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Abstract

Hidden Markov Models (HMMs) are a very popular tool used in many fields to
model time series data. In this paper we want to extend the usual HMM framework,
where the observed objects are univariate or multivariate data, to the case of functional
data. In particular, since we have a sequence of multivariate curves that evolves in time,
we want to model the temporal structure of the system using HMMs. The functional
observations, which rely on the statistical tools related to Functional Data Analysis
(FDA), are linked to the state of the HMM according to a similarity function, which
depends on some metric in Hilbert spaces. We first assess our results in a simulation
setting and then we apply our model to a case study regarding the climate.
Keywords: Functional Data; Hidden Markov Models.

1 Introduction
Hidden Markov Models (HMMs) represent a well-known method for the study of time

series involving sequences of data, widely used in many fields like biostatistics ( [9]), bioin-
formatics ( [6]) and finance ( [11]). They are a generalization of mixture models, where the
hidden variables controlling the mixture components are related through a Markov process,
see [13] for further details. In the literature of HMMs, there are several examples where
the outcome consists of univariate or multivariate data, with both discrete and continuous
observations; in particular, in [4] a very general definition of such processes is provided.
In this paper, we want to extend the usual HMM algorithms from the finite dimensional
framework to the infinite dimensional one. Therefore, we focus on the functional setting,
where each observed data is considered as a multivariate random curve, that can be also
seen as the realization of a stochastic process taking values in Rn, n ≥ 1.

The natural context to develop the statistical models and tools to describe this kind
of data is the Functional Data Analysis (FDA) (see, e.g. [14], [15], [7], [8]). Working with
functional data can be a difficult task because of the dimensionality of the spaces of the data;
moreover, the usual HMM requires the definition of a probability density that generates
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the observations, which may be lacking for functional random processes. Therefore, since
we want to consider the most general case without making any assumptions on the law of
the process that generated the data, we construct a similarity function built on distances
between curves to evaluate the emission of an observation by a certain state.

We consider a hidden Markov chain evolving in time where each state emits a multivariate
random curve and we solve two problems. First, we estimate the parameters of the underlying
Markov process to understand the time series system that generated the data; then we solve
a clustering problem by finding the best sequence of states that generated the data in order
to classify the curves in clusters.

The paper is organized as follows: in Section 2 we present the model, adding some
information about the theory of HMMs and functional data. In Section 3 we present a
simulation study to assess the performance of the model while in Section 4 we see a case
study application to a dataset regarding a climate problem. Finally, in Section 5 we give
some discussion and conclusions. All the analysis have been carried out using the statistical
software R ( [12]) and the codes are available upon request.

2 The model
The aim of this paper is to consider and study a proper Hidden Markov Model (HMM)

in the multivariate functional framework. Let us consider a multivariate random curve
X = {X(t)}t∈I = {X1(t), . . . , XJ(t)}t∈I , with J ≥ 1 and I compact interval of R. The scalar
product between two elements a,b ∈ L2(Ω× I; RJ) is defined as follows:

〈a,b〉 = E
[

J∑
j=1

∫
I
aj(t)bj(t)dt

]
.

Let µ(t) = E[X(t)] be the mean function of X for almost all t ∈ I and v(s, t) =
Cov [X(s),X(t)] be its covariance kernel, i.e. v(s, t) is a J × J matrix of functions such that
vj1j2(s, t) := Cov [Xj1(s), Xj2(t)] for any j1, j2 ∈ {1, . . . , J} and s, t ∈ I.

We define a Hidden Markov Model, see [4], as a bivariate process {(Qk,
{Xk(t)}t∈I)}k≥0 on a given probability space (Ω,F ,P), where {Xk(t)}t∈I is a multivari-
ate random curve and {Qk}k≥0 is a Markov chain with a discrete and finite state space
{s1, . . . , sN}, with N ≥ 1, transition matrix A = {aij} = P(Qk = sj |Qk−1 = si) and initial
distribution ν, where νi = P(Q0 = si). Given the process {Qk}k≥0, {{Xk(t)}t∈I}k≥0 is a
sequence of conditionally independent multivariate functions and {Xk(t)}t∈I only depends on
Qk for each k . We denote the emission function of Xk conditionally on the event {Qk = si}
with bi( · ;µi), for any i = 1, . . . , N , where µi is a functional parameter representing the
mean of the curves emitted by state si. We can completely define our HMM with the set of
parameters λ = (ν, A,µ1, . . . ,µN ).

