checked for possible addition of one knot. In particular, in each of
the subintervals [kr, kr+1], the knot sj , with kr < sj < kr+1, is added to the
current knot vector, leading to the new knot vector k∗j and to the new estimate

of the coefficient matrix Λ∗j =
(
B

[k∗j ]T

m B
[k∗j ]
m

)−1
B

[k∗j ]T

m W , if

3DpSSE(Λ∗j ,k
∗
j ) < 3DpSSE(Λ,k) and

sj = argmin{sl:kr<sl<kr+1}3DpSSE(Λ∗l ,k
∗
l ).

If k is not the initial knot vector, then the subinterval [kr, kr+1] is checked for
possible addition of one knot only if at least one among the neighbor knots,
kr−2, kr−1, . . . , kr+3, has been added in the previous iteration.

Knot relocation/deletion. Let k = (k1, . . . , knk
) be the current knot vector. For

r = 1, . . . , nk, if kr is adjacent to a knot added in the preceding step, then it is
checked for possible relocation/deletion. In particular, kr is removed from the
the current knot vector, or moved to the new position sj , with kr−1 < sl < kr+1,
if this improves the criterion (5), likewise in the knot addition move. The same
procedure is then applied to all knots that have been added in the preceding
step.

When, for the first time, the knot addition move does not yield any new knot,
all knots are searched for deletion/relocation. The resulting knot vector is set
as new initial knot vector, and the algorithm is run again. When, for the second
time, the knot addition move does not yield any new knot, all knots are searched
for deletion/relocation, and the procedure ends.

The algorithm for the search of optimal knots, and all other data processing,
have been coded in R c© .

4 Results

The 65 centerlines are estimated by means of 3D free knot splines of order m = 5,
with penalization constant C = 4. The choice of the penalization constant is
discussed in Section 4.1. The order of the splines has been fixed in order to
obtain smooth estimates of the first two derivatives. In the future, the torsion
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Figure 4: Top: fitted coordinates curves x̂(s), ŷ(s), ẑ(s), with vertical lines showing the position of

the knots along the abscissa parameter s, superimposed to the original (sj , xj), (sj , yj), (sj , zj) in grey

[patient 1]. Center: first derivatives of x̂(s), ŷ(s) and ẑ(s), superimposed to first central differences in

grey. Bottom: second derivatives of x̂(s), ŷ(s) and ẑ(s).

of the centerline may also be object of study. In fact, the hemodynamics is
influenced not only by vessel radius and curvature, but also by its torsion, even
if in a more complex, and still unclear way. The torsion depends on the first
three derivatives. Note that using splines with order m = 5, the third derivative
is a piecewise continuous line. Thus, order-5 splines can also provide continuous
estimates of the torsion.

The top line of Figure 4 shows the estimates, x̂(s), ŷ(s), ẑ(s), of the three co-
ordinate functions of patient 1 carotid centerline, obtained with order-5 free knot
regression splines with C = 4. The vertical lines show the position of the knots
along the abscissa parameter s. The estimates are superimposed to the original
(sj , xj), (sj , yj), (sj , zj) (grey dots, almost completely hidden by the estimates).
Figure 7 is a 3D image of the fitted centerline ĉ. Center and bottom lines of
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Figure 5: Curvature of ĉ(s) [patient 1]. Points
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delimiters shown in Figure 7.
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Figure 6: Estimated functions of centerline

curvature [patient 1], obtained by free knot splines

with C = 3, 4, 5 (dotted, solid and dashed).

Figure 7: 3D image of fitted centerline (the lit-

tle bullets show the positions of the spline knots),

together with rough data [patient 1]. The big

squares are the points of approximately zero cur-

vature in Figures 5, 6.
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Figure 8: Top: estimates of x′ obtained by

free knot regression splines with C = 4 (solid) and

C = 9 (dashed). Bottom: estimates of z′ obtained

by free knot regression splines with C = 4 (solid)

and C = 0.2 (dashed) [patient 1].
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Figure 4 show first and second derivatives of x̂(s), ŷ(s) and ẑ(s). Spline esti-
mates of first derivatives are superimposed to the rough estimates given by first
central differences (grey). Figure 5 shows the corresponding curvature function
of ĉ(s).

