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Abstract

We consider Isogeometric Analysis (IGA) for the numerical solution of the electrophysiology of the
atria, which in this work is modeled by means of the bidomain equations on thin surfaces. First, we
consider the bidomain equations coupled with the Roger-McCulloch ionic model on simple slabs. Here,
our goal is to evaluate the effects of the spatial discretization by IGA and the use of different B-spline
basis functions on the accuracy of the approximation, in particular regarding the accuracy of the front
velocity and the dispersion error. Specifically, we consider basis functions with high polynomial degree,
p, and global high order continuity, Cp−1, in the computational domain: our results show that the use
of such basis functions is beneficial to the accurate approximation of the solution. Then, we consider a
realistic application of the bidomain equations coupled with the Courtemanche-Ramirez-Nattel ionic
model on the two human atria, which are represented by means of two NURBS surfaces.

Keywords: Isogeometric Analysis, cardiac electrophysiology, bidomain equations

1. Introduction

In the last few decades, the numerical simulation of the electric activity of the heart has become
a valid tool for the study of the activation of the cardiac tissue [11, 55] both in physiological and
pathological conditions. This process involves a wide range of scales, as well as several “characters”
(physical variables) which interact in a complex fashion. Whole-heart models – i.e. models coupling
the electrophysiology of heart with the mechanical response of the cardiac tissue [27, 37, 42] – provide
meaningful information regarding ventricular arrhythmias and, specifically, the mechanisms under-
lying the self-sustained reentrant propagation of waves inside the myocardium [52]. Models of heart
electrophysiology are typically based on several simplifying assumptions [40]: in particular, the cardiac
muscle is often represented as a continuum, instead of an ensemble of myocites. For this reason, the
properties of the cardiac cells and those of the tissue are encoded in microscopic and macroscopic
models intrinsically coupled. While for the description of the microscopic behavior of the cells many
models exist – we refer e.g. to [11] and [50] for a description of some of the most common ones – the
bidomain model [28] is the standard choice for studying the propagation of the electric signal at the
macroscopic scales of the tissue. Accurate approximations using the bidomain equations are however
computationally expensive for various reasons [2]. As explained in [11], the steep propagating layer of
the transmembrane potential – which has a thickness of about 0.5 mm – requires very thin meshes
and small timesteps (1 ms or lower) in order to be accurately captured; moreover, the assumption
of isolated material, i.e. of homogeneous Neumann boundary conditions imposed on the equations,
often leads to ill-conditioned linear systems to be solved at each timestep. Because of these difficulties,
the simpler monodomain model [10], which derives from the bidomain model under the assumption
of equal anisotropic ratios in the intra- and extracellular spaces, is very often used to approximate
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the electrophysiology of the heart. The monodomain model provides satisfactory results especially in
physiological conditions [27], even if it lacks the detail and richness of the bidomain equations.

In this work, we focus on the solution of the bidomain equations on surfaces by using Isogeometric
Analysis (IGA). IGA has already been used in [7, 8] for the solution of the bidomain model in three-
dimensional cases and in [38] for solving the monodomain equations on the left atrium represented
as a surface. In this paper, we solve the electrophysiology problem on the two atria by means of the
bidomain equations coupled with suitable ionic models specifically tailored for atrial cells. We represent
the atria as surfaces generated by NURBS basis functions. This approximation is motivated by the
small thickness of the cardiac tissue in these chambers of the human heart: the same simplification
has been adopted in [12] and [49]. In [49], surface representations of the atria have been considered
together with three-dimensional ventricular geometries to reproduce the electrocardiogram by solving
the bidomain equations with the Finite Element Method; the interaction of atria and vetricles was
modeled by mimicking the role of the bundle of His and Purkinje fibers through a simplified model,
i.e. using small values of the conductivity at the interface between the surfaces and the volumes. As
explained in [49], the use of surfaces for the atria considerably reduces the computational cost of the
bidomain equations while attaining a satisfactory accuracy of the model.

The advantages of IGA in this context are twofold. First, the computational domain is effectively
identified with the physical domain in virtue of the isogeometric concept, which stands at the basis
of IGA. In other words, the physical domain can be used without preprocessing (i.e. mesh genera-
tion) for the solution of the differential problem, so that the geometry is exactly preserved under
h-refinement. Secondly, this method allows us to consider basis functions with high degree and high
order of continuity, which is beneficial to the approximation of the steep front of the electric potential.
Indeed, methods with highly regular basis functions – such as the spectral element method [5] and
IGA [38] – have already been successfully employed for the solution of the monodomain equations; for
example, in [38] it has been shown that IGA well captures the velocity of propagation of the front and
manages to reproduce complex propagation patterns such as spiral waves with a limited number of
degrees of freedom. Moreover, the method has been proven to be accurate in reconstructing solutions
with thin layers [29], other than being able to control numerical dissipation and dispersion [15, 20].
In this respect, here we study the properties of the solution in terms of velocity and dispersion of the
transmembrane potential front wave. In [38] a similar study was performed only for the monodomain
equations.

This paper is structured as follows. First, in order to make it as self-contained as possible, we recall
some fundamentals of cardiac physiology in Section 2. Section 3 focuses on the microscopic and macro-
scopic models of the human electrophysiology. In Section 4, we present the numerical approximation of
the bidomain equations, which is based on the isogeometric concept for the spatial discretization and
on a splitting scheme – according to which the microscopic ionic model and the bidomain equations
are solved separately – for the time discretization. In Section 5, we aim at evaluating the effects of
IGA on the properties of the potential front by solving the bidomain equations on simple benchmark
geometries. In Section 6, a realistic simulation of the electrophysiology on both atria is presented.
Finally, in Section 7 conclusions follow.

2. Principles of cardiac electrophysiology

The contraction of the cardiac muscle is initiated by electric phenomena occurring at the mi-
croscopic spatial and temporal scales [32, 42]. Thanks to an external electric stimulation originated
at the sinoatrial node, cardiac muscular cells (the cardiomyocytes) undergo a process called action
potential, featuring the evolution of the difference of electric potential across the cellular membrane
(transmembrane potential) along the heartbeat; this is caused by the flow of Na+, K+, Cl−, and
Ca2+ ions from the intra- to the extracellular space and vice-versa. In particular, the variation of cal-
cium concentration Ca2+ in the intracellular space occurring during the action potential determines
the mechanical reaction of the contractile units (the sarcomeres) forming the cardiac cell. Therefore,
the calcium concentration is the output of interest when modeling the mechano-chemical coupling
in cardiomyocytes; we refer the reader to [47] for examples of simulations of an individual cardiac
cell contraction based on the so-called active-strain approach, or to [27] for an example of coupling
between the electrophysiology and the mechanics of the heart at the macroscopic scale.

