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Abstract

In this work we consider the Optimized Schwarz method designed for com-
putational domains that feature spherical or almost spherical interfaces. In
the first part, we consider the diffusion-reaction problem. We provide a
convergence analysis of the generalized Schwarz method, we discuss an op-
timization procedure for constant interface parameters leading to a Robin-
Robin scheme, and we present some numerical results both in spherical and
in ellipsoidal domains. In the second part of the work, we address the fluid-
structure interaction problem. Again, we provide a convergence analysis
and discuss optimal choices of constant interface parameters. Finally, we
present 3D numerical results inspired by hemodynamic applications, to val-
idate the proposed optimal choices in presence of large added mass effect.
In particular, we consider numerical experiments both in an ideal spherical
domain and in a realistic abdominal aortic aneurysm.
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1 Introduction

The Optimized Schwarz Method (OSM) is an effective strategy to solve partial
differential equations in a domain decomposition framework [13, 21, 23, 36]. In
recent years, several improvements and applications of such a method have been
provided by many authors. We mention, for example, the asynchronous update
of the interface conditions [26], a posteriori error estimates [2], GPU-based so-
lutions [25]. Also, analysis and applications for increasingly complex problems
have been performed, for example for the Navier-Stokes equations [5], the gravi-
tational potential problem [25], fluid-structure interaction [16,19], shallow-water
equations [32], Maxwell’s equations [9], Stokes-Darcy coupling [8].

Another field of study where a particular attention has been recently paid is
the study of OSM for specific interface morphologies. This has been motivated
by concrete applications where usually the interfaces among subproblems are
not straight as in standard analyses of OSM. With this respect, we mention [24],
where an analysis based on the Steklov-Poincaré operator has been obtained for
general interfaces. Specific analyses and optimizations have been then performed
for cylindrical [17–19,38] and circular interfaces [14,15,20].

In this work, we consider OSM for a new class of interfaces, namely the
spherical ones. This is motivated by the application we have in mind, i.e. hemo-
dynamics, where in some scenarios blood flows in domains which are of almost-
spherical shape, as happens for example in abdominal and cerebral aneurysms
and in the heart ventricles [33].

In the first part of the paper, we preliminarily focus on the diffusion-reaction
problem (Sections 2, 3 and 4), whereas in the second one we study the fluid-
structure interaction (FSI) problem, with the aim of addressing hemodynamic
applications (Sections 5 and 6). In both cases, we provide a convergence analysis
which allows us to obtain the corresponding reduction factors as a function of
the interface symbols characterizing the interface conditions. Several numerical
experiments are then shown. In particular, we consider two-dimensional axy-
symmetric simulations for the diffusion-reaction problem, both for spherical and
ellipsoidal domains, and three-dimensional simulations for the FSI case, first
in ideal spherical domains and finally in a realistic geometry of an abdominal
aortic aneurysm. For all the numerical simulations, optimized interface constant
symbols obtained by the abstract optimization procedure developed in [18] are
used and compared with other non-optimal choices.

2 The diffusion-reaction problem

2.1 Problem setting

Given functions f, µ and γ, we consider the following problem in the sphere Ω
with radius R+H:
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Find u such that
−µ4u+ γu = f in Ω,
u = 0 on ∂Ω.

(1)

Consider now an internal spherical interface Σ (whose center coincides with
that of Ω) with radius R and, accordingly, split Ω into two non-overlapping
subdomains, the sphere Ω1 of radius R and the spherical shell Ω2 with thickness
H.

Then, problem (1) can be equivalently written in a multidomain formulation
as follows:
Find u1 and u2 such that

− µ4u1 + γu1 = f in Ω1,

u1 = u2 on Σ, (2a)

µ
∂u1

∂r
= µ

∂u2

∂r
on Σ, (2b)

− µ4u2 + γu2 = f in Ω2,

u2 = 0 on ∂Ω,

where r is the radial coordinate.
Introduce now the interface functions S1 and S2. Then, by linearly combining

through such functions the interface conditions (2a)-(2b), we can introduce the
following Generalized Schwarz algorithm for the solution of (1):

Let u
(0)
2 be given. Then, at each iteration k > 0, until convergence

1. Solve the subproblem in Ω1:

− µ4u(k)
1 + γu

(k)
1 = f in Ω1,

S1u
(k)
1 + µ

∂u
(k)
1

∂r
= S1u

(k−1)
2 + µ

∂u
(k−1)
2

∂r
on Σ;

2. Then, solve the subproblem in Ω2:

− µ4u(k)
2 + γu

(k)
2 = f in Ω2,

S2u
(k)
2 + µ

∂u
(k)
2

∂r
= S2u

(k)
1 + µ

∂u
(k)
1

∂r
on Σ,

u
(k)
2 = 0 on ∂Ω.

2.2 Convergence analysis

Referring to Figure 1, in view of the convergence analysis of iterations (3)-(4),
we write the Laplacian operator in spherical coordinates as follows:

∆sph =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin2 ϕ

∂2

∂θ2
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂

∂ϕ

)
.
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Figure 1: Spherical coordinates.