In this work, we use distances between functions to construct the emission functions
bi( · ;µi), i = 1, . . . , N . We will assume that, for each state si, the emission function can be
written as

bi( · ;µi) = h
(
d( · ,µi)

)
, i = 1, . . . , N (2.1)
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where h : R → R is a function that transforms the distance into a similarity measure. In
particular, in this work we will use the function h(t) = 1/t2 and the L2 distance that, in the
multivariate functional framework, is defined as follows:

dL2(a,b) = ‖a − b‖ =

√√√√ J∑
l=1

∫
I
(al(t)− bl(t))2dt.

An important step of our algorithm is the initialization. Since we want our algorithm to
be as robust as possible, we perform a functional k-means algorithm on the dataset of curves
to find the initial centroids, see [17] for further details. The initialization step consists of an
iterative procedure alternating a step where each multivariate curve is assigned to a cluster
and a step where the centroids of the clusters are computed. Specifically, after a random
selection of a set of N fixed initial centroids {µ(0)

1 (t), . . . ,µ(0)
N (t)} the algorithm iteratively

repeats the two steps described before. Formally, at the m-th iteration of the initialization
step, m ≥ 1, in the algorithm:

1. each curve is assigned to the cluster whose centroid minimizes the L2 distance. The
m-th cluster assignment C(m)

i for the i-th statistical unit, i = 1, . . . , n is

C
(m)
i := argmin

l=1,...,N
dL2(Xi,µ

(m−1)
l );

2. the centroids for the clusters are computed as

µ
(m)
l := argmin

µ∈L2(Ω×I;RJ )

∑
i:C(m)

i =l

dL2(Xi,µ)2, l = 1, . . . , N.

In our case, we can rewrite the equation for any state l = 1, . . . , N as:

µ
(m)
jl := 1

nl

∑
i:C(m)

i =l

Xi, j = 1, . . . , J.

where nl is the number of curves assigned to the l-th cluster in the step m.

After obtaining the same cluster assignments at two subsequent iterations, the initialization
step ends and we obtain the preliminary estimates of the functional parameters {µ1, . . . ,µN}
for the states of the HMM.

Let us denote by x an output sequence of observation functions of the HMM and with
L(λ|x) the objective function of all the parameters of the model given x. In the literature of
HMMs, there are usually three problems to tackle (see, e.g., [20] and [13]):

1. find L(λ|x) for the realization x;

2. find the set of parameters λ∗ = argmax
λ

L(λ|x);
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3. find the best state sequence Q = (Q1, . . . , QK) that explains x, given x and λ.

As usually done in the literature, to address these problems we use the forward-backward
procedure, the Baum-Welch algorithm and the Viterbi algorithm, respectively. We solve for
the forward variables αk(j) inductively, as follows:

(1) initialization: α1(i) = νibi(x1;µi), for 1 ≤ i ≤ N ;

(2) induction: αk+1(i) =
[∑N

j=1 αk(j)aji
]
bi(xk+1;µi), for any 1 ≤ k ≤ K − 1 and 1 ≤ i ≤

N ;

(3) termination: L(λ|x) =
∑N
j=1 αK(j),

where the emission functions bi(·;µi) are defined in 2.1. In a similar way, we compute the
backward variables βk(i):

(1) initialization: βK(i) = 1, for 1 ≤ i ≤ N ;

(2) induction: βk(i) =
∑N
j=1 aijbj(xk+1;µj)βk+1(j), for any 1 ≤ k ≤ K − 1, 1 ≤ i ≤ N ;

(3) termination: L(λ|x) =
∑N
i=1 β1(i)νibi(x1;µi).