Cardiomyocytes feature a cylindrical shape and are organized along preferred directions, called
fibers. The electric stimulation passes from one cardiac cell to the surrounding ones because of the
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gap junctions located at the binding sites of adjacent cells. The higher density of gap junctions in
the longitudinal direction (compared to the transversal direction) determines a faster conduction
of the signal and a subsequent stronger mechanical reaction [37] along the fiber direction. Patient
specific fibers fields are nowadays available from MRI images at both te endo- and epi-cardio. It is
still problematic, however, to reconstruct the internal sheetlet orientation with non-invasive imaging
procedures; this information is necessary to realistically predict the propagation of the potential front
through numerical models in three-dimensional geometries [46]. In this paper, the passage of ions
from cell to cell in the cardiac tissue is modeled by the bidomain equations, which will be presented
in Section 3.2 and will be used for the numerical simulations in Sections 5 and 6.

As previously noted, the electric excitation of the heart starts within the right atrium at the
sinoatrial node – which is often called the natural pacemaker of the heart because of the ability of its
special cells to autonomously excite themselves – and travels across the atrial cardiac tissue. The two
atria are mutually electrically isolated; the signal travels from the right to the left atrium through
four muscular bundles [48], the most important being the Bachmann’s bundle (primary connection).
When the excitation front reaches the atrioventricular node located in the right atrium, the signal
is transmitted from the atria to the ventricles after a delay of about 100 ms as it travels along the
bundle of His and Purkinje fibers. Such delay is important to establish the synchronized contraction
of atria and ventricles and to determine the cardiac rythm. For more on the role of Purkinje fibers
and the mechanisms leading to their activation, we refer the reader to [54].

3. Mathematical modeling of cardiac electrophysiology

3.1. Ionic membrane models

Ionic membrane models describe the dynamics of ionic species across the cellular membrane of a
single-cell system and the subsequent variation of the transmembrane potential. They represent an
extension to cardiac cells of the Hodgkin-Huxley formalism [30], which was originally proposed for
modeling the action potential in neurons of giant squids. Ionic membrane models account for the vari-
ation of the transmembrane potential v, defined as the difference between the intra- and extracellular
potentials ui and ue, one or more recovery variables and possibly concentration variables of the ionic
species. The recovery or gating variables model the behavior of the cellular membrane, in particular
the opening and closing of the ionic channels distributed over the surface of the cardiomyocytes; each
of these channels is associated with the flow across the membrane of a particular ionic species. In the
following, we denote with w a vector containing nw recovery and ionic concentration variables. For a
system composed by a single cell, any ionic membrane model can be written for t ∈ (0, T ) as

∂v

∂t
= H(v,w) + Is,

∂w

∂t
= F(v,w),

with the initial conditions v = vin and w = win. The terms H(v,w) and F(v,w) depend on the chosen
ionic membrane model and Is is an externally applied electric stimulus. The evolution of v and w
are used, in the bidomain equations, to model the passage of ions from the intra- to the extracellular
space through the ionic current per unit surface Iion(v,w).

The literature on the available models is quite wide; we refer the reader to, e.g., [11] and [50] for
an overview. Phenomenological models [50] describe the action potential without taking into account
the physiological mechanisms that lead to the variation of the transmembrane potential. Among the
others, we recall the FitzHug-Nagumo [23] and the Roger-McCulloch models [44]; we use the latter
to model the electrophysiology of slabs of cardiac tissue in our numerical simulations presented in
Section 5.

The Roger-McCulloch ionic membrane model considers the following equations for the transmem-
brane potential v and the unique recovery variable w:

dv

dt
= −


Gv

(
1− v

vth

)(
1− v

vp

)
+ η1vw


+ Is,

dw

dt
= η2

(
v

vp
− η3w

)
,

(1)
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Figure 1: On the left, transmembrane potential v and recovery variable w (which serves as a surrogate of [Ca2+]i)
over three heartbeats obtained by the Roger-McCulloch model by applying a constant stimulus Iapp = 50mA for 1ms
initiated at t = 20ms, t = 220ms and t = 420ms. The ODE system (1) has been discretized by using the Forward Euler
method with ∆t = 1 × 10−3 ms. The values of the parameters are: vth = 13mV, vp = 100 mV, G = 1.5ms−1, η1 =
4.4ms−1, η2 = 0.012 and η3 = 1. On the right, transmembrane potential v and the intracellular calcium concentration
[Ca2+]i over three heartbeats computed by using the CRN model; a constant stimulus Iapp = 80mA has been applied
for 1ms at t = 20ms, t = 520ms and t = 1020ms. The solution is computed by using the Forward Euler method with
∆t = 1× 10−3 ms. Different scales on the axes are employed.

for t ∈ (0, T ). The ionic current per unit surface Iion is then linked to the transmembrane potential
by the relation Iion = −Cmdv/dt, where Cm is the capacitance of the membrane and the negative
sign comes from the convention of considering as positive the currents travelling from the intra- to the
extracellular space. Fig. 1 (left) shows the evolution of v and w when a single cell system described by
the Roger-McCulloch model is stimulated with a constant current Iapp for 1ms applied every 200ms
to simulate three heartbeats. With our choice of model parameters, the shape of the action potential
is a rough approximation of the physiological action potential. Moreover, the resting and peak value
of the transmembrane potential are not physical, as in cardiac cells v varies between around −85mV
and 30mV. Hence, in order to get physiological values of the transmembrane potential, the solution
of the Roger-McCulloch model must be conveniently rescaled. In this paper, as we employ this ionic
model only on benchmark problems targeted to the analysis of the accuracy of the solutions obtained
with IGA, we do not rescale the transmembrane potential.

Both first and second generation models [50] provide descriptions of the processes occurring in the
cells and the currents associated with the flow of ionic species across the membrane. Commonly used
second generation models are e.g. the two Luo-Rudy [35, 36] and the Bueno-Orovio [4] models. We refer
the reader to [9] and [49] for applications of the phase I Luo-Rudy and the Bueno-Orovio models to the
bidomain equations, respectively. In this paper, we focus on the model proposed by Courtemanche,
Ramirez and Nattel [18] (CRN in the following), which is instead well-suited and tuned for modeling
the electrophysiology of atrial cells. The CRN model takes into account 15 recovery variables and
the intracellular concentrations of 3 ionic species, namely [K+]i, [Na

+]i and [Ca2+]i, as well as the
concentration of calcium during the uptake and release compartments of the sarcoplasmic reticulum
[Ca2+]up and [Ca2+]rel. The ionic current is determined by the action of 12 currents

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca,

each of them being associated with the flow of specific ionic species across the cellular membrane. We
refer the reader to [18] for the complete description of the model and the governing equations. Fig. 1
(right) shows the evolution of v and [Ca2+]i computed with the CRN model. In our formulation we
consider a slight modification of the formulation presented in [18]: the right hand-sides of the equations
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corresponding to d[Na+]i/dt, d[K
+]i/dt and d[Ca

2+]i/dt are scaled by a factor Acap = 2(2πr2+2πrL)
(where r and L are the radius and length of the cylindrical cell), i.e. the capacitive surface area of the
cell. We took inspiration from [36] for the definition of this term.