Now, set x = rx′, where r = ‖x‖ and x′ = x/ ‖x‖ , and let{
Pm,l

(
x′
)}+∞,km

m=0,l=1

be an orthonormal basis of spherical harmonics of the unit sphere S2, where
km = (2m+ 1) is the dimension of the eigenspace associated with the eigenvalue
λm = m(m+1), m = 0, . . . ,+∞, see, e.g., [12]. Then, for any function v (x), let

v̂ (r,m, l) =

∫
S2

v
(
rx′
)
Pm,l (x′)dσ

(
x′
)

(6)

be its Fourier transform with respect to x′. Notice that the frequency variable
m related to the spatial variable x′ is discrete, since S2 is a compact manifold.

In view of the convergence analysis, we introduce the modified Bessel func-
tions of first and second kind Iν and Kν , see [22]. Moreover, set

α =

√
γ

µ
, χ =

Km+ 1
2

((R+H)α)

Im+ 1
2

((R+H)α)
. (7)

As usual, we set f = 0 in order to analyze convergence towards the null solution.
We have the following result.

Proposition 1. The convergence factor of iterations (3)-(4) is given by

ρ(m) =

∣∣∣∣σ1(m)−A(m)

σ2(m)−A(m)
· σ2(m)−B(m)

σ1(m)−B(m)

∣∣∣∣ , (8)

where

A(m) = −µ
2αRK ′

m+ 1
2

(αR)−Km+ 1
2
(αR)− 2αRχI ′

m+ 1
2

(αR) + χIm+ 1
2
(αR)

2R
(
Km+ 1

2
(αR)− χIm+ 1

2
(αR)

) ,(9)

B(m) = −µ
2αRI ′

m+ 1
2

(αR)− Im+ 1
2
(αR)

2RIm+ 1
2
(αR)

, (10)
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and σi are the Fourier symbols related to the interface operators Si, i = 1, 2.

Proof. Following [18], by applying the Fourier transform (6) to problems (3) and
(4), and by using (5), we obtain the following ordinary differential equations in
the variable r:

r2∂
2ûi

(k)

∂r2
+ 2r

∂ûi
(k)

∂r
−
(
m(m+ 1) +

γ

µ
r2

)
ûi

(k) = 0, i = 1, 2. (11)

Through the change of variables ûi
(k)(r) = vi(αr)/

√
r, equations (11) become

v′′i (t) +
1

t
v′i(t)−

(
1 +

(m+ 1
2)2

t2

)
vi(t) = 0, i = 1, 2.

These are modified Bessel equations and their solutions are given by the modified
Bessel functions of first and second kind introduced above:

vi(t) = Xi,1Im+ 1
2
(t) +Xi,2Km+ 1

2
(t), i = 1, 2,

for suitable functions of the frequency Xi,j , i, j = 1, 2.
Thus, the Fourier transform of i-th solution at iteration k > 0 in the Gener-

alized Schwarz algorithm (3)-(4) assumes the following form:

ûi
(k)(r,m, l) = X

(k)
i,1 (m, l)

Im+ 1
2
(αr)
√
r

+X
(k)
i,2 (m, l)

Km+ 1
2
(αr)

√
r

.

Since we assume that the solution u1 is bounded for r = 0, we have

û1
(k)(r,m, l) = X

(k)
1 (m, l)

Im+ 1
2
(αr)
√
r

. (12)

Instead, due to the homogeneus Dirichlet condition at ∂Ω

û2
(k)(R+H,m, l) = X

(k)
2,1 (m, l)

Im+ 1
2
((R+H)α)
√
R+H

+X
(k)
2,2 (m, l)

Km+ 1
2
((R+H)α)
√
R+H

= 0,

we have

X
(k)
2,1 = −

Km+ 1
2
((R+H)α)

Im+ 1
2
((R+H)α)

X
(k)
2,2 .

Thus, we have

û2
(k)(r,m, l) =

X
(k)
2 (m, l)√

r

(
Km+ 1

2
(αr)− χIm+ 1

2
(αr)

)
, (13)

with χ given by (23).
Inserting the solutions (12)-(13) in the interface conditions of iterations (3)-

(4) and proceeding as usual (see, e.g., [18]), it is now easy to show that the
reduction factor related to (3)-(4) is given by (8)-(9)-(10).
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3 Optimization procedure and choice of the frequen-
cies

In view of the numerical experiments, an optimization procedure is mandatory
in order to select reliable values (e.g. among the constants) for the interface
parameters σ1 and σ2. Specific optimization procedures could be in principle
developed for the problem at hand. These would lead to optimal values of the
interface parameters that should make the reduction factor small in comparison
to other values for a wide range of frequencies m.

