
MOX-Report No. 20/2017

Fair surface reconstruction through rational triangular
cubic Bézier patches

Albrecht G.; Caliò F.; Miglio E.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Fair surface reconstruction through rational

triangular cubic Bézier patches
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Abstract

We consider the problem from reverse engineering to construct a
G1 continuous interpolant to a triangulated set of 3D points and corre-
sponding normals by fitting a composite surface consisting of rational
triangular Bézier patches by using the so–called rational blend tech-
nique. The solution depends on free shape parameters which are fixed
by minimizing different functionals depending on suitable surface met-
rics.

1 Introduction

To reconstruct a virtual model of an object, starting from a cloud of points,
is one of the main problems in the context of creative or reverse design or
reverse engineering. Several approaches for accomplishing this task may be
distinguished.

First of all, the input data are either approximated or interpolated. We
are concerned with interpolating methods. Here, we further distinguish
between global versus local interpolating reconstruction methods.
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As far as global approaches are concerned, a global fitting surface is
constructed such that its parametrization is optimal with respect to specific
requirements. In this context we can, e.g., cite the article [3], where an
algorithm is developed to reconstruct, without any kind of subdivision, a
free form surface controlled by a set of points, whose positions are chosen
in order to preserve the shape of the input data and to satisfy geometrical
and/or functional properties, imposed by the designer. The used integral
tensor product B–Spline surface depends on free shape parameters which are
determined by minimizing a suitable user–defined functional. The functional
depends on a specific surface metric chosen according to the application
needs.

As far as local approaches are concerned the most popular methods are
based on first triangulating the given input data and then locally replacing
each planar triangle in the input mesh by a curved shape thus forming a
composite surface. These methods are sufficiently general to represent sur-
faces of arbitrary genus. We are concerned with methods using parametric
triangular Bézier patches interpolating vertex positions and associated nor-
mal in order to achieve positional and tangential continuity between the
patches. In this context the survey [6] presents the main solutions and
methods proposed up to the beginning of the 1990’s. The more recent ar-
ticle [1] compares several approaches using a particular technique called
rational blend providing G1 continuous surfaces for visualization purposes.
Here we focus on the rational cubic Gregory patch presented in [1], which
showed very good performance especially regarding computational cost as
well as the approximation of well known surfaces such as the sphere and the
torus. On arbitray triangular meshes it suffers from a certain flatness of the
patches’ boundary curves. The purpose of the present article is thus to im-
prove the above rational blend cubic Gregory patch from [1] by introducing
free shape parameters which are chosen to optimize the shape of the patches
by minimizing certain functionals as in [3].

The remainder of the article is organized as follows. In section 2 we give
the preliminaries to recall the terminology and the algorithm for the rational
blend Gregory patch from [1]. In section 3 we propose a new scheme to
determine a parametric form of the patch based on rational cubic boundary
curves thus leaving some free shape parameters. In section 4 we show how
to use these parameters to minimize locally suitable functionals with respect
to a particular metric. Finally we describe in detail the algorithm used and
we give some numerical results to confirm the good behavior of the proposed
method in section 5.
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Figure 1: Notation for the vertexes and normals of the input flat triangles.

2 Preliminaries and recalls

Constructing two patches that meet with tangent plane continuity, called G1

continuity, is rather straight-forward. On the contrary, a complex problem
called vertex consistency problem arises when constructing a closed network
of G1 joined patches incident to a vertex. Different methods have been
developed to deal with this problem. In [1] is presented a method, inspired
by the work of Walton and Meek [9] which uses cubic Gregory patches with
the rational blend technique.