3.2. The bidomain equations

We consider the bidomain equations [11, 28] for modeling the propagation of the electric signal
and excitation front in the cardiac tissue. In the bidomain model, the region Ω occupied by the
cardiac tissue is assumed to be a continuum composed by two inter-penetrating domains [39], the
intra- and the extracellular spaces. Each point x ∈ Ω is associated with the intracellular potential ui,
the extracellular potential ue, and to the transmembrane potential v = ui − ue.

As described in Section 2, the heart is mostly composed of cardiomyocytes: these cells are organized
in fibers and each of them is characterized by the ability to exchange ions with the surrounding ones.
The anisotropic behavior of the tissue due to the different velocities of conduction longitudinally and
transversally to the fibers directions is mathematically modeled by tensors Di,e(x), commonly defined
in the three-dimensional case by [11]

Di,e(x) := σi,e
l (x)âl(x)â

T
l (x) + σi,e

t (x)ât(x)â
T
t (x) + σi,e

n (x)ân(x)â
T
n (x), (2)

where âl(x) : Ω → R
3, ât(x) : Ω → R

3, ân(x) : Ω → R
3 are unit vectors forming an orthonormal

basis at the point x, âl being parallel to the local fibers direction, ât being perpendicular to âl and
laying on the plane tangential to the fibers, and ân being perpendicular to both âl and ât; σ

i,e
l,t,n are

the associated conductivities. When dealing with surfaces embedded in three dimensions, ân can be
identified as the local normal vector to the surface. For a surface, σi,e

n = 0. Defining the conductivity
tensor through the orthonormal basis presented above is motivated by the laminar organization of the
cardiac tissue in muscle sheets [34].

Given all the assumptions above – whose physiological suitability is analyzed in [53] – we are ready
to present the bidomain equations in parabolic-elliptic formulation [3, 11], for a surface Ω embedded
in R

d

cm
∂v

∂t
−∇Ω · (Di∇Ωv)−∇Ω · (Di∇Ωue) + χIion(v,w) = Isi in Ω× (0, T ),

−∇Ω · (Di∇Ωv)−∇Ω · ((Di +De)∇Ωue) = Ise + Isi in Ω× (0, T ),

∂w

∂t
= F(v,w), in Ω× (0, T ),

nTDi∇Ω(v + ue) = 0 on ∂Ω× (0, T ),

nT (Di +De)∇Ωue + nTDi∇Ωv = 0 on ∂Ω× (0, T ),

v = vin, w = win, in Ω× {0},

(3)

where cm = χCm, χ being the area of cell membrane per tissue volume and Cm being the capacitance
of the membrane, and Isi,e are the applied external currents. The differential operator ∇Ω stands for

the surface gradient operator: ∇Ωφ : Ω → R
d for any φ ∈ C1(Ω), while the differential operator ∇Ω·

indicates the surface divergence operator: ∇Ω · φ : Ω → R for any φ ∈ [C1(Ω)]d. We remark that,
for any function space S, we indicate with [S]d the space of functions taking values in R

d with each
component belonging to S. Using the same notation introduced in Section 3.1, we denote with w
the vector containing the recovery and concentration variables, with Iion(v,w) the ionic current and
with F : R× R

nw → R
nw the evolution law of the recovery variable, which is prescribed by the ionic

membrane model of choice. Since the domain Ω is assumed to be electrically isolated, homogeneous
Neumann boundary conditions are set on ∂Ω, for t ∈ (0, T ).

Under the hypotheses that the tensors Di,e are positive definite matrices (uniformly with respect
to x), that the domain Ω has a Lipschitz boundary ∂Ω, that the extracellular potential ue has null
average on Ω, and under regularity assumptions over Iion, F, and I

s
i,e, the bidomain equations admit

a unique solution [3]. These hypotheses are sufficient to show the well-posedness of the bidomain
equations for simple ionic membrane models, such as the FitzHug-Nagumo and the Roger McCulloch
models (see Section 3.1), provided that Ω, Di,e, ue and Ii,e satisfy the necessary assumptions in [3].
Among the regularity conditions mentioned above, we recall the compatibility condition on the applied
currents ∫

Ω

(Isi + Ise ) dx = 0, (4)
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which must be satisfied for all t ∈ (0, T ).
With the purpose of presenting the weak formulation of the bidomain equations, we introduce the

function spaces V = H1(Ω),W = L2(Ω) and Ue = V/R, the latter being the space of functions of V
with zero mean value on Ω. Moreover, we consider the following bilinear forms

a(φ, ψ) :=
(
(Di +De)∇Ωφ,∇Ωψ

)
,

ai(φ, ψ) := ((Di∇Ωφ),∇Ωψ),

for all φ, ψ ∈ V . We denote with (·, ·) the usual L2 inner product. The weak formulation of Eq. (3)
is derived by multiplying the first three equations by test functions ṽ ∈ V , ũe ∈ Ue and w̃ ∈ [W]nw

respectively and by integrating on Ω. Under the assumptions that vin ∈ W , win ∈ [W ]nw , and that
Isi,e ∈ L2(Ω× (0, T )) satisfy Eq. (4), the weak formulation of the bidomain equations [25] reads

(W1) find v ∈ L2(0, T ;V), ue ∈ L2(0, T ;V), w ∈ L2(0, T ; [W]nw) and λ ∈ L2(0, T ;R) such that,
∀t ∈ (0, T ),

cm
d

dt
(v, ṽ) + ai(v, ṽ) + ai(ue, ṽ) + χ(Iion(v,w), ṽ) = (Isi , ṽ) ∀ṽ ∈ V,

ai(v, ũe) + a(ue, ũe) + (λ, ũe) = (Isi + Ise , ũe) ∀ũe ∈ V,
d

dt
(w, w̃) = (F(v,w), w̃) ∀w̃ ∈ [W ]nw ,

(ue, λ̃) = 0 ∀λ̃ ∈ R,

(5)

with ∂v/∂t ∈ L2(0, T ;V) and ∂w/∂t ∈ L2(0, T ; [W]nw).
For practical reasons, we have decided not to impose the condition of null mean value of ue directly

on the trial space, but instead to introduce a suitable Lagrange multiplier λ.

4. Numerical approximation of the bidomain equations

4.1. Space discretization

As we have seen, the bidomain equations in parabolic-elliptic formulation consist of two PDEs,
the first in Eq. (3) being parabolic and the second elliptic; these two equations are coupled with
a system of ODEs which models the evolution of the recovery variables and ionic concentration w.
This variable accounts for the microscopic events leading to the onset of the action potential – such
as the opening or closing of the ionic channels of the different species – and contributes to the term
Iion(v,w) in the parabolic equation. Different strategies for dealing with the discretization of the PDEs
and the system of ODEs have been devised; see e.g. [33, 38] for the analogous case of the monodomain
equations. A first possible approach, called “nodal interpolation”, consists in defining a function space
for the recovery variables w – often built by means of the same basis functions that are used for
approximating v and ue – and discretizing the ODEs by following a standard Galerkin method [41].
The second approach, called “Gaussian integration”, consists in approximating the ODEs only at the
Gauss quadrature nodes. In this paper, we choose to follow the latter strategy.