Here, instead, we consider the abstract optimization procedure developed
in [18], which provides a range of ”optimal” constant values for the interface
parameters, thus leading to an optimized Robin-Robin scheme. With respect
to specific procedures, this one is not able to determine the best choice for the
interface parameters, rather only a range of good ones. On the other side, its
great advantage is that it is completely general, thus ready to be applied to
reduction factors related to a wide class of problems [19,20].

For the sake of completeness, we review in what follows the abstract opti-
mization procedure reported in [18]. For clarity purposes, we report it directly
for the case we have in mind, where only the discrete frequency m is involved.

Assume that the reduction factor has precisely the form of (8) with A and
B general functions of m. Assume also that A(m) and B(m) are bounded on
some set K, with B < A for all m ∈ K, and set

B = max
m∈K

B(m), A = min
m∈K

A(m),

M =
1

2
(A+B), M(m) =

1

2
(A(m) +B(m)),

D(m) =
1

2
(A(m)−B(m)), Q = max

m∈K
Q(m),

N =
min
m∈K

D(m)

max
m∈K

D(m)
, Q(m) =

|M(m)−M |
D(m)

.

The procedure searches optimal values on a specific straight line in the plane
σ1, σ2, namely {

σ1 = p,

σ2 = 2M − p.

In particular, it is proven that, setting

ρ0 = max


(

1−
√
N

1 +
√
N

)2

;

1−
√

1−Q2

Q

2
 ,

for all m ∈ K, we have
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ρ̂(p,m) =

∣∣∣∣ p−A(m)

−p+ 2M −A(m)

−p+ 2M −B(m)

p−B(m)

∣∣∣∣ ≤ ρ0 ⇐⇒ p ∈ [p−, p+],

with

p− = M+ sup
m∈K

{
1 + ρ0

1− ρ0
D(m)−

√(
M −M(m)

)2
+

4ρ0

(1− ρ0)2
(D(m))2

}
,

p+ = M+ inf
m∈K

{
1 + ρ0

1− ρ0
D(m) +

√(
M −M(m)

)2
+

4ρ0

(1− ρ0)2
(D(m))2

}
.

The strong point of this result is that the range [p−, p+] guarantees that the
reduction factor is less than ρ0 for any m ∈ K.

A crucial point from the practical point of view in the application of the
previous result is played by the choice of the set of frequencies K. Indeed,
different sets lead to different ranges [p−, p+]. In general, the set K is of the
type [mmin,mmax]. We discuss in what follows three possible choices of the
extreme points of such a range [20].

1. mmin = 0,mmax = N− 1. The first choice consists in considering all the
admissible frequencies which avoid the aliasing phenomenon for a given
computational mesh. In this casemmin = 0, whereas we havemmax = N−1,
where N is such that simple algebraic considerations ensure that aliasing
appears as soon as one replaces N − 1 with any bigger number. In partic-
ular, by calling Rx1, . . . , Rxn the interface mesh nodes and expanding a
function with respect to the eigenfunctions of the unit sphere Pm,l intro-
duced above, then, for a given function g, the linear system

g(Rx1) =
∑N−1

m=0

∑2m+1
l=1 am,lPm,l(x1)

. . .

. . .

g(Rxn) =
∑N−1

m=0

∑2m+1
l=1 am,lPm,l(xn)

does not admit a unique solution if the number of unknowns am,l (which

is
∑N−1

m=0 2m + 1 = N2) is greater than the number of equations, i.e. the
number of interface points n. Thus, we have that the number of admissible
frequencies N is related to the number of interface nodes n by the relation
N =

√
n;

2. mmin = Mmin,mmax = Mmax. The second choice is based on observing
that among the admissible frequencies [0, N − 1] one expects that only a
subset of frequencies [Mmin,Mmax] could play a major role in determining
the reduction factor. This choice could be motivated, for example, by the
particular shape of the computational domain or by the problem at hand
(pure diffusion, presence of advection, ...). The hope here is that focusing
on a smaller effective range of frequencies, the optimization procedure
could provide a better range [p−, p+] in terms of convergence;
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3. mmin = m1,mmax = m2. The last choice is provided by the minimum
and maximum frequencies m1 and m2 appearing in the initial guess of the
algorithm. The idea is that frequencies outside this range should not give
a significant contribution to determining the reduction factor. This could
again provide a better range [p−, p+].

4 Numerical results for the diffusion-reaction prob-
lem

We present here some numerical results for the diffusion-reaction problem. These
were obtained by considering 2D axi-symmetric simulations. In the first test
(test-I) we consider a spherical computational domain, whereas in the second
one (test-II) we consider an ellipsoidal domain.

In all the cases, cubic P3 Lagrangian Finite Elements and the open library
Freefem++ (www.freefem.otg) have been used. Moreover, we set µ = γ = 1.0, f = 0.0,

and the mesh is such that N = 31. The initial guess is u
(0)
2 =

∑10
m=0 Pm(x/r), so

that m1 = 0 and m2 = 10. Here, Pm are the Legendre polynomials and Pm(x/r)
is the only axi-symmetric spherical harmonic corresponding to the frequency
variable m. The minimum frequency mmin used in the optimization procedure
is always set equal to 0.