We now recall the notation and the algorithm from [1]. A subset of 4
triangles is considered and as illustrated in Figure 1, the notation p0,p1,p2

is used for the vertices of the central triangle, n0,n1,n2 for the respective
unit normal vectors in these vertices, and e0 = p1 − p0, e1 = p2 − p1, e2 =
p0−p2 for the triangle’s edge vectors. Considering the neighboring triangle
adjacent to the edge e1, the notation p01 for its remaining vertex and n01 for
its associated normal is used. Analogously, are defined p12,n12 with respect
to the edge e2 and p20,n20 with respect to the edge e3. Additionally, the
tangent plane in pi, which is defined by the normal vector ni, is denoted by
τi for i = 0, 1, 2, 01, 12, 20.
Now, in order to introduce the G1 rational blend interpolatory schemes,

using a triangular network of control points bi,j,k, (i+ j + k = n, i, j, k ≥ 0)
and degree-n bivariate Bernstein polynomials Bn

i,j,k(u, v, w) = n!
i!j!k!u

ivjwk

(u+ v + w = 1), a triangular Bézier patch is defined by

b(u, v, w) =
∑

i+j+k=n

bi,j,k(u, v, w)B
n
i,j,k(u, v, w) (1)
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It maps a triangular domain D ⊂ R
2 to an affine space, typically R

3, where
u, v and w are the barycentric coordinates in D. The approach from [1]
is based on the creation of a triangular Bézier patch by means of rational
blends, i.e. where the control points are affine combinations of the points
using rational blending functions. Precisely (see [1]), for n=3, six points
b11
111 b12

111 (referred to edge e1) b21
111 b22

111 (referred to edge e2) and b31
111

b32
111 (referred to edge e3) are blended to define the interior control point

b111(u, v, w) of their rational blend cubic triangular Bézier patch (1) as
follows:

Figure 2: Points defining b111(u, v, w) for the cubic version of Walton and
Meek.

b111(u, v, w) = u

(

v · b11
111 + w · b32

111

v + w

)

+v

(

w · b21
111 + u · b12

111

w + u

)

+w

(

u · b31
111 + v · b22

111

u+ v

)

.

(2)

Now, using the process (see [1]) to impose the G1 continuity, the points
b11
111, b

12
111, b

21
111, b

22
111, b

31
111 and b32

111 are obtained to be blended according
to formula (2).

Finally from (1) the surface patch is created, but, analyzing the recon-
structed surface, a problem from a certain flatness of boundary curves arises.
In the next section we will propose, in order to overcome this problem, a
rational version of the described method, where the parametric equations of
boundary curves have some free weights, that can act as free shape param-
eters.

4



3 A rational cubic Gregory patch

The idea is to work with rational triangular Bézier patches, i.e., to define the
interior control point b111(u, v, w) of the patch by means of rational blends
as well as the interior weights.

Let s(u, v, w) be a rational cubic triangular Bézier patch defined by

s(u, v, w) =

∑

i+j+k=3 b̄ijk(u, v, w)B
3
ijk(u, v, w)

∑

i+j+k=3 ωijk(u, v, w)B
3
ijk(u, v, w)

=
p(u, v, w)

ω(u, v, w)
. (3)

Here the points

bijk(u, v, w) =
b̄ijk(u, v, w)

ωijk(u, v, w)
(4)

are the control points and ωijk(u, v, w) the so–called weights of the patch.
Its boundary curves in rational cubic Bézier form are

ci(t) =

∑3
k=0 b̄

i
kB

3
k(t)

∑3
k=0 ω

i
kB

3
k(t)

=
pi(t)

ωi(t)
, (5)

where obviously the control points bi
k =

b̄i
k

ωi
k

and the weights ωi
k are, respec-

tively, the boundary control points and boundary weights of s. For example,
to construct the curve c1(t) corresponding to u = t, v = 1 − t, w = 0, we
determine the coefficients b1

0 = b300,b
1
1 = b210,b

1
2 = b120 and b1

3 = b030,
using Walton and Meek’s method [9]. According to this method, we denote:

d1 =
∥

∥b1
3 − b1

0

∥

∥, g1 =
(b1

3−b1
0)

d1
, f1 = n0 ·n1, f1,0 = n0 ·g1 and f1,1 = n1 ·g1.

We also consider r1 =
6(2f1,0+f1f1,1)

4−f2
1

and s1 =
6(2f1,1+f1f1,0)

4−f2
1

.