It is of particular interest to identify the points of approximately zero curva-
ture. In fact, these points can be taken as delimiters of artery bends or siphons,
whose identification is important for the morphological analysis of the ICA. Pre-
liminary investigations of the location of the aneurysms in the different bends,
and of the position inside each specific bend, yield indeed interesting results in
view of the set up of prognostic indexes. See Piccinelli et al. (2007) and Sangalli
et al. (2007b). We take as points of approximately zero curvature all points of
local minimum for the curvature, with curvature smaller than 1/(68.966mm),
where 68.966mm is the mean length of reconstructed centerlines. In words, we
consider the centerline to be locally almost linear in the points of minimum
curvature within tracts of the centerline that can be locally approximated by a
circumference having radius bigger than the average length of the reconstructed
centerlines. Figure 7 shows such points in the 3D image of ICA centerline for
patient 1.

4.1 Choice of penalization constant

The amount of penalization in the penalized sum of squared errors criterion is
fixed taking into account the tradeoff between Average Squared Error (ASE)
and DF, which translates the classical bias/variance tradeoff. Indeed, when the
penalization increases, the ASE increases while the DF decrease. This is shown
in the left part of Figure 9, which displays the boxplots of the distribution of
ASE and DF for the fits corresponding to the 65 patients, obtained by free knot
regression splines with 5 different penalizations: C = 0.2, 3, 4, 5, 9. Figure 9 also
displays the boxplots of the Average Squared Error on first derivatives (ASEder)
with respect to the rough estimates given by first central differences:

n∑

j=1

(
Dx(sj)− x̂′(sj)

)2 +
n∑

j=1

(
Dy(sj)− ŷ′(sj)

)2 +
n∑

j=1

(
Dz(sj)− ẑ′(sj)

)2
.

We choose C = 4. With this choice of the penalization constant, free knot
splines can accurately estimate the salient features of the centerlines, without
being too data-adapted. This can be better appreciated looking at spline esti-
mates of first derivatives and comparing them with central differences estimates.
Very high values of C can lead to centerlines estimates that cannot fully get the
peaks and through in the first (and thus subsequent) derivatives. See for exam-
ple the top of Figure 8, which compares the estimates of x′ obtained with C = 4
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and C = 9, for patient 1 carotid centerline. Very low values of C may instead
yield estimates where also the high frequency variation is fitted. See for example
the bottom of Figure 8, which compares the estimates of z′ obtained with C = 4
and C = 0.2, always for patient 1. These two opposite mistakes must be avoided
to get sensible estimates of curvature profiles. The choice of the particular value
C = 4 will be further discussed in next section.

It should be noted that the estimate of the curvature is stable with respect
to variations of C over a reasonable span. Figure 6, for instance, compares
the estimates of centerline curvature functions for patient 1 ICA, obtained with
C = 3, 4, 5. In particular, the points of (approximately) zero-curvature, whose
importance has been previously mentioned, do not change. To show the robust-
ness of the estimation of zero-curvature points, with respect to the choice of
the penalization constant in a reasonable span, we compare the results corre-
sponding to the three different penalization C = 3, 4, 5. For 28 out of the 65
patients, no zero-curvature point is found, in the three different estimates cor-
responding to C = 3, 4, 5. For these patients just a portion of the first siphon is
observed. For only 9 out of the 65 patients, the number of zero curvature points
is not the same in each of the three estimates: depending on the penalization,
0 points or 1 point are found, so that the three different estimates identify one
full siphon, or just a portion of it. For the remaining 28 patients, each of the
three estimates find the same number of zero-curvature points, wether 1, or 2
or 3 depending on the patient, for a total of 34 points. Moreover we point out
that not only the number of points found by the three different estimates are the
same, but also their positions are not statistically different. To show this fact we
perform a principal component analysis of the matrix U =

[
u1|u2|u3

]
that has

as columns the vectors ug = (u1g, . . . , u34g)T , for g = 1, 2, 3, with the positions
of the 34 zero-curvature points, in the three different estimates corresponding
to C = 3, 4, 5 (points are ordered according to patient and, when more than 1
point is present per patient, according to the position of the point along the
abscissa parameter s). The rows of U thus give the positions of corresponding
zero-curvature points in the three different estimates. The first principal com-
ponent of U is equal to 1√

3
(1, 1, 1), up to the 4th decimal digit, and the three

eigenvalues are respectively 1487.539, 0.187, 0.021. We thus verify that, jointly,
the second and third eigenvalue are not significantly different from (0, 0). The
p-value of the approximate chi-squared test is 0.20. This supports the assump-
tion that the positions of the 34 zero curvature points are essentially the same
in the three different estimates.
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Figure 9: Left: boxplots of the distribution of ASE, ASEder, and DF for the fits corresponding to

the 65 patients, obtained by free knot regression splines with penalizations C = 0.2, 3, 4, 5, 9. Right: the

same for the fits obtained by local polynomial smoothing with bandwidth bw = 2, 2.5, 3, 3.5, 4.