The stopping criteron is given by [3]∫
Σ
σ1

∣∣∣u(k)
1 − u

(k)
2

∣∣∣+

∣∣∣∣∣µ∂u(k)
1

∂r
− µ∂u

(k)
2

∂r

∣∣∣∣∣ < ε,

with ε = 10−7.

4.1 Results in a spherical domain

In this test, Ω is given by the rotation around the x−axis of half of a circle of
radius Rtot = 1.5, see Figure 2. The interface Σ is obtained by rotating half of

Figure 2: Computational domain for the axi-symmetric simulations.

the circumference of radius R = 1.0 around the x−axis. Thus, the thickness of
the spherical shell Ω2 is H = 0.5.
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In what follows we report the convergence properties of numerical simulations
obtained for different choices of mmax. For each case, the optimal range [p−, p+]
is evaluated.

1. mmax = m2 = 10. We suppose that the dominant frequencies are
those appearing in the initial guess. By applying the optimization procedure,
we obtain:

[p−, p+] = [5.669, 5.708], M = 1.425, ρ0 = 0.179.

2. mmax = Mmax = 20. We assume that other relevant frequencies
than the initial ones appear during the iterations. By applying the optimization
procedure, we obtain:

[p−, p+] = [7.386, 7.399], M = 1.425, ρ0 = 0.301.

3. mmax = N − 1 = 30. We assume that all the admissible frequencies
are relevent in determining the reduction factor. By applying the optimization
procedure, we obtain:

[p−, p+] = [8.702, 8.710], M = 1.425, ρ0 = 0.378.

Notice that in all the three cases, the value of M is the same, thus the re-
search of the optimal value is obtained by moving along the same straight line
s : σ2 = −σ1 + 2.85.

In Table 1, we report the convergence results for different values of p that
guarantee to be on this line. In particular, we consider the three optimal values
σoptji , j = 1, 2, 3, obtained a priori minimizing, for each of the three estimated
ranges, the reduction factor for the values of σ1 and σ2 belonging to s. We also
consider other values outside such ranges, still moving along the line s.

σ1 σ2 = 2M − σ1 # iter

σ1 = 2.00 σ2 = 0.85 54

σ1 = 4.00 σ2 = −1.15 17

σ1 = σopt11 = 5.69 σ2 = −2.84 12

σ1 = σopt21 = 7.39 σ2 = −4.54 14

σ1 = σopt31 = 8.71 σ2 = −5.86 17

σ1 = 10.00 σ2 = −7.15 19

σ1 = 12.00 σ2 = −9.15 23

σ1 = +∞ σ2 = 0 131

Table 1: Convergence properties for different values of the interface parameters.
Test I.

From these results we observe that the optimal value is p = 5.69. This value
perfectly falls down in the first of the three ranges given by the optimization pro-
cedure ([5.669, 5.708]), whose extreme points, due to its smallness, in fact provide
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directly an excellent approximation of the optimal value. This is consistent with
the value of ρ0 which is the smallest one among the three estimates. This is
probably due to the fact that in this case the smallest frequencies are the most
relevant ones, since the initial guess does not contain frequencies greater than
10. Thus, in the optimization procedure it is enough to consider as maximum
frequency mmax, i.e. the greatest one appearing in the initial condition.

We notice also the great improvement of the generalized Schwarz (Robin-
Robin) algorithm with respect to the Dirichlet-Neumann one (σ1 = +∞, σ2 = 0)
with an Aitken acceleration procedure [7, 34].

4.2 Results in an ellipsoidal domain

In the next numerical experiment, we consider a computational domain which
is not a sphere. Indeed, our hope is that our spherical analysis and optimiza-
tion procedure provide effective values of the interface parameters also for non-
spherical interfaces, provided that the shape of the domain and of the interface
is almost spherical. In this case, we do not obtain the optimal values for such a
configuration, but however we expect to obtain excellent approximations.

To this aim, we consider an ellipsoidal domain with semi-axis equal to a+H, b+H
and b+H for the x, y and z direction, respectively, obtained by a rotation around
the x−axis of the ellipse with semi-axis equal to a+H (x−direction) and b+H
(y−direction). The interface Σ is obtained by rotating around the x−axis half
of the ellipse with semi-axis of length a and b.

For the choice of the radius of the sphere to be used in the analysis and opti-
mization procedure for the computation of A and B in (9)-(10), we study the nu-
merical performance of four different choices: R = a, R = b, R = (a+b)/2, R =

√
ab,

i.e. the two values of the semi-axes and the two means, the arithmetic and the
geometric ones. We set mmax = m2 = 10.