Then the cubic rational Bézier curve c1(t) with b1
0 = p0, b

1
3 = p1, b

1
1 =

b1
0 +

d1
18 (6g1 − 2r1n0 + s1n1) and b1

2 = b1
3 −

d1
18 (6g1 + r1n0 − 2s1n1) joins

p0 to p1 and has its principal normal direction parallel to n0 at t = 0 and
parallel to n1 at t = 1, respectively, according to Walton and Yeung [10].
Its weights remain to be freely chosen. In an analogous way the boundary
curves c2(t) and c3(t) are constructed.

The derivatives of these curves are given by

.
ci(t) =

1

ω2
i (t)

[ωi(t)
.
pi(t)− pi(t)ω̇i(t)], (6)

where

.
pi(t) = 3

2
∑

k=0

(b̄i
k+1 − b̄i

k)B
2
k(t),

ω̇i(t) = 3
2

∑

k=0

(ωi
k+1 − ωi

k)B
2
k(t).

(7)
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Now we introduce the vector:

hi(t) =
2

∑

k=0

aikB
2
k(t), 0 ≤ t ≤ 1

where

ai0 = ni−1 ×
wi

0

‖ wi
0 ‖

,

ai2 = ni ×
wi

2

‖ wi
2 ‖

,

ai1 =
ai0 + ai2

‖ ai0 + ai2 ‖

with n3 = n0 and wi
k = bi

k+1 − bi
k, k = 0, 1, 2.

The plane spanned by the vectors
.
ci(t) and hi(t) creates a tangent ribbon

along the edge ei, as shown in Figure 3 for the edge e1.

Figure 3: The plane spanned by the tangent vector ċ1(t) and the vector
h1(t).

To create our surface patch and to insure G1-continuity with the neigh-
boring triangle p0,p1,p01 along the edge e1, we firstly consider the cross-
boundary directional derivative.

The directional derivatives of s, in the directions d1 = (−1/2,−1/2, 1),
d2 = (1,−1/2,−1/2) and d3 = (−1/2, 1,−1/2) are defined by

s
di

i (t) =
1

ω2
i (t)

[ωi(t)p
di(t)− pi(t)ω

di(t)], (8)

where, after degree elevation,
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pdi(t) = 3
3

∑

k=0

∆̄i
kB

3
k(t),

ωdi(t) = 3
3

∑

k=0

Ωi
kB

3
k(t). (9)

As already mentioned in [2], related to the edge e1, we obtain the ∆̄1
k

and their corresponding weights, as it follows:

∆̄1
0 = −

1

2
b̄300 −

1

2
b̄210 + b̄201,

∆̄1
1 =

1

3

(

−
1

2
b̄300 −

1

2
b̄210 + b̄201

)

+
2

3

(

−
1

2
b̄210 −

1

2
b̄120 + b̄11

111

)

,

∆̄1
2 =

2

3

(

−
1

2
b̄210 −

1

2
b̄120 + b̄12

111

)

+
1

3

(

−
1

2
b̄120 −

1

2
b̄030 + b̄021

)

,

∆̄1
3 = −

1

2
b̄120 −

1

2
b̄030 + b̄021, (10)

Ω1
0 = −

1

2
ω300 −

1

2
ω210 + ω201,

Ω1
1 =

1

3

(

−
1

2
ω300 −

1

2
ω210 + ω201

)

+
2

3

(

−
1

2
ω210 −

1

2
ω120 + ω11

111

)

,

Ω1
2 =

2

3

(

−
1

2
ω210 −

1

2
ω120 + ω12

111

)

+
1

3

(

−
1

2
ω120 −

1

2
ω030 + ω021

)

,

Ω1
3 = −

1

2
ω120 −

1

2
ω030 + ω021. (11)

The conditions to be fulfilled to ensure G1-continuity with the neighbor-
ing triangles are:

s
di

i (t) =
1

3
αi(t)

.
ci(t) + βi(t)hi(t), i = 1, 2, 3. (12)

Since in equation (12) the derivatives are complicated, we use their ho-
mogeneous representations (see, e.g., [5]). In projective coordinates the
representation of s(u, v, w) is