We discretize the variational space V by means of B-splines and NURBS-based IGA [16, 31] in
the framework of the Galerkin method. The main idea of IGA is to consider the same basis functions
for representing first the geometry and then for constructing the trial function space for the solution.
As already mentioned, the geometries we consider in this work are surfaces: see e.g. [21] and [1] for
examples of solutions of surface PDEs using IGA. Given a knot vector Ξ = {ξ1, . . . , ξN}, we denote

{R̂p
j}nj=1 the set of B-spline piecewise polynomial basis functions of polynomial degree p generated

by means of the Cox-De Boor recursion formula [19] applied to Ξ; it holds that N = n + p + 1. We
consider only open knot vectors, i.e. knot vectors in which the first and last knots have the same
multiplicity. The knot vector Ξ determines both the polynomial degree p of the piecewise polynomials
and the regularity (i.e. the number of continuous derivatives) of the basis functions across the knots.
The number of repeated knots at the extrema of the interval determines the degree of the polynomials;
in particular, if ξ1 = ξ2 = . . . = ξp+1 and ξN−p = ξN−p+1 = . . . = ξN , the resulting B-spline basis
functions have polynomial degree p. The regularity of the basis functions is instead determined by the
multiplicity of the internal knots. Namely, given an internal knot ξi with multiplicity mi, the resulting
basis functions are Cp−mi -continuous across ξi. Fig. 2 shows examples of B-spline basis functions.
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Figure 2: B-spline basis functions with different polynomial degree and regularity across the elements. The knot vector
generating each basis is constructed by using the set of knots {{0}p+1, {0.2}p−k, {0.4}p−k, {0.6}p−k, {0.8}p−k, {1}p+1},
where p is the polynomial degree and k is the global continuity of the basis.

NURBS are generated from B-splines by considering a set of weights {wi}ni=1 and by defining, for
j = 1, . . . , n,

N̂p
j :=

R̂p
jwj

W
,

where W =
∑n

j=1 R̂
p
jwj is the weighting function. In this work, we assume wj ∈ R and wj > 0 for

each j = 1, . . . , n. Multivariate B-spline and NURBS basis functions are obtained by means of the
tensor product of sets of univariate basis functions. In the following, we will simply denote {N̂j}nj=1

multivariate NURBS basis functions, and s ∈ Ω̂ a generic point in the parametric domain, namely the
support of the multivariate basis functions. The use of NURBS is mainly motivated by geometrical
needs. As a matter of fact, since B-splines are piecewise polynomials, they can not exactly represent
common geometries such as circles, cylinders, and conic sections in general, which can be instead
represented by choosing appropriate weights to be associated with the B-splines [51]. We refer the
reader to [19] and [16] for details on the properties of B-splines and NURBS basis functions, to [51]
for details on the accuracy of NURBS basis functions under h-, p- and k-refinement, and to [17, 31]
for a complete overview of IGA.

Let us assume that the computational domain Ω is a surface in R
3. Moreover, let us assume that

there exist a set of bivariate NURBS basis functions {N̂j}nj=1 and an invertible mapping x : Ω̂ → Ω
in the form

x(s) :=

n∑

j=1

N̂j(s)Bj

from the parametric domain Ω̂ to the physical domain Ω. The vectors Bj ∈ R
3 are called control

points. By following the isogeometric concept, we construct a finite dimensional function space Vh ⊂ V
spanned by the functions {Nj}nj=1, where Nj = N̂j ◦ x−1, i.e. Vh = V ∩ span{Nj}nj=1. We consider,

for all t ∈ (0, T ), vh(t) ∈ Vh and uhe (t) ∈ Vh defined by

vh(t) :=

n∑

j=1

Vj(t)Nj ,

uhe (t) :=
n∑

j=1

Uj(t)Nj ,

(6)

which approximate v and ue respectively; the explicit dependence on the spatial variable has been
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omitted. The parabolic and elliptic equations in (5) can be projected onto Vh, yielding, for all t ∈ (0, T ),

cm
d

dt

(
vh(t), ṽh

)
+ ai(v

h(t), ṽh) + ai(u
h
e (t), ṽ

h) + χ(Iion(v
h(t),w(t)), ṽh) = (Isi (t), ṽ

h),

ai(v
h(t), ũhe ) + a(uhe (t), ũ

h
e ) + (λh(t), ũhe ) = (Isi (t) + Ise (t), ũ

h
e ),

(7)

for any ṽh ∈ Vh and for any ũhe ∈ Vh. The initial condition vh(0) = vhin, v
h
in =

∑n

j=1 vin,jNk is a

suitable projection (e.g. L2-projection) of the initial data onto Vh and w(t) ∈ W is, for the time
being, assumed to be given. Eq. (7) holds for any ṽh ∈ Vh and ũhe ∈ Vh and, in particular, for Nl ∈ Vh

with l = 1, . . . , n. By substituting ṽh and ũhe with Nl and by expanding vh and uhe in the linear terms
on the basis as in Eq. (6), we find, for t ∈ (0, T ) and l = 1, . . . , n,

cm

n∑

j=1

d

dt
Vj(t)mlj +

n∑

j=1

Vj(t)rlj +

n∑

j=1

Uj(t)rlj + χ(Iion(v
h(t),w(t)), Nl) = (Isi (t), Nl),

n∑

j=1

Vj(t)rlj +

n∑

j=1

Uj(t)klj + blλ
h(t) = (Isi (t) + Ise (t), Nl),

(8)

with vj(0) = vin,j for j = 1, . . . , n,mlj = (Nj , Nl), klj = a(Nj , Nl), rlj = ai(Nj , Nl), and bl =
∫
Ω
Nl dx.

By introducing the mass matrix (M)kj = mkj and the stiffness matrices (K)lj = klj and (R)lj = rlj ,
Eq. (8) can be compactly rewritten in system form for t ∈ (0, T ) as

cmM
d

dt
V(t) +RV(t) +RU(t) + χIion(v

h(t),w(t)) = Isi (t),

RV(t) +KU(t) +Bλh(t) = Isi (t) + Ise(t),
(9)

where (Iion(v
h(t),w(t)))j = (Iion(v

h(t),w(t)), Nj), (V(t))j = vj(t), (U(t))j = uj(t), (Isi,e(t))j =
(Isi,e(t), Nj), (B)j = bj and (V(0))j = (Vin) = vin,j . With this notation, the null mean value condition

(
∫
Ω
uhe dx = 0) on the external potential simply reads

BTU(t) = 0.