5 Comparison with local polynomial smoothing

In this section we compare free knot spline regression with a more classical
model competitor, namely local polynomial smoothing. The latter technique
was formerly used to estimate centerlines curvature in Sangalli et al. (2007b),
where estimates of centerlines were obtained fitting order-5 polynomials, with a
Gaussian kernel and bandwidth equal to 3.

Likewise free knot splines, also local polynomials are a linear estimator, Ŵ =
LW . Let m be the order of the polynomials, bw the bandwidth, and K(·) the
kernel. Moreover, denote by K1/2(s∗) the (n × n)-diagonal matrix having j-th
entry equal to

(K(
(s∗ − sj)/bw

)
/bw

)1/2, and set

S(s∗) =




1 (s1 − s∗) · · · (s1 − s∗)m−1

...
...

1 (sn − s∗) · · · (sn − s∗)m−1




17



Then the pointwise centerline estimate at s∗, given by local polynomials, is

(x̂∗, ŷ∗, ẑ∗) = eT
1,mΨ̂(s∗) (7)

where er,m represent the r-th column of an (m × m) identity matrix, and the
(m× 3)-matrix Ψ̂(s∗) is given by

Ψ̂(s∗) = argmin(Ψ)

{
tr

[
K1/2(s∗)T (W − S(s∗)Ψ)(W − S(s∗)Ψ)T K1/2(s∗)

]}

=
[
S(s∗)T K1/2(s∗)K1/2(s∗)S(s∗)

]−1
S(s∗)T K1/2(s∗)K1/2(s∗) W

Using this expression for Ψ̂(s∗), it is possible to rewrite (7) as

(x̂∗, ŷ∗, ẑ∗) =
n∑

j=1

T
(
s∗,

sj − s∗

bw

)
(xj , yj , zj)

where

T (u, v) = eT
1,m

[
S(u)T K1/2(u)K1/2(u)S(u)

]−1
diag{1, v, . . . , vm−1}K(v)/bw

and diag{·} denotes a diagonal matrix. It follows that Ŵ = LW , where the
(i, j)-th entry of the square matrix L is given by

L(i, j) = T
(
si,

sj − si

bw

)
.

To compute the trace of the smoothing matrix L, i.e. the DF of local polynomial
estimator, we use the empirical formula provided by Zhang (2003):

tr(L) = m +
n

n− 1
K0

|sn − s1|
bw

where
K0 = K(0) eT

1,m M−1 e1,m

and the (m ×m)-matrix M has (i, j)-th entry given by M(i, j) = µi+j−2, with
µd =

∫
tdK(t)dt.

Remark 2 If the three coordinates in the error term in model (1) were assumed
to be correlated, as in Remark 1, then it would be natural to look for the value
of Ψ(s∗) which minimises

tr
[
K1/2(s∗)T (W − S(s∗)Ψ)Σ−1(W − S(s∗)Ψ)T K1/2(s∗)

]

where Σ is the correlation matrix of the error term. It is easy to see that

argmin(Ψ)

{
tr

[
K1/2(s∗)T (W − S(s∗)Ψ)Σ−1(W − S(s∗)Ψ)T K1/2(s∗)

]}

= argmin(Ψ)

{
tr

[
K1/2(s∗)T (W − S(s∗)Ψ)(W − S(s∗)Ψ)T K1/2(s∗)

]}
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so that also the local least square estimate eT
1,mΨ̂(s∗) does not depend on Σ.

We now want to argue that, at the cost of an affordable increase in compu-
tational cost, estimation by free knot splines has many comparative advantages
over kernel smoothing.

Data dimension reduction and computational advantages. Two important
gains obtained by using free knot splines are related to their functional nature.
Splines naturally yields a dimension reduction of data, which is a fundamental
issue for our highly dimensional dataset; moreover, the closed functional form
of their estimates can be exploited in subsequent analyses of the fitted curves,
avoiding reiterated numerical approximations.