S(u, v, w) = {p(u, v, w), ω(u, v, w)} =
∑

i+j+k=3

xijkB
3
ijk(u, v, w), (13)

where the control net in homogeneous coordinates is given by

xijk = {b̄ijk, ωijk}. (14)

The conditions to ensure G1-continuity by using the homogeneous represen-
tation of the patch are derived in the following proposition.
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Proposition 1. A sufficient condition in order for (12) to be fulfilled is the

existence of two polynomials α(t) and β(t) such that

{

pd(t) = α(t)
.

p(t) + β(t)h(t),
ωd(t) = α(t)ω̇(t),

(15)

where pd(t), ωd(t),
.

p(t) and ω̇(t) are, respectively, defined in (9) and (7)
and, for the sake of simplicity, the index i has been omitted.

Proof: In the affine coordinate system the G1 condition (12) is equiva-
lent to

det(sd(t),
.
c(t),h(t)) = 0. (16)

We substitute (6) and (8) in the left hand side of (16) and thus obtain

det(sd,
.
c,h) =

1

ω4
det(ωpd − pωd, ω

.
p− pω̇,h) =

=
1

ω4
det

(

1 0 0 0
p ωpd − pωd ω

.
p− pω̇ h

)

=

=
ωdω̇

ω4
det

(

1 1 1 0
p ω

ωdp
d ω

ω̇

.
p h

)

=

=
1

ω3
det

(

ω ωd ω̇ 0
p pd .

p h

)

=

= −
1

ω3
det









p ω
pd ωd

.
p ω̇
h 0









.

Equation (16) is thus equivalent to the existence of four scalar functions
f(t), g(t), m(t) and n(t) such that

f(t)

(

p(t)
ω(t)

)

+g(t)

(

pd(t)
ωd(t)

)

+m(t)

( .
p(t)
ω̇(t)

)

+n(t)

(

h(t)
0

)

= 0. (17)

We choose f(t) = 0 and we obtain

(

pd(t)
ωd(t)

)

= −
m(t)

g(t)

( .
p(t)
ω̇(t)

)

−
n(t)

g(t)

(

h(t)
0

)

. (18)

Therefore, by defining α(t) = −m(t)
g(t) and β(t) = −n(t)

g(t) , (12) is equivalent to

(15). �

We thus obtain the desired G1–continuity conditions by using the linear
functions:

α1(t) = α1
0 (1− t) + α1

1t and β1(t) = β1
0 (1− t) + β1

1t,
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and by equaling the right hand sides of (15) and (9).
For i = 1 this yields the following two systems of equations:

∆̄1
0 = α1

0(b̄210 − b̄300) + β1
0a

1
0,

∆̄1
1 =

2

3
(α1

0(b̄120 − b̄210) + β1
0a

1
1) +

1

3
(α1

1(b̄210 − b̄300) + β1
1a

1
0),

∆̄1
2 =

1

3
(α1

0(b̄030 − b̄120) + β1
0a

1
2) +

2

3
(α1

1(b̄120 − b̄210) + β1
1a

1
1),

∆̄1
3 = α1

1(b̄030 − b̄120) + β1
1a

1
2, (19)

and

Ω1
0 = α1

0(ω210 − ω300),

Ω1
1 =

2

3
α1
0(ω120 − ω210) +

1

3
α1
1(ω210 − ω300),

Ω1
2 =

1

3
α1
0(ω030 − ω120) +

2

3
α1
1(ω120 − ω210),

Ω1
3 = α1

1(ω030 − ω120), (20)

Once the two systems (19) and (20) are derived, the problem is how to
define the weights of the boundary curves such that α1

0, α
1
1, β

1
0 and β1

1 can
be computed from their first and last equations.