In Table 2 we report the convergence properties of two numerical tests, one
for an ellipsoidal domain with a very low eccentricity (a = 1.5, b = 1.2), and the
other one with a greater value of the eccentricity (a = 3.0, b = 1.2). The opti-
mal values of σ1 and σ2 and the corresponding reduction factor have been found
within the range of values belonging to a straight line, as described above. From

ρ0 σopt1 σopt2 # iter ρ0 σopt1 σopt2 # iter

R = a 0.12 4.57 -2.18 11 0.04 3.30 -1.47 9

R = b 0.15 5.14 -2.51 12 0.15 5.14 -2.51 13

R = a+b
2 0.13 4.83 -2.32 11 0.08 3.87 -1.78 10

R =
√

(ab) 0.14 4.84 -2.33 11 0.09 4.06 -1.89 11

Table 2: Number of iterations for the ellipsoidal domain. Left: a = 1.5, b = 1.2.
Right: a = 3.0, b = 1.2. Test II.

these results, we observe that when the eccentricity is low, all the choices pro-
posed to estimate R in the optimization procedure work well. For an increased
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eccentricity, we observe instead some differences among the four choices, in par-
ticular R = a, i.e. approximating R with the length of the longest semi-axis,
seems to produce better results.

5 The fluid-structure interaction problem

In the second part of the work, we focus on the fluid-structure interaction prob-
lem. The analysis and optimization procedure we are going to show will allow
us to develop effective Robin-Robin algorithms for the solution of the FSI prob-
lem, when spherical-like interfaces separate fluid and structure. We are here
interested in hemodynamics, in particular in the FSI problem arising between
blood and vessel wall in an abdominal aortic aneurysm (AAA), i.e. a pathologi-
cal enlargement of the abdominal aorta which in many cases assumes an almost
spherical-like shape [31,37].

In the following sections, we will provide a convergence analysis for a simpli-
fied FSI problem and then report the convergence properties of some numerical
experiments, for a spherical domain and for a real AAA domain.

5.1 Problem setting

In view of the theoretical analysis, we consider a simplified problem arising from
the interaction between the equations describing an incompressible, inviscid and
linear fluid occupying the sphere Ωf = {x ∈ R3 : x2+y2+z2 < R2}, and the wave
equation (used as a simplified model for the linear elastic structure problem) oc-
cupying the spherical shell Ωs = {x ∈ R3 : R2 < x2 + y2 + z2 < (R+H)2}. The
two subproblems interact at the common interface Σ = {x ∈ R3 : x2+y2+z2 = R2}.
The external surface is denoted by Σout and n is the outward unit normal.

The problem we are considering at discrete time tn+1 = (n + 1)∆t is the
following:

ρfδtu+∇p = 0 in Ωf , (15a)

∇ · u = 0 in Ωf , (15b)

u · n = δtη · n on Σ, (15c)

− p = λ∇ηn · n on Σ, (15d)

η × n = 0 on Σ, (15e)

ρsδttη − λ∆η = 0 in Ωs, (15f)

γSTη + λ∇ηn = Pextn on Σout, (15g)

where u and p stand for fluid velocity and pressure, η represents the structure
displacement, ρf and ρs are the fluid and structure densities, λ the coefficient
related to the wave propagation that surrogates the elastic properties of the ma-
terial, δtw = w−wn

∆t and δttw = δtw−δtwn

∆t , with ∆t the time discretization step,
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and where the current temporal index n + 1 is understood. Equations (15a)-
(15b) represent the fluid problem, (15f)-(15g) the structure problem equipped
with a Robin condition at the external surface to account for the effect of an
elastic surrounding tissue with elasticity modulus γST . Pext is an external pres-
sure. Conditions (15c) and (15d) represent the coupling conditions at the fluid-
structure interface. Notice that owing to the inviscid nature of the fluid, the
coupling at the interface occurs only in the normal direction. For this reason,
we have to complete the boundary conditions for the structure problem along
the tangential direction, for example by means of (15e).

Proceeding as above, we introduce two linear combinations of (15c) and
(15d) by means of the interface operators Sf and Ss, obtaining the following
generalized Robin interface conditions:

Sfur − p = Sfδtηr + λ∂rηr,

Ssδtηr + λ∂rηr = Ssur − p,

where ur = u ·n, ηr = η ·n. Rearranging the previous conditions, we can write
them equivalently as follows:

Sf∆tδtur − p =
Sf
∆t

ηr + λ∂rηr + F1(unr , η
n
r ), (16a)

Ss
∆t

ηr + λ∂rηr = Ss∆tδtur − p+ F2(unr , η
n
r ), (16b)

where F1, F2 contain terms at the previous time step n.
The FSI problem described by (15a)-(15g) can be equivalently rewritten

by considering (16a) and (16b) as interface conditions. Thus, the Generalized
Schwarz algorithm corresponding to problem given by (15a)-(15b)-(15e)-(15f)-
(15g)-(16a)-(16b) reads as follows:

Set η
(0)
r = ηnr . Then, at each iteration k > 0, until convergence

1. Solve the fluid problem:

ρfδtu
(k) +∇p(k) = 0 in Ωf ,(17a)

∇ · u(k) = 0 in Ωf ,

Sf∆tδtu
(k)
r − p(k) =

Sf
∆t

η(k−1)
r + λ∂rη

(k−1)
r + F1(unr , η

n
r ) on Σ;

2. Then, solve the structure problem

ρsδttη
(k) − λ∆η(k) = 0 in Ωs,

γSTη
(k) + λ∇η(k)n = Pextn on Σout,

Ss
∆t

η(k)
r + λ∂rη

(k)
r = Ss∆tδtu

(k)
r − p(k) + F2(unr , η

n
r ) on Σ,

η(k) × n = 0 on Σ.