Let us now consider the computation of the nonlinear term Iion(v
h(t),w(t)). The parametric space

and – consequently – the physical space are partitioned into mesh elements that are determined by
the subdivision in knots of the intervals (ξ1, ξN ) in the parametric directions. Let us suppose that
Ω =

⋃nel

i=1Ei, i.e. that the domain is composed by elements Ei with i = 1, . . . , nel. We notice that the
lth component of the vector Iion(v

h(t),w(t)) is computed as

(Iion(v
h(t), w̃(t)), Nl) =

∫

Ω

Iion(v
h(t), w̃(t))Nl dx =

nel∑

i=1

∫

Ei

Iion(v
h(t), w̃(t))Nl dx. (10)

We choose to approximate integrals in the weak formulation by means of Gauss-Legendre quadrature
formulas with s = (p+1)(q+1) quadrature nodes (p and q being the order of the piecewise polynomials
in the two parametric directions). Let φi : (−1, 1)2 → Ei be the transformation from the square
reference element for the Gauss-Legendre quadrature formulas in two dimensions to the ith element,
and let {xj

G}sj=1 and {ωj
G}sj=1 be the corresponding quadrature nodes and weights. The integral in

Eq. (10) is numerically computed as

∫

Ω

Iion(v
h(t), w̃(t))Nl dx ≈

nel∑

i=1

s∑

j=1

|det(Ji)|ωj
G

(
Iion(v

h(t,xi,j
G ), w̃(t,xi,j

G ))Nl(x
i,j
G )
)
, (11)

where Ji = ∂φi/∂x is the Jacobian matrix of φi with respect to the reference spatial variable, and
xi,j
G = φ−1

i (xj
G) is the jth Gauss quadrature node in the ith element of the mesh. It follows that, in

order to compute the term Iion contributing to the first equation in Eq. (9), it is sufficient to know
the ionic current at the quadrature nodes xi,j

G . Therefore, instead of constructing a function space for
the recovery variables w, we define the vector W(t) : (0, T ) → R

nw×nel×s, which stores the values
of the recovery variables at every Gauss quadrature node. With an abuse of notation, we write the
system of ODEs describing the evolution of W(t) for t ∈ (0, T ) as

d

dt
W(t) = F(V(t),W(t)), (12)
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with W(0) = Win. Eq. (12) is to be intended in the following sense. The ith component of W(t), i.e.
Wi(t) is associated with a particular Gauss quadrature node in the computational mesh. The evolution
of the recovery and concentration variables in such point is determined by the ionic membrane model
and it is a function of Wi(t) itself and of the value of vh(t) – or equivalently V(t), see Eq. (6) – in
that quadrature point.

From Eq. (11) and based on the previous considerations, it follows that the approximation by
means of the Gauss quadrature rule of the ionic current vector in Eq. (9) can be considered in terms
of V(t) and W(t); therefore, we introduce the notation

Ihion(V(t),W(t)) ≈ Iion(v
h(t),w(t)).

By combining Eqs. (9) and (12), we finally find the semi-discrete formulation of the bidomain
equations

(W2) find V(t), U(t), W(t) and λh(t) such that ∀t ∈ (0, T )

cmM
d

dt
V(t) +RV(t) +RU(t) + χIhion(V(t),W(t)) = Isi (t),

RV(t) +KU(t) +Bλh(t) = Isi (t) + Ise(t),

d

dt
W(t) = F(V(t),W(t)),

BTU(t) = 0,

V(0) = Vin, W(0) = Win.

(13)

4.2. Time discretization

In order to obtain the fully discretized version of the semi-discrete problem (13), we consider a
first order splitting scheme with semi-implicit treatment of the nonlinear terms. We refer the reader
to [8, 11, 26] for other examples of split and/or staggered schemes applied to the bidomain equations.

We use the Backward Differentiation Formulas (BDF) [43] for the approximation of the time
derivatives. Given an initial-value problem in the form dy/dt = f(t, y) for t ∈ (0, T ) (with y(0) = y0),
let ∆t be a timestep size such that tk = t0+ k∆t and yk = y(tk). The numerical approximation of the
derivative dy/dt at the time tk+1 by a BDF scheme of order σ ≥ k − 1 is given by

d

dt
y(tk+1) ≈ α0

yk+1 − yBDF
k+1

∆t
= f(t, yk+1), (14)

where yBDF
k+1 = −∑σ

j=1(αj/α0)yk+1−i is a linear combination of the solutions at the previous steps,
and αj ∈ R with j = 0, . . . , σ (with α0 6= 0) are coefficients depending on the order of the method.

Eq. (14) is in general nonlinear as the right hand-side is evaluated in the unknown yk+1. With the
purpose of lowering the computational burden of the time discretization, we replace yk+1 at the right
handside of Eq. (14) by an extrapolated value y∗k+1, obtained by linear combination of the values yj
with j = k, . . . , k − (σ − 1) [6]. Specifically, we use the equal order extrapolation based on Gregory-
Newton polynomials [24].

We use the notation Vk := V(tk), Uk := U(tk), Wk := W(tk) and λk := λh(tk) for denoting the
variables of interest evaluated at the time instance tk. The initial conditions on these variables are
imposed by setting V0 = Vin and W0 = Win. For BDF schemes of order σ > 1, the first k steps with
k = −1, . . . ,−(σ − 1) are computed with lower order BDF schemes. The first order splitting scheme
for the integration of Eq. (13) at the time instance tk+1 for any k > 0 consists of the following two
steps:

1. given V∗

k+1 and W∗

k+1, namely the extrapolated values of V(t) and W(t) at the time instance
tk+1, Eq. (12) is discretized as

Wk+1 = WBDF
k+1 +

∆t

α0

F(V∗

k+1,W
∗

k+1). (15)

9
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Figure 3: Three-dimensional representation of the front of the transmembrane potential v in the rectangular slab
at different time instances, computed using P2/C1 basis functions and 1024 × 64 = 65’536 uniform elements
(h = 1.56 × 10−2 cm).

2. given Wk+1, the values Vk+1, Uk+1 and λk+1 are found by solving

cmMα0

Vk+1 −VBDF
k+1

∆t
+RVk+1 +RUk+1 + χIhion(V

∗

k+1,Wk+1) = Isi,k+1,

RVk+1 +KUk+1 +Bλk+1 = Isi,k+1 + Ise,k+1,

BTUk+1 = 0, (16)

where Isi,k+1 := Isi (tk+1) and Ise,k+1 := Ise(tk+1).

Finally, we remark that the choice of updating the recovery variables first and then the transmembrane
and the external potentials is arbitrary [26]. Another valid possibility would consist of inverting the
order in which the two steps are performed. As a matter of fact, Vk+1 and Uk+1 could be computed
first from Eq. (16) by replacing Wk+1 with the extrapolated value W∗

k+1; the recovery variable at the
new timestep Wk+1 could be then determined from Eq. (15) by replacing V∗

k+1 with Vk+1.