From the first equation of (20) we can compute

α1
0 =

Ω1
0

ω210 − ω300
, (21)

and its substitution in the first equation of (19) gives

β1
0a

1
0 = v, (22)

where

v =
(ω201 − ω210)b̄300 + (ω300 − ω201)b̄210 + (ω210 − ω300)b̄201

ω210 − ω300
(23)

β1
0 can be calculated from (22) if v and a10 are collinear. A necessary

condition for this is the equation

v · (b̄210 − b̄300) = 0 ,

which we solve for ω201 and obtain

ωsol1
201 =

(x− 2y + z)ω210ω300

(k − h− y + z)ω210 + (h− k + x− y)ω300
, (24)
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where

x = b̄300 · b̄300 , y = b̄210 · b̄300 , z = b̄210 · b̄210 ,

k = b̄201 · b̄300 , h = b̄201 · b̄210 (25)

By imposing the G1–continuity condition along the edge e3 and by re-
peating the above procedure we obtain a second solution for the same weight,
i.e.,

ωsol2
201 =

(h− k + x− y)ω210ω300

(h+ k − l − y)ω210 + (l − 2k + x)ω300
, (26)

where additionally to the abbreviations from (25) we have l = b201 · b201.
By solving ωsol1

201 = ωsol2
201 with respect to ω210 we obtain that the only

two possible solutions are ω210 = ω201 = 0 or ω210 = ω201 = ω300.
We are not interested in the zero valued weights and thus retain the

solution
ω210 = ω201 = ω300 (27)

which trivially satisfies the equation (22), i.e.,

(ω210 − ω300)β
1
0a

1
0 = (ω201 − ω210)b̄300 + (ω300 − ω201)b̄210

+(ω210 − ω300)b̄201 , (28)

but does not allow to calculate β1
0 from it.

By applying the above choice (27) of the weights in all the patch’s cor-
ners, i.e.,

ω210 = ω201 = ω300 , ω120 = ω021 = ω030 , ω102 = ω012 = ω003 (29)

the equation systems derived from the G1–continuity requirements along the
borders can now be solved . In fact, along the edge e1 for example, the first
equation of (19) becomes

ω300∆
1
0 = ω300α

1
0(b̄210 − b̄300) + β1

0a
1
0 (30)

Thus, α1
0 can be computed as

α1
0 =

[ω300∆
1
0] · [ω300w

1
0]

[ω300w
1
0] · [ω300w

1
0]

=
∆1

0 ·w
1
0

w1
0 ·w

1
0

. (31)

Analogously,
β1
0 = ω300(∆

1
0 · a

1
0). (32)

The first and the last equation in (20) are identically satisfied. From the
two central equations the weights ω11

111 and ω12
111 can be computed as

ω11
111 = (

1

2
− α1

0)ω300 + (
1

2
+ α1

0)ω030,

ω12
111 = (

1

2
− α1

1)ω300 + (
1

2
+ α1

1)ω030.

(33)
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Finally, once α1
0, α

1
1, β

1
0 , β

1
1 and ω11

111, ω
12
111 are calculated, the points b

11
111

and b12
111 can be obtained from the two central equations of (19).

Repeating this procedure for the three borders we obtain the six points
b11
111, b

12
111, b

21
111, b

22
111, b

31
111 and b32

111 and the six weights ω11
111, ω

12
111, ω

21
111,

ω22
111, ω

31
111 and ω32

111, to be blended, respectively, for the interior control point
b111 and the interior control weight ω111 as in (2).

4 An automatic approach to define the three free

weights

In the previous sections we described how to construct a rational cubic
Gregory patch in which there are three free weights ω300, ω030, ω003 that act
as shape parameters.

The next step is to investigate how these three weights influence the
shape of the patch.

Actually the weights act as shape parameters in correspondence of each
mesh vertex. Leaving them free allows the designer to decide how to mod-
ify the surface in correspondence to the interpolating points, increasing or
decreasing the corresponding vertex weights.

Nonetheless, we tried to find a way to define these vertex weights au-
tomatically, namely by using suitably (as designer decides) the information
from the points and normals of the mesh.

To this aim it’s necessary to develop geometric models and algorithms
that automatically create shapes close as much as possible to the given data
and assuring at the same time a good representation of the geometric and
functional properties of the required virtual model.

4.1 Fairness metrics

We will now discuss some functionals, involving the acquired information,
that can be used in order to achieve different aims, according to application
needs. From the mathematical point of view, different results about the
patch fairness can be obtained using different functionals involving geomet-
rical surface properties. A discussion on the meaning of different functionals
can be found in [7] and in [8].