12



5.2 Convergence analysis

In view of the convergence analysis of the previous algorithm, we first note that
as usual we can refer to the homogeneous case, thus we set to zero the quantities
at previous time steps. Moreover, by applying the divergence operator to the
first of (17), we face with a laplacian problem for the pressure solely. Finally,
starting again from (17a), we exploit that at the interface

(ρfδtu+∇p) · n |Σ = 0,

leading to
∂rp|Σ = −ρfδtur|Σ.

From these observations, the Generalized Schwarz algorithm (17)- (18) could be
written as follows:
Set η

(0)
r = ηnr . Then, at each iteration k > 0, until convergence

1. Solve the fluid problem:

4p(k) = 0 in Ωf ,

− Sf
∆t

ρf
∂rp

(k) − p(k) =
Sf
∆t

η(k−1)
r + λ∂rη

(k−1)
r on Σ; (19a)

2. Then, solve the structure problem

ρs
∆t2

η(k) − λ∆η(k) = 0 in Ωs,

γSTη
(k) + λ∇η(k)n = Pextn on Σout, (20a)

Ss
∆t

η(k)
r + λ∂rη

(k)
r = −Ss

∆t

ρf
∂rp

(k) − p(k) on Σ, (20b)

η(k) × n = 0 on Σ.

We have he following result.

Proposition 2. Set

A(m) = −
λ∆t

(
2β RK ′m+1/2(β R)−Km+1/2(β R)− χ

(
2β R I ′m+1/2(β R)− Im+1/2(β R)

))
2R
(
Km+1/2(β R)− χ Im+1/2(β R)

) ,

B(m) = − ρf R
∆tm ,

(21)
where we have set

β =

√
ρs
λ∆t2

, (22)

and

χ(m) =
2γST (R+H)Km+1/2 (β(R+H)) + 2λβ(R+H)K ′m+1/2(β(R+H))− λKm+1/2 (β(R+H))

2γST (R+H)Im+1/2 (β(R+H)) + 2λβ(R+H)I ′m+1/2(β(R+H))− λIm+1/2 (β(R+H))
.

(23)

13



Then, the reduction factor of iterations (17)-(18) is given by

ρ(m) =


∣∣∣∣ σf (0)−A(0)

σs(0)−A(0)

∣∣∣∣ , if m = 0,∣∣∣∣ σf (m)−A(m)

σs(m)−A(m)
· σs(m)−B(m)

σf (m)−B(m)

∣∣∣∣ , if m 6= 0,
(24)

where σf and σs are the symbols of Sf and Ss, respectively,

Proof. We start from the fluid problem. From (19) and applying the Fourier
tranform (6) with (5), we obtain the following ordinary differential equations in
the variable r:

r2∂
2p̂(k)

∂r2
+ 2r

∂p̂(k)

∂r
−m(m+ 1)p̂(k) = 0.

The solution of the previous ODE is given by p̂(k)(r,m, l) = X
(k)
f,1 (m, l) rm+X

(k)
f,2 (m, l) r−m−1,

for suitable functions X
(k)
f,1 and X

(k)
f,2 . Since, we assume that the pressure p is

bounded for r = 0, we have

p̂(k)(r,m, l) = X
(k)
f (m, l) rm. (25)

Regarding the structure problem (18), by applying again the Fourier tran-
form (6) and (5), we face with an equation for ηr equal to (11) with ρs

λ∆t2
instead

of γµ . Thus, the solution is given by η̂
(k)
r (r,m, l) = X

(k)
s,1 (m, l)

Im+1/2(βr)√
r

+X
(k)
s,2 (m, l)

Km+1/2(βr)√
r

for suitable functions X
(k)
s,1 and X

(k)
s,2 and with β given by (22). Now, we impose

condition (20a), leading to

γST

(
X

(k)
s,1

Im+1/2(βr)
√
r

+X
(k)
s,2

Km+1/2(βr)
√
r

)
+λ

(
X

(k)
s,1 β

I ′m+1/2(βr)
√
r

−X(k)
s,1

Im+1/2(βr)

2
√
r3

+X
(k)
s,2 β

K ′m+1/2(βr)
√
r

−X(k)
s,2

Km+1/2(βr)

2
√
r3

)∣∣∣∣∣
r=R+H

= 0,

and thus to X
(k)
s,1 = −χX(k)

s,2 , where χ is given by (23). Therefore, the structure
solution is

η̂(k)
r (r,m, l) = X(k)

s (m, l)
1√
r

[
Km+1/2(βr)− χ(m)Im+1/2(βr)

]
. (26)

By inserting the solutions (25) and (26) in the interface conditions (19a)-
(20b), the thesis follows.