5. Numerical solution of benchmark problems in electrophysiology

In this section, we assess the properties of the numerical solution of the bidomain equations ob-
tained by means of IGA based on B-splines, specifically using the discretization strategy outlined in
Section 4. For all the following benchmark problems, we solve the bidomain equations with the Roger-
McCulloch ionic membrane model that was introduced in Eq. (1). We assign the initial conditions
vin = 0 mV and win = 0 and we use the BDF scheme of order σ = 2 with ∆t = 0.05ms. We denote
with P1/C0 the B-splines piecewise linear polynomial basis functions with discontinuous derivatives
across the elements, with P2/C1 the B-splines piecewise quadratic polynomial basis functions with
continuity of the first derivative across the elements, etc [21].

The geometries used for all the simulations in this section and Section 6 were generated with the
NURBS package for Matlab. The equations were solved by using isoGlib, a high performance C++
library specifically built for solving problems by means of NURBS-based IGA.

5.1. Transmembrane potential wave front propagation in a rectangular slab

We consider a rectangular slab Ω = (0, 16) cm × (0, 1) cm. The tissue is composed by fibers laid
parallel to the longitudinal direction, i.e. â = x̂, and its physical properties – as well as the values
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Figure 4: Convergence of the potential front velocity for different piecewise polynomial basis functions with respect to
the element size h (on the left) and with respect to the number of degrees of freedom (on the right).

Material properties σi
l = 2.3 · 10−3 Ω−1cm−1 σi

t = 2.4 · 10−4 Ω−1cm−1

σe
l = 1.5 · 10−3 Ω−1cm−1 σe

t = 10−3 Ω−1cm−1

cm = 1 mF cm−3 χ = 103 cm−1

Roger-McCulloch parameters vth = 13 mV η1 = 4.4 ms−1

vp = 100 mV η2 = 1.2 · 10−2

G = 1.5 ms−1 η3 = 1

Table 1: Parameters for the simulation on the rectangular slab, taken from [26].

of the parameters of the Roger-McCulloch model – are summarized in Table 1. An electric stimulus
is applied by means of the forcing terms Isi,e of Eq. (3). In particular, we take Isi = 100 mA in the
subdomain (0, 0.2) cm × (0, 1) cm of Ω; the stimulus is applied from t = 0ms to t = 1ms, and Ise = −Isi
so that the compatibility condition (4) is satisfied. We consider uniform and regular meshes composed
of equally sized elements; we denote with h this size. The equations are solved until T = 175ms.

Fig. 3 shows the evolution of the transmembrane potential v. As expected, a potential front is
generated in correspondence of the initial stimulus. The duration of the action potential with the
chosen parameters of the Roger-McCulloch model is 100 ms; see also Fig. 1 (left). The potential front
then “travels” along the longitudinal direction; specifically, we are interested in understanding how
the mesh size h and the regularity (continuity) properties of the B-spline basis functions affect its
propagation velocity, which we indicate as Vel.

The velocity is computed by considering the distance covered by the contourline of a specific value
of v – which we set equal to 35 mV – in the time interval t ∈ ∆T = (125, 175) ms and dividing this
quantity by 50 ms. We assume the “exact” value of velocity to be Vex = 5.294546 ·10−2 cm/ms, which
is the value computed from an “overkill” solution, obtained by solving the problem with a P3/C0
basis with a very large number of degrees of freedom (n = 2’365’825).

Fig. 4 shows the convergence of the velocity Vel against the element size h (on the left) and the
number of degrees of freedom (on the right) for different B-spline basis functions. First, we remark
that the convergence is generally monotone with respect to h and the number of degrees of freedom; in
particular, the velocity decreases when the number of degrees of freedom increases. This is consistent
with what has been found in [33] for the monodomain equations, i.e. that the Gaussian numerical
integration applied to the recovery variables leads to an overestimation of the potential front veloc-
ity Vel. Moreover, the use of high degree polynomials is indeed beneficial to obtain more accurate
approximations of Vel when h is smaller than a certain threshold.

Also, the regularity of the basis functions plays a role in the approximation of the potential front
velocity. In this regard, we recall that the regularity of the B-spline basis functions depends on the
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(a) t = 20 ms (b) t = 50 ms (c) t = 80 ms

Figure 5: Solution of the bidomain equations on Ω = (−4, 4) cm × (−4, 4) cm, obtained by means of P2/C1 basis
functions. The initial stimulus Isi = −Ise = 100mA is imposed from t = 0ms to t = 1ms on a circle of radius

rc =
√
0.2 cm centered at the origin.

p Continuity h ndofs

1 0 0.0156 cm 66’049

2 0 0.0312 cm 66’049
1 0.0156 cm 66’564

3 0 0.0454 cm 70’255
2 0.0156 cm 67’081

Table 2: Mesh size h and ndofs for each of the meshes considered in Section 5.2.

multiplicity of the knots (see Section 4.1). Therefore, in order to obtain globally C0-continuous basis
functions when dealing with polynomials of degree p ≥ 1, the multiplicity of each of the internal knots
must match the degree p. Since the number of degrees of freedom ndofs of a univariate basis follows the
rule ndofs = nel + p, where nel is the number of internal elements (possibly with zero size), decreasing
the regularity of a B-spline basis with high polynomial degree reflects in an increment in ndofs. For
this reason, the potential front velocities obtained with P2/C0 and P3/C0 basis functions converge
faster to Vex in Fig. 4 (left) with respect to the other more regular basis functions. However, Fig. 4
(right) shows that, when the values of ndofs are comparable, high regularity of the basis also leads to
a smaller error in the approximation of Vex. Hence, we have evidence to affirm that the increment of
regularity of the basis has positive influence over the approximation of the potential front velocity.
Moreover, since the Finite Element Method considers basis functions with C0-continuity across the
mesh elements – which therefore share similar properties with the P1/C0, P2/C0 and P3/C0 basis
functions – we infer that IGA performs better than the Finite Element Method in approximating the
potential front velocity Vel. However, since we did not perform simulations specifically targeted to
compare the two methods, our findings should be considered as evidence of the benefits of the high
polynomial degree and regularity of B-spline basis functions in this particular application. We remark
that similar conclusions about the effectiveness of high continuity of the basis functions were drawn
in [38] for the potential front velocity of the solution of the monodomain equations.

5.2. A study of numerical dispersion in a square

We now aim at evaluating the numerical dispersion introduced by the IGA spatial approximation
of the bidomain equations. We consider a square slab of tissue Ω = (−4, 4) cm × (−4, 4) cm and
set the conductivity σ = σi,e

l = σi,e
t = σi,e

n = 1 × 10−3 Ω−1cm−1 in Eq. (2) as isotropic and equal
for both the intra- and the extracellular spaces, in order to eliminate the anisotropy given by the
conductivity tensors Di,e. Also in this case, we use the parameters presented in Table 1 for the Roger-
McCulloch model. We impose Isi = 100mA and Ise = −Isi in a circle of radius rc =

√
0.2 cm centered

in xc = (0, 0) cm from t = 0ms to t = 1ms. We exploit the symmetry of the problem and solve it in
the first quarter (0, 4) cm × (0, 4) cm. The simulation is run until T = 80ms. The solution obtained
at different time instances is reported in Fig. 5, where we highlight the circular shape of the potential
front. Numerical dispersion errors are revealed when the shape of the computed potential front departs
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Figure 6: Contourline r(θ) corresponding to v = 50mV at time t = 80 ms for P1/C0, P2/C1 and P3/C2 polynomials (on
the left) and difference between r(θ) and the average distance of the contourline from the origin rav for P1/C0, P2/C1,
P3/C2, P2/C0 and P3/C0 polynomials in the first quarter (on the right). We remark that in the right plot the angles
have been normalized to 1. The meshes are chosen so that the number of degrees of freedom is approximately constant
for all the considered basis functions; the large oscillations in the curves corresponding to high degree polynomials with
C0-continuity are due to the larger sizes characterizing the respective meshes (see Table 2).

from the perfectly circular one. We measure this “distance” to quantify the numerical dispersion error
introduced by the spatial discretization.