We recall that it is possible to introduce metrics used to measure the
smoothness of the surface at interest and to produce, consequently, the
required shape adjustment. These metrics must depend only on invariants
such that a re-parametrization of the surface does not affect the value of the
measure.

In the following, taking into account w = 1 − u − v, we consider the
expression of s(u, v, w) in (3) depending only on two parameters u, v.
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Let G and H be the Gaussian and the mean curvature respectively of
the surface and n the normal vector; the following three derived surfaces are
considered as metrics:

1. the flattening metric which is the surface area of the derived surface

S(u, v) = G(u, v)n(u, v). (34)

This metric tends to minimize the magnitude of the Gaussian curva-
ture G as well as extreme changes in the Gaussian curvature along the
lines of curvature: the tendency is to flatten the surface.

2. the rounding metric which is the surface area of the derived surface

S(u, v) = s(u, v) + [H(u, v)/G(u, v)]n(u, v). (35)

This metric tends to pull the surface towards a sphere.

3. the rolling metric which is the surface area of the derived surface

S(u, v) = [G(u, v) +H2(u, v)]n(u, v). (36)

This metric tends to make the surface more cylindrical or conical.

The functionals used in the algorithm we are proposing are obtained
computing the surface area A of the above mentioned derived surface, i.e.:

A =

∫

R

∣

∣

∣

∣

∂S

∂u
×
∂S

∂v

∣

∣

∣

∣

dudv, (37)

where R is the parameter domain of s(u, v).

4.2 Discrete functional definition

However, as we have a scattered cloud of points defining the patch, we have
to compute the discrete Gaussian and mean curvatures, using the notations
in Figure 4 and remembering that in Figure 4 p

Ti

0 ,pTi

1 ,pTi

2 are respectively
b300, b030,b003 of triangle Ti.

Precisely we can compute the mean curvature normal operator H (see
[7]) using the following expression:

K(pTi

0 ) =
1

2Ap

∑

i∈N(i)

(cot ζi + cot ζi+1)(p
Ti

0 − p
Ti

1 ), (38)

where Ap is a suitable area surrounding point p
Ti

0 and can be chosen in
different ways (see [7]), N(i) is the number of the set of 1-ring neighbor
vertexes of vertex p

Ti

0 and ζi and ζi+1 are defined in Figure 4.
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Figure 4: Notations used in the definition of the discrete curvatures for a
surface.

The mean curvature H can be easily computed

H(pTi

0 ) =
1

2
‖K(pTi

0 )‖. (39)

Moreover the normal direction vector n is computed by normalizing the
normal vector K(pTi

0 ).
As for Gaussian curvature G, the following expression can be used:

G(pTi

0 ) =



2π −

N(i)
∑

j=1

θj



 /Ap (40)

Calling Tij the j − th triangle of the set of triangles surrounding the

vertex p
Ti

0 , the discretized version of functional (37) becomes:

DA =

m
∑

i=1

N(i)
∑

j=1

‖(S(p
Tij

1 )− S(p
Tij

0 ))× (S(p
Tij

2 )− S(p
Tij

0 ))‖ (41)

4.3 The minimization algorithm

Now we have the background to describe the used minimization algorithm.
Actually the problem is: to minimize the chosen functionals depending

on some parameters with the aim to improve the surface fairness.
Precisely, as s,H,G,n and, consequently, S depend on the ωTi

300, ω
Ti

030,
ωTi

003 i = 1, . . . ,m parameters, related to the vertexes of triangular patch Ti,
we could proceed to functional minimization with respect to these parame-
ters.

At this point we want to reduce the problem dimension, to improve the
efficiency and stability of the algorithm. In this sense, for the Ti triangle,
we propose a suitable relation between the generic triple ωTi

300, ω
Ti

030, ω
Ti

003 i =
1, . . . ,m and a qualitative indicator of the behavior of all the triangles of

13



the one-ring neighbors of the vertex of triangle under consideration, using
only one parameter.