6 Numerical results for the fluid-structure interac-
tion problem

6.1 Optimization procedure

In view of the numerical results, we need suitable values for the interface symbols
Sf and Ss in the iterations (17)-(18). We proceed as done in Sect. 3, i.e. we
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look for constant values along the straight line defined by (14), i.e. of the form{
σf = p,

σs = 2M − p,

where p belongs to a suitable range [p−, p+] and A and B are given by (21).
For the choice of the frequencies to be used in the optimization procedure,

we consider all the frequencies m ∈ [0, N − 1], with N =
√
n and n the number

of interface nodes (see strategy 1 in Sect. 3) .

6.2 Problem setting

We present in what follows the fluid-structure interaction problem we are going
to consider to validate the theoretical findings of the previous section. In partic-
ular, we are interested in hemodynamics where the large added mass effect due
to the similarity of the densities makes the convergence of partitioned algorithms
very challenging [6, 29].

We consider the coupling between the Navier-Stokes equations for an incom-
pressible fluid solved in the Arbitrary Lagrangian-Eulerian formulation [10] and
the linear infinitesimal elasticity. The main purpose here is to verify that the
optimal interface parameters found for the simplified FSI problem analyzed in
the previous section are effective also for the ”complete” FSI problem. We have
for each t:

ρf∂
A
t u+ ρf ((u− ω) · ∇)u−∇ · T f (u, p) = 0 in Ωf ,

∇ · u = 0 in Ωf ,

ρs∂ttη̂ −∇ · T̂ s(η̂) = 0 in Ω̂s, (27a)

u = δtη on Σ,

T fn− T sn = 0 on Σ,

where T f (u, p) = −pI+µ(∇u+(∇u)T ) is the Cauchy stress tensor for the fluid,
with µ the dynamic viscosity. Moreover, ∂At represents the ALE derivative, i.e.
the time derivative in the Arbitrary Lagrangian-Eulerian framework, and ω is
the velocity of the fluid domain obtained by solving an harmonic extension of the
interface velocity with homogeneous Dirichlet boundary conditions on Ωf \ Σ.
Notice that, accordingly, Ωf changes in time. Instead, the structure problem
(27a) is solved in a Lagrangian framework and for this reason we have indicated
with ̂ the corresponding quantities. Moreover, T s is the structure Cauchy stress
tensor given by

T s(η) = λ1(∇η + (∇η)T ) + λ2(∇ · η)I,

where λ1 and λ2 are the Lamé constants, that can be defined in terms of the
Young modulus E and the Poisson ratio ν as follows

λ1 =
E

2(1 + ν)
, λ2 =

νE

(1 + ν)(1− 2ν)
.
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We assume that the value of λ in the simplified structure problem (15f) is ap-
proximated by λ = Gλ1, where G = π

12 is the Timoshencko correction factor [16].
We use the following values for parameters: µ = 0.035 g/(cms), ρf = 1.0 g/cm3,

ρs = 1.1 g/cm3, ν = 0.49, E = 3 · 106 dyne/cm2, ∆t = 10−3s. Accordingly, we
have λ = 8.3 · 105 g/(cms2).

We consider a backward Euler time discretization with a semi-implicit treat-
ment of the convective term for the fluid and the BDF1 scheme for the structure.
Moreover, we consider a semi-implicit treatment also for the geometric coupling,
i.e. the fluid domain is found by extrapolation of previous time steps [4, 11,28].
We use the pair of stable finite elements P1,bubble−P1 for the fluid subproblem and
P1 for the strucure subproblem. The convergence of the Robin-Robin algorithm
has been monitored by evaluating at each iteration the following quantity [3]∫

Σ
σf

∣∣∣u(k) − δtη(k)
∣∣∣+
∣∣∣T f (u(k), p(k))− T s(η(k))

∣∣∣ < ε,

where the value of the tolerance parameter ε has been set equal to 10−7.
The numerical simulations have been performed with the Finite Elements

library LIFEV [1].

6.3 The case of spherical domain

We start considering an FSI test in a 3D sphere cut at two opposite sides where
the inlet and outlet planar sections Γin and Γout are located, see the correspond-
ing fluid mesh in Figure 3. We have R = 0.5 cm and H = 0.1 cm, and the meshes

Figure 3: Computational fluid mesh for the FSI test in the sphere.

are such that the number of tetrahedra are about 33k for the fluid and 5k for
the structure. Moreover, we have N = 38.
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On the portion of Γin corresponing to the fluid domain, we prescribed the
impulsive Neumann condition T f (u, p)n = −Pinn, where

Pin =

{
10 dyne/cm2 for t < 0.008s,

0 for 0.008s ≤ t ≤ T ,

where T = 0.020 s. At the fluid outlet, we prescribed an absorbing boundary
condition, see [28, 30]. For the structure, on both the inlet and outlet surfaces
we prescribe η = 0, i.e. we keep them fixed. Instead, at the external surface
Γext, we prescribe the Robin condition

γST d̂+ T̂ s(d̂)n̂ = 0,

with γST = 1.5 · 106 dyne/cm3, to account for the effect of the surrounding
tissue [27].