We use different B-spline basis functions to solve the bidomain equations. As discussed in Sec-
tion 5.1, basis functions with polynomial degree p ≥ 1 and continuity smaller than p − 1 require a
considerably larger number of degrees of freedom compared to basis functions with same p but higher
continuity, given a fixed mesh size h. Therefore, in order to perform a comparison such that the com-
putational cost is somehow comparable for each of the considered basis functions, we use meshes with
approximately the same number of degrees of freedom but different mesh size h. The values of the
mesh size and corresponding degrees of freedom are summarized in Table 2.

Fig. 6 provides an analysis of the dispersion error introduced by IGA. On the left, the potential
contourlines of v = 50mV at time t = 80ms for P1/C0, P2/C1 and P3/C2 basis functions are com-
pared. Compatibly with the results obtained in Section 5.1, the solution computed with the P1/C0
basis travels faster than the ones corresponding to P2/C1 and P3/C2 basis functions. Moreover, we
notice that by increasing the degree of the polynomials and their global continuity the potential
front velocity is less and less dependent on the direction of propagation. This is confirmed by Fig. 6
(right), which shows, for different basis functions, the difference between the contourlines r(θ) – here
parametrized with the normalized angle with the x axis in the first quarter – at time t = 80 ms and
the mean distance (over θ) of the contourline from the point (0, 0) cm, which we denote as rav. We
remark that, if the potential front were exactly circular, then we would obtain r(θ)− rav = 0 for all θ;
this means that the higher r(θ)−rav, the higher the numerical dispersion error introduced by IGA. We
observe that r(θ)− rav varies with the angle: in particular, the solutions for all the polynomial basis
functions appear to travel faster along the directions of the two axes and achieve minimal velocity
in correspondence of 2θ/π = 1/2, corresponding to the angle θ = π/4. This is a consequence of the
meshes we adopted, which were composed by squares with edges parallel to the x and y axes, and the
type of basis functions we used. Moreover, we notice that |r(θ)− rav| decreases both by increasing the
degree of the piecewise polynomials while keeping the continuity of the basis constant – this can be
observed by comparing P1/C0, P2/C0 and P3/C0 solutions – and by keeping the polynomial degree
fixed while increasing the regularity.

In conclusion, our benchmark simulations show that the use of highly regular basis functions with
continuity of derivatives across the mesh elements, which is a property characterizing B-splines and
NURBS-based IGA from the Finite Element Method, can significantly reduce both the error in the
approximation of potential front velocity and the numerical dispersion error.
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Figure 7: Different views of the atria with fibers direction. The points x1, x2, x3, x4 are used for fibers construction.

6. Numerical simulation of the electrophysiology of the left and the right atria

We present the results of a numerical simulation performed on surface geometries of both the atria
generated by quadratic NURBS functions with global C1-continuity, except at C0-lines introduced
during the geometric design stage of the surfaces. We use the CRN ionic model for describing the
action potential of cardiac cells. The initial condition for the potential is vin = −81.2 mV; we use as
initial conditions for the recovery variables the ones reported in [18]. Because of the difficulties arising
from the steep upstroke of the action potential, we choose as timestep ∆t = 0.01 ms (lower than the
one we used for the benchmark simulations in Section 5) in order to ensure a better approximation of
the solution depicted in Fig. 1 (right). We use BDF schemes of order 2 for the time integration.

The right and left atrium surfaces are generated as separated NURBS patches and do not intersect;
the interactions among them are based on the hypothesis of the interatrial connections presented
in [48]. The underlying assumption, which is supported by physical evidence, is that the septum
separating the two upper chambers makes them mutually electrically isolated. The excitation front
originating from the sinoatrial node, however, travels from the right to the left atrium through four
muscular bundles: the Bachmann’s bundle (which is called primary connection because it is typically
the first one to be activated), the anterior and the posterior septa, and the coronary sinus musculature.
We choose to model the interaction via the external currents: when the potential front reaches the
points located on the right atrium representing the contact points of the interatrial connections, a
current Isi = 100 ms is triggered for 1 ms at the corresponding point on the left atrium (as always, by
keeping Isi,e = −Isi in order to satisfy the compatibility condition (4)). Since the activation pattern of
the left atrium is completely dependent on the propagation on the right one especially in the part of
the surface where the excitation is initiated, the elements of the right atrium surrounding the sinoatrial
node are characterized by a smaller mesh size h. For this reason, the two geometries are composed by
different number of elements: 78’975 for the right atrium and 60’742 for the left atrium.

The bidomain equations require defining the direction of the cardiac fibers to determine the con-
ductivity tensors Di,e. In this work, we follow the same strategy that has been adopted in [38, 45, 46]
and we assign to the two atria a vector field directed as the gradient of the solution ϕ of the following
Laplace-Beltrami problem [22] defined on the atrial surfaces Ω

−∆Ωϕ = f in Ω,

∇Ωϕ · n = 0 on ∂Ω.
(17)

We indicate by ∇Ω is the surface gradient operator, n is the outward directed unit vector normal
to ∂Ω and f : Ω → R is an arbitrary scalar field such that

∫
Ω
f dx = 0 (compatibility condition).

The forcing term f can be suitable modified to set the orientation of the fibers. The homogeneous
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Neumann conditions require to add an additional constraint on ϕ, e.g. the zero mean value condition∫
Ω
ϕdx = 0.
We then define the local fibers direction âl as the gradient unit vector proportional to ∇Ωϕ, namely

âl :=
∇Ωϕ

|∇Ωϕ|2
.

Problem (17) is numerically solved by NURBS-based IGA as preprocessing stage of the solver for
the bidomain equations. We here outline the steps of the discretization of the equations, which are
analogous to the ones presented in Section 4.1. For every φ ∈ V and ψ ∈ V (with V = H1(Ω)), we
introduce the bilinear form

aLB(φ, ψ) :=

∫

Ω

∇Ωφ · ∇Ωψ dx.

We then consider the weak formulation of the Laplace-Beltrami problem, which reads

(W3) find ϕ ∈ V, such that
aLB(ϕ, ϕ̃) = (f, ϕ̃),

for all ϕ̃ ∈ V.