The idea of our approach is the following:

• firstly we set the vertex weight depending on the average of angles
between the normals of two adjacent triangles, namely depending on

KTi =
1

N(i)

N(i)
∑

j=1

γj (42)

where:

-
γj = nTij

· nTi(j+1)
. (43)

-nTij
the normals of the triangles Tij (j = 1, . . . , N(i)).

• secondly we propose the relation: (for example referred to ωTi

300)

ωTi

300 = W + (1−W )KTi

300 (44)

• and then, we insert (44) into the functional (41), by using the dis-
cretized version of S, with one of the metrics (34) - (36). In this way
we reduce the multivariate minimization problem to minimization with
respect to only one parameter.

We use the MATLAB function FMINSEARCH in our implementation.
After the minimization procedure we compute ωTi

300, ωTi

030, ωTi

003 i =
1, . . . ,m depending on optimal W, according to (44) and determine the
parametric representation (3) of the surface patch.

The surface described by the final set of parameters, that result from
the minimization process, is the faired surface.

5 Numerical results

In this Section we present some examples with the aim of showing the quality
and the usefulness of the proposed method.

Two methods for surface reconstruction, Rational Cubic Gregory patches
(RCG) with shape parameters, presented in this paper, and tensor integral
VDS functions (TIS) with shape parameter, presented in [3], are considered.

The first example has the aim of showing that the RCG method is cor-
rectly defined and implemented. Precisely, from a cloud of measured data
derived from a spherical surface and perturbed by random noise, the surface
is reconstructed by means of the RCG method on a Cartesian mesh and
regularized by a fairness functional, defined on a rounding metric (see (35))
and depending on three parameters. Figure 5 illustrates this process.
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Figure 5: First Example. Data detected from a sphere (left) are perturbed
by random noise (center), then reconstructed by means of the RCG method
(right).

As a second example, an analytical surface (an hyperbolic paraboloid or
“saddle” whose equation is x2 − y2 = z) is reconstructed starting from a
cloud of points on it, perturbed by random noise. The methods used and
compared are TIS and RCG respectively. The fairness functional in both
cases is based on a flattening metric (see (34)).

The two methods are further compared using two alternate distributions
of points for the cloud. Namely, a regularly distributed set of points, giving
raise to a rectangular mesh over the xy (horizontal) plane is counter posed
to a set of points randomly distributed over the surface, corresponding to
an unstructured mesh over the xy-plane. The two meshes are depicted by
Figure 6. Results for the regular against the unstructured mesh case are
depicted by Figure 7.

Figure 6: xy-meshes corresponding to two different distribution of points
over the saddle: regular mesh (left) versus unstructured mesh (right).

It appears that for a regular mesh there is no significant difference, while
an irregular one gives better results with RCG. This last remark orients
towards the choice of the RCG method when dealing with the reconstruction
of a complex shaped surface, since in this case an unstructured-type mesh
is obviously expected.

As a third example the reconstruction through the RCG method of a
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Figure 7: Second Example. Two xy-meshes corresponding to two different
distribution of points over the saddle. The upper row corresponds t the
regular mesh case, lower row to the unstructured one. The left column
shows the surface points, central and right column the RCG and TIS results
respectively.

complex shape is considered, as illustrated by Figure 8.
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Figure 8: Third Example. A complex shape reconstructed through the RCG
method. The cloud of points (upper left) is paralleled by the reconstructed
surface (upper right). The lower row shows the Gaussian curvatures respec-
tively: left related to the original cloud and right related to reconstructed
surface.

Conclusions

We propose a local interpolation method for reconstructing a smooth surface
from given vertex positions and associated normals. It uses parametric tri-
angular Bézier patches in the form of rational blend cubic Gregory patches
and achieves positional and tangential continuity between the patches by
using free shape parameters. The minimization of some functionals linked
to a particular metric on the reconstructed surface and depending on the
free parameters allows to optimize the shape of the patches. The proposed
method (RCG) is compared with a global method based on bivariate integral
tensor spline with shape parameters (TIS). The better behavior of RCG is
particularly evident when the point cloud comes from an unstructured mesh.
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