Efficiency. Smoothing by free knot regression splines is more efficient than
smoothing by local polynomials, in the sense that the former technique attains
lower ASE, and lower ASEder, using less DF. This is shown in Figure 9, which
compares the boxplots of the distribution of ASE, ASEder, and DF, for the fits
corresponding to the 65 patients, obtained with the two different techniques.
Various values of C and bw are considered, covering a wide range of ASE. Note
that there is no value of the bandwidth for which local polynomials can beat
free knot splines on both ASE and DF; whereas it is always possible to find a
value of C for which splines estimates do better than local polynomials in both
ASE, DF, and also ASEder.

Accuracy. Free knot splines can better estimate the salient features of the
curves, expressed by its first derivatives. In fact, even with an higher ASE,
splines can attain a lower ASEder. See Figure 9. This means that spline esti-
mates can simultaneously be more accurate and less data adapted. Note that
spline estimates with C = 4, the particular value we have chosen, and the local
polynomial estimates with bw = 3, considered in Sangalli et al. (2007b), have
similar ASEder, but splines have higher ASE and less DF. Spline estimates have
an higher accuracy thanks to their local adaptivity, which allows them to better
detect sharp peaks and troughs in the first and second derivatives. Figure 10, for
example, compares estimates of x′(s) for patient 1, obtained by central differ-
ences, by free knot regression splines with C = 4 (ASE=0.0115, ASEder=0.0161,
and DF=20), and by local polynomial smoothing with bw = 3 (ASE=0.0056,
ASEder=0.0159, and DF=32.28). Even if for this particular patient, the ASEder
is lower for local polynomials than for splines, splines can better get the peaks
and troughs in the first derivative, being otherwise smooth, whereas local poly-
nomials cannot fully get these features. Also in subsequent derivatives, spline
estimates exhibit more clear-cut peaks and troughs, being otherwise smooth,
whereas local polynomial estimates show flatter local features, but are more
wiggly over the whole range. Note that the ability of spline of better detecting

19



−100 −80 −60 −40 −20 0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s

x’

Figure 10: Estimates of x′ obtained by free knot splines with C = 4 (solid), and by local polynomial

smoothing with bw = 3 (dashed), superimposed to first central differences (grey) [patient 1].

salient local features is particular important in our problem, where a big interest
lies in curvature landmarks such as peaks and zeros, and their possible influences
on hemodynamics. It should be mentioned that this very comparative advan-
tage of free knot splines over other smoothing methods has been also evidenced
by Gervini (2006), who carried out comparative simulation studies of free knot
splines versus smoothing splines.

Sangalli et al. (2007b) used local polynomials to obtain pointwise estimates
of vessel centerlines and their curvature functions, and carried out explorative
analyses of vessel curvature and radius profiles. Firstly, centerlines estimates
undergo a process of registration, in order to separate their phase variability
from their amplitude variability. Then, in order to find the main uncorrelated
modes of variability, two separate functional principal component analyses are
performed on the registered radius and curvature profiles. Finally, a quadratic
discriminant analysis, of principal components scores, identifies the optimal num-
ber of principal components that discriminate at best patients with an aneurysm
downstream the terminal bifurcation of the ICA from the remaining patients.
This first study supported the existence of a strong relationship between vessel
geometry and aneurysm location. This conclusion has been then confirmed in
Sangalli et al. (2007a), where the same analyses are performed using centerline
estimates based on splines. The consistency of the results is obtained thanks to
the fact that the first two principal components of the registered radius and cur-
vature profiles, obtained with splines estimates, do not display significant differ-
ences with respect to the old ones, obtained with local polynomials. Differences
become instead appreciable in the subsequent principal components of curva-
ture, that were not considered in this study, since discarded by the quadratic
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discriminant analysis.

6 Discussion

In this paper we have shown how to efficiently estimate a 3D curve and its deriva-
tives by means of free knot regression splines. We have shown that the estimates
obtained are more efficient than the estimates based on local polynomials, and
that they can better estimate the local salient feature of the curve. Very re-
cently, Gluhovsky and Gluhovsky (2007) proposed a method to choose location-
dependent bandwidths in local polynomials. A location-dependent bandwidth
may also limit the drawbacks of local polynomials experienced in our 3D prob-
lem. An extension to the 3D case of the complex technique proposed by the
two authors goes beyond the scope of the present paper. In the same paper,
Gluhovsky and Gluhovsky express perplexities about the possibility of obtain-
ing local adaptivity with regression splines methods. We believe our work dispels
such doubts.
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