With the purpose of obtaining the discrete weak formulation, we replace V with Vh ⊂ V, namely
the approximation of V spanned by the NURBS basis functions {Nj}nj=1. By replacing ϕ with

ϕh :=
∑n

j=1 ϕjNj and the test function ϕ̃ with Nj for j = 1, . . . , n, and by introducing the stiffness

matrix (K)ij = aLB(Nj , Ni) and f = ((f,N1), . . . , (f,Nn))
T , we find the discrete problem

(W4) find ϕ = (ϕ1, . . . , ϕn)
T such that

Kϕ = f.

Once ϕh is known, the fibers direction is computed as the normalized discrete gradient of the solution,
i.e. âhl := ∇ϕh/|∇ϕh|2. We remark that, being the NURBS basis used for the generation of the atria
C0-continuous at some lines on the surface, the discrete fibers direction is discontinuous at these
locations. However, the fibers direction is well defined at the Gauss quadrature points, which are the
points at which we actually need the evaluation of the conductivity tensors Di,e.

Fig. 7 shows the fibers directions on the two atria computed by solving Eq. (17) with the following
forcing term

f(x) =





1 if |x− x1|2 ≤ δ or |x− x2|2 ≤ δ,

−1 if |x− x3|2 ≤ δ or |x− x4|2 ≤ δ,

0 otherwise ,

where xi for i = 1, . . . , 4 are points placed on the auricle of the right atrium, between the two external
pulmonary veins on the left atrium, on the top part of the right atrium (opposite to the tricuspid
valve), and between the two internal pulmonary veins on the left atrium respectively, and δ is the
radius of the spheres in which the forcing term is non zero. We remark that the homogeneous Neumann
condition in Eq. (17) leads to fibers tangential to the boundary ∂Ω (which is composed by the borders
of the superior and the inferior venae cavae and the tricuspid valve for the right atrium, and by the
borders of the pulmonary veins and the mitral valve for the left atrium).

For computing Di,e, we use a modified version of Eq. (2) adapted to surfaces that does not require
the definition of an orthonormal basis at each x ∈ Ω. In particular, we define (similarly to [38])

Di,e := σi,e
t I + (σi,e

l − σi,e
t )Al,

where I is the second order identity tensor and Al is such that (Al)ii = (âl)i and (Al)ij = 0 if i 6= j.

The value of the conductivity coefficients σi,e
l and σi,e

t , as well as the physical parameters χ and Cm,
are summarized in Table 1.

The simulation is initiated by applying the current Isi = 100 mA and Ise = −Ise for 1 ms at the
sinoatrial node and it is run until T = 1000 ms; we consider only one heartbeat.

Fig. 8 shows the action potential and variation of [Ca2+]i registered at three points of the domain,
i.e. near the sinoatrial node (SA), near the Bachmann’s Bundle (BB) on the left atrium, and at the
atrioventricular node (AV); in the first two cases, the point is outside the sphere where the external
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Figure 8: Action potential and evolution of calcium concentration [Ca2+]i at points near the sinoatrial node (SA, top
row), near the Bachmann’s Bundle (BB, middle row) and the atrioventricular node (AV, bottom row). The first two
points are chosen sufficiently far from the sinoatrial node and the Bachmann’s Bundle, so that they are not directly
stimulated by the applied initial current.

current is non zero. We remark that the depolarization “wave” reaches the Bachmann’s Bundle at
t = 34 ms, which is a value close to what has been found in [13] (29 ms) with a simulation on atrial
surfaces and close to physiological values [14]. The curves of Fig. 8 are similar to the ones depicted
in Fig. 1 (right), which refers to the solution of the CRN model for only one cell. While the evolution
of calcium [Ca2+]i registered at the tree locations does not change significantly, the curve of the
transmembrane potential varies slightly while traveling throughout the atrial surface. In particular,
we notice how, for the points close to the sinoatrial node and the Bachmann’s Bundle, the value
reached by v during the rapid upstroke of the action potential is lower than expected. This occurs
because these points are heavily influenced by the external stimulations applied nearby.

Fig. 9 and Fig. 10 show the evolution of the transmembrane potential v and the intracellular
calcium concentration [Ca2+]i.

7. Conclusions

In this work we applied Isogeometric Analysis to the solution of the bidomain equations on surfaces.
We performed benchmark numerical simulations that provided meaningful insights on the properties
of the transmembrane potential front. In particular, we confirmed that high degree basis functions
with high order continuity across the mesh elements manage to accurately approximate the velocity
of the potential front. In our simulations, the convergence of the velocity is monotone with respect
to the mesh element size h and the number of degrees of freedom ndofs. The same behavior was
observed in [33] when the Gaussian integration approach was used for treating the recovery variables
in the monodomain equations. Then, we have shown that the use of B-spline basis functions has
also an impact on the numerical dispersion error introduced by the spatial discretization. Our results
confirm that basis functions featuring high degree piecewise polynomials and with high order continuity
across the mesh elements lead to a smaller dispersion error than lower degree basis functions with low
continuity, when the number of degrees of freedom – and hence the computational cost – is comparable.

Finally, we presented a realistic numerical simulation on surface atrial geometries generated by
means of quadratic NURBS basis functions. In order to simulate the interaction of the two atria,
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(a) t = 10 ms (b) t = 20 ms (c) t = 40 ms

(d) t = 80 ms (e) t = 120 ms (f) t = 160 ms

(g) t = 200 ms (h) t = 250 ms (i) t = 300 ms

Figure 9: Evolution of transmembrane potential v on both atria.

(a) t = 10 ms (b) t = 20 ms (c) t = 40 ms

(d) t = 80 ms (e) t = 120 ms (f) t = 160 ms

(g) t = 200 ms (h) t = 250 ms (i) t = 300 ms

Figure 10: Evolution of intracellular concentration of Ca2+ on both atria.
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which are represented as separate NURBS patches, we proposed an approach exploiting the hypoth-
esis of interatrial connections. We coupled the bidomain equations with the ionic membrane model
proposed by Courtemanche, Ramirez and Nattel, which ensures a realistic approximation of the ac-
tion potential for atrial cells. Our measurements at different locations of the atria showed that the
electric propagation travels with velocity comparable to physiological values and that the “shape” of
the action potential is well preserved when traveling on the atrial surface.
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[12] A. Collin, J.-F. Gerbeau, M. Hocini, M. Häıssaguerre, and D. Chapelle. Surface-based elec-
trophysiology modeling and assessment of physiological simulations in atria. In International
Conference on Functional Imaging and Modeling of the Heart, pages 352–359. Springer, 2013.

18
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[38] A. S. Patelli, L. Dedè, T. Lassila, A. Bartezzaghi, and A. Quarteroni. Isogeometric approximation
of cardiac electrophysiology models on surfaces: an accuracy study with application to the human
left atrium. Computer Methods in Applied Mechanics and Engineering, 317:248–273, 2017.
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