In Figure 4 we report the pressure field at four different instants. We observe,
as expected, the travelling pressure wave which is absorbed at the outlet.

Figure 4: Pressure field at four different instants. From the left to the right:
t = 0.002 s, t = 0.006 s, t = 0.008 s, t = 0.010 s. Γin on the left.

The optimization procedure leads to the estimation of the following optimal
values, σf = 1886.0 and σs = −17.3. In Table 3 we report the convergence
performance of the optimized Robin-Robin (RR) scheme and of the Dirichlet-
Neumann (DN) scheme with an Aitken procedure. In particular, we consider
variations of the Reynolds number (I and II rows), of ∆t (I and III rows), and
of the mesh (I and IV rows). The number of iterations is the average among the
different time instants.

From these results we can observe a significant improvement of the conver-
gence properties when optimal values of the interface parameters derived by our
analysis are used in a RR scheme. In particular, this scheme works well in com-
parison to the DN scheme also for increased values of the Reynolds number and
decreased values of ∆t.

Notice also that the convergence properties of both RR and DN schemes
deteriorate for decreasing values of ∆t. This was expected for the DN scheme,
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Method σf/σs # Iter

Pin, ∆t Optimized RR 1886.0/− 17.3 5.8
N = 38 DN+Aitken +∞/0 11.6

100Pin, ∆t Optimized RR 1886.0/− 17.3 7.8
N = 38 DN+Aitken +∞/0 14.1

Pin, ∆t/10 Optimized RR 1002.2/− 186.6 15.2
N = 38 DN+Aitken +∞/0 28.6

Pin, ∆t Optimized RR 1887.4/− 16.8 5.9
N = 44 DN+Aitken +∞/0 11.9

Table 3: Convergence performance for different valus of Pin and ∆t and different
meshes. FSI test in the sphere.

indeed from (24) we have that lim∆t→0 ρ = 1 when σf = +∞ and σs = 0.
Instead, for the RR scheme we could in principle choose σf and σs such that
lim∆t→0 ρ < 1. This is confirmed by the values reported in Table 4, showing
an a priori estimate of the optimal value ρopt of ρ and of the corresponding
values of σf and σs (these being slightly different from those in Tab. 3 since the
latter where estimated heuristically). These results show that the convergence

∆t σf σs ρopt
10−3 1947.2 -77.6 0.033
10−4 1049.4 -233.0 0.083
10−5 986.7 -1365.9 0.006
10−6 955.8 -13512.2 0.0001

Table 4: Values of the estimated optimal value ρopt as a function of ∆t. FSI test
in the sphere.

properties of the RR scheme with optimal interface parameters deteriorate in
accordance with the numerical results when ∆t ≥ 10−4, however they improve
for smaller values of ∆t.

Finally, we notice that, as expected by the theory [35], for both RR and DN
methods the number of iterations is quite independent of the mesh size.

6.4 The case of an abdominal aortic aneurysm

In the second test, we aim at applying our optimization procedure for the Robin-
Robin scheme to a case of a real aortic aneurysm, namely one that develops at
the abdominal level. These aneurysms could be in principle characterized by a
baloon-like shape or could be fusiform, i.e. extended along the axial direction.
In the first case, the almost spherical shape of the domain suggests the use of
the analysis developed above to improve an FSI simulation.

To this aim, we consider the geometry of a real patient, see Figure 5. We
use the same physical parameters and boundary conditions of the previous test
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Figure 5: Domain of the aortic aneurysm (left) and fluid and structure meshes
(right).

case. The fluid and structure meshes are conforming at the interface and the
number of tetrahedra is about 54k for the fluid and about 34k for the structure.
The values of the representative radius and thickness used in the optimization
procedure are R = 2.3 cm and H = 0.1 cm. Moreover, we have N = 23.

In Figure 6 we report the pressure field at four different instants. Again,
as expected, the pressure wave travels along the domain and is absorbed at the
outlet.

Figure 6: Pressure field at four different instants. From the left to the right:
t = 0.002 s, t = 0.006 s, t = 0.008 s, t = 0.010 s.

From the optimization procedure, we found that the optimal values are
σf = 1511.0 and σs = −143.4. The number of iterations to reach convergence
(average number among the different time instants) is in this case 12.0 against
15.6 needed by the DN-Aitken scheme. The improvement is more restrained in
this case with respect to the previous test, probably because the geometry is not
a perfect sphere as in the previous case. However, we have a speed-up of about
23%. This means that, since the number of iterations is quite independent of
the mesh size, for more refined meshes needed for clinical applications, when
the overall computational effort could be even of days, the speed-up of the RR
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scheme is in absolute very significant.
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