To avoid computational problems we apply a procedure in both the forward and backward
step, well known as "scaling" in the HMM literature, to successfully implement the estimation
of all the parameters of the HMM (see for instance [13] for further details). Separately, both
procedure compute L(λ|x), but we need them together to find the model λ that maximizes
the function.

The sequence of states of a HMM is not observed, so the usual approach, see [5], consists
in treating the states as missing data and apply an EM algorithm to find the best estimates
of the parameters. This algorithm is known in the literature as Baum-Welch algorithm (see
for instance [1], [2], [19], [3]).

To fully describe our algorithms, we need to introduce two further quantities. We define
ξk(i, j), the probability of being in state si at time k, and state sj at time k + 1, given the
model and the observations, i.e.

ξk(i, j) = P (Qk = si, Qk+1 = sj | X1 = x1, . . . ,Xk = xk, λ)

and the probability of being in the state si at time k, given the observations and the model
as

γk(i) = P (Qk = si | X1 = x1, . . . ,Xk = xk, λ) =
N∑
j=1

ξk(i, j),
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As in [20], we can write the logarithm of the objective function of our model as

log(L(λ|x)) =
N∑
j=1

γ1(j) log νj︸ ︷︷ ︸
term 1

+
N∑
i=1

N∑
j=1

(
K∑
k=2

ξk(i, j)
)
log aij︸ ︷︷ ︸

term 2

+
N∑
j=1

K∑
k=1

γk(j) log bi(xk;µj)︸ ︷︷ ︸
term 3

.

(2.2)

Using this expression, we apply an EM algorithm to compute all the parameters of the
HMM by iteratively repeating the following two steps:

• E step replace the quantities ξk(i, j) and γj(k) with their conditional expectations
given the current parameter estimates and the observations;

• M step maximize the function in Eq. (2.2). Each term of the expression depends
on different parameters, so it can be split in three parts. We focus our work on the
maximization of the third term, since for the maximization of the first two terms we
follow the approach described in [20].

Even though until now our formulas only consider a single observation sequence, they can
be extended to the more general case of multiple observations. Let us denote the set of L
observation sequences as

X = (x(1), . . . ,x(L))

where x(l) = (x(l)
1 x(l)

2 · · ·x
(l)
K ) is the l-th observation sequence of length Kl. We assume all

the sequences to be independent from each other; our goal is to adjust the parameters of the
model λ to maximize the following function:

L(λ|X ) =
L∏
l=1
L(λ|x(l)).

The term we want to maximize, in the setting of multiple sequences, becomes

term 3 =
L∑
l=1

Kl∑
k=1

N∑
j=1

γk(j) log bi(xk;µj). (2.3)

Since we want to estimate the functional parameters (µij)i=1,...,N ;j=1,...,J of the states of the
HMM, we compute for every state i and every component j

µ̂ij = argmax
µij

L∑
l=1

Kl∑
k=1

γk(j) log bi(xlk;µij).

To perform this step, we extend all the estimators commonly used in the functional data
framework into the theory of functional HMM. Formally, let us denote with χ the mean
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function of the sequence X1, . . . ,XK and consider an estimator χ̂ of χ. For instance, if
χ is the multivariate functional mean of X1, . . . ,XK , we estimate it as χ̂ = 1

K

∑K
i=1Xi.

Therefore, for every state i = 1, . . . , N , the HMM extension can be written as

χ̂ =
∑L
l=1
∑Kl
k=1 γk(i)Xk∑L

l=1
∑Kl
k=1 γk(i)

.

Finally, the third problem regarding HMM, as we stated before, consists in finding the best
state sequence Q = (Q1, . . . , QK) that explains a certain observation. To solve this problem
we use the Viterbi algorithm , see [18]. Let us define the quantity

δk(i) = max
Q1,...,Qk−1

P(Q1, Q2, . . . , Qk = si,x1, . . . ,xk|λ)

which is the highest probability on a single path at time k by taking into account the partial
sequence x1, . . . ,xk. We solve by induction as follows

δk+1(j) = max
i

[δk(i)aij ] · bj(xk+1)

At this point, we perform a procedure similar to the forward one and we can retrieve the
best state sequence by keeping track of the argument that maximizes this last expression
(see [13] for further details).

3 Simulation Studies
We generate three samples of length n = 2000 of realizations on a grid of 100 points for

three independent bivariate random curves X,Y,Z in L2(Ω × I; RJ), with J = 2. Each
sample is emitted from a different state of a 3-state HMM having the following parameters:

• State 1: ν1 = 1, a11 = 0.6, a12 = 0.3, a13 = 0.1, µ1(t) =
(
t(1− t)

2t

)
;

• State 2: ν2 = 0, a21 = 0.1, a22 = 0.8, a23 = 0.1, µ2(t) =
(
t2(1− t)

t2

)
;

• State 3: ν3 = 0, a31 = 0, a32 = 0, a33 = 1, µ3(t) =
(
t(1− t)2

1
2 t

3

)
.

where ν = (νi) is the vector of the initial probabilities of the state, A = (aij) is the transition
matrix and µi(t), i = 1, . . . , N , represent the real means of each sample. For each state, the
sample is generated using the same exponential covariance kernel C(s, t) = ae−b|s−t|, a =
0.1, b = 0.3, using the R package roahd [16]. In Fig. 1 we show a plot of the simulated
curves (first component on the left, second component on the right) with a different colour
for each group. The first problem consists in the choice of the number of states, since it is a
priori unknown. We begin by running our algorithm for N = 2, . . . , 5 number of states and
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Figure 1: Plots of a subset of 200 bivariate curves for the simulated data.

by computing each time the AIC and BIC criteria to choose the best model in terms of the
number of states. In particular, we compute the values as follows:

AIC = −2log(L(λ|x)) + 2p BIC = −2log(L(λ|x)) + plog(n) (3.1)

where p is the number of parameters of the HMM. As we see in Fig. 2, both criteria reach
the minimum value for N = 3 states; from now on we choose this value as the "optimal"
number of states for the HMM. After choosing the number of states, we summarize our
results along 100 repetitions of our algorithm to estimate the parameters of the HMM. To
have a better understanding of the results, we compute the mean square error (MSE) and
the standard deviation (SD) of the estimates and we show the obtained results in Tab. 1.
As we can see, all the parameters are very well estimated, both in terms of mean and

standard deviation of the parameters.
Moreover, we can obtain some further information about the clustering structure of our

data. Specifically, we use our model and apply the Viterbi algorithm on the output obtained
from the Baum-Welch algorithm, to estimate the best state sequence and compare it with
the output of the k-means algorithm, based on the same distance. In particular, in Tab. 2
we compare the Correct Classification Rate (CCR) of the number of curves obtained by
applying both methods along with the MSEs of the estimates of functional parameters of
a state µ̂i, i = 1, 2, 3, i.e. the values of the distances between the real and the estimated
means, computed over 100 replications of the algorithm. By comparing the results, we see
obvious advantages of our method, since the CCR is higher and all the MSEs and standard
deviations are smaller. We conclude that, not only our method is able to detect the temporal
structure behind the sequences of functional data and estimate all the parameters of the
underlying hidden states but, applying the Viterbi algorithm, we can also cluster the curves
with good values of accuracy.
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Figure 2: AIC and BIC for the HMM on the simulated data for N = 2, . . . , 5 states.

Parameter MSE (SD)
a11 3.71 · 10−2 (9.23 · 10−3)
a12 8.30 · 10−3 (1.17 · 10−2)
a13 8.01 · 10−2 (4.10 · 10−2)
a21 2.89 · 10−2 (2.32 · 10−3)
a22 2.07 · 10−3 (1.70 · 10−3)
a23 9.72 · 10−4 (1.69 · 10−3)
a31 1.31 · 10−3 (9.29 · 10−3)
a32 7.10 · 10−8 (3.54 · 10−7)
a33 1.32 · 10−3 (9.31 · 10−3)
ν1 2.00 · 10−2 (1.41 · 10−1)
ν2 2.00 · 10−2 (1.41 · 10−1)
ν3 < 2 · 10−16(< 2 · 10−16)

Table 1: MSE (SD) of the HMM parameters along 100 replications of the Baum-Welch algorithm
with N = 3 states for the HMM.

Viterbi Algorithm k-means algorithm
CCR 0.857 0.591
MSE(µ1; µ̂1) (SD) 0.085 (0.132) 0.131 (0.286)
MSE(µ2; µ̂2) (SD) 0.636 (0.174) 0.890 (0.279)
MSE(µ3; µ̂3) (SD) 0.953 (0.019) 1.051 (0.059)

Table 2: C.C.R. and MSE (S.D.) between the real and estimated means along 100 replications of the
Viterbi and k-means algorithm.
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Figure 3: Monthly temperature and wind speed for the city of Basel.

4 Case study: Weather data
In this last part, we apply the described model to a real dataset regarding the weather

in Basel, Switzerland; the dataset was obtained from [10]. In particular, our data consists
of daily registrations of temperature and wind speed from 2008 to 2018. We consider each
month as an observation of a statistical unit, in order to have 12 multivariate functional
observations for every year, see Fig. 3. First, we apply our algorithm to the weather data
with N = 2, . . . , 6 states and compute every time the AIC and BIC of the model, as in (3.1);
the results are showed in Fig. 4. We assume N = 3 to represent the optimal number of
states, since both criteria exhibit the lowest value.

After choosing the number of states, we continue our analysis by applying the Baum-
Welch and Viterbi algorithms. In particular, from the parameter estimation algorithm we
obtain the following results:

ν = (1, 0, 0) A =

0.708 0.292 0.000
0.079 0.498 0.423
0.000 0.181 0.819

 ,
i.e., the initial probabilities vector, the transition matrix and the functional parameters of
the states for temperature and wind speed, which can be seen in Fig. 5. The three states
are denoted by the Blue, Green and Red color, respectively. Since each statistical unit starts
being observed during January, the vector ν of the initial probabilities only take probability
1 on the first state, which is the state with the lowest temperature and highest wind speed,
representing the colder months. Moreover, the transition matrix shows how state 1 and 3

9



2 3 4 5 6

16
70

16
90

17
10

17
30

number of states

AIC
BIC
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Figure 5: Plots of the functional parameters for the 3 states of temperature and precipitation.
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Figure 6: Labels of three years of observations obtained by the Viterbi algorithm.

1 2 3
Number of months 40 35 57
Proportion per year 0.303 0.265 0.432

Table 3: Number of months for 11 years and proportion of months per year for a state of the HMM.

are the ones with higher probabilities for the model to remain in the state while state 2,
representing the "mid-seasons", is the most unstable state and can be basically considered as
a transition state between the other two.

After running the Viterbi algorithm, we obtained a set of labels for the observations; we
show a subset for 3 years in Fig. 6. From the plot, we clearly notice the seasonality trend;
moreover, it is clear how the results we obtained from the transition matrix are strengthened.
The states corresponding to Summer and Winter are the longest and most stable, while the
mid-seasons can be grouped together and are usually the shortest. In fact, as we can see in
Tab. 3, the state linked to both mid-seasons is the less visited by the HMM over the period
of time considered by the dataset.

5 Discussion and future developments
In this work, we faced the problem of estimating the parameters of a HMM where the

output is a multivariate random curve. Then, using the Viterbi algorithm, we also considered
and solved a classification problem. In particular, given a sequence of multivariate curves,
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the HMM is able to detect the underlying structure of the time series system, by providing
robust results; moreover, we noticed how sometimes, to perform a classification analysis,
the shape of curves is not enough and by looking at the time order of the system we obtain
better results.

As future development, it will be interesting to investigate the performance of the
algorithm by extending the distance we used to more complex spaces, such as the Sobolev
space H1, and seeing how adding the information on the derivative of the functional data
would affect the results.
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