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Abstract

In this work we used the monodomain equation in combination with the
Bueno-Orovio ionic model for the prediction of the activation times in car-
diac electro-physiology. We considered four patients who suffered from Left
Bundle Branch Block (LBBB) and patient-specific maps of activation times
obtained by inserting in the ventricles electrodes located on catheters. We
used activation maps acquired at the septum as input data for the model
and maps at the epicardial veins for the validation of the monodomain
model in the context of a normal excitation. In particular, a first set (half)
of the latter were used to estimate the conductivities of the patient and
a second set (the remaining half) to compute the errors of the numeri-
cal simulations. We found an excellent agreement between measures and
numerical results. Our validated computational tool could be used to accu-
rately predict activation times at the epicardial veins, allowing to shorten
the mapping procedure and reduce the exposition to radiations. This could
be of great interest for clinical applications, for example in the Cardiac
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Resynchronization Therapy (CRT) where such mapping is commonly used
to determine the best point of stimulus.

1 Introduction

Electrophysiology is a fundamental research field in applied mathematics since
Hodgkin and Huxley described for the first time the propagation of action po-
tentials in cells [3]. Mathematical and numerical modeling in cardiac electro-
physiology in the last decades have assumed a key role to better understand
cardiac muscle function and to study how several cardiac diseases develop and
to provide concrete answers to clinical problems. Challenging issues consist of
selecting accurate and efficient numerical methods for the approximate solution
of such models and in their parameter estimation to fit patient-specific data.

To describe the propagation of the electrical signal in the heart muscle two
mathematical approaches are available: the bidomain and the monodomain mod-
els [30, 29]. The former is the result of the application of conservation of charge
together with constitutive models. It describes the propagation of the trans-
membrane potential and compute both the internal and external cell potentials.
The monodomain model is a simplification of the bidomain one, assuming that
the external and internal conductivity tensors are proportional. Both models
have to be coupled with a ionic model, a system of ODEs which describes the
evolution of the trans-membrane potential in a single cell by means of suitable
gating variables.

Validation of these mathematical models is fundamental to provide clinicians
a reliable tool to study and predict the cardiac function accurately.

A first attempt in this direction consisted of comparing numerical results
(obtained either by the bidomain or monodomain model) with measures of elec-
trical activity obtained by optical imaging during ex-vivo experiments on animal
hearts. In particular, qualitative comparisons have been provided in [4, 26, 38]
for action potentials and in [35, 10] for activation times. Other works instead
quantified the discrepancy between results ans measures; in particular in [1] the
authors focused on the action potential at a selected point, whereas in [17, 24]
on activation times at several epicardial points.

A second set of results focused on human ideal geometries, proposing bench-
mark simulation protocols to be validated against gold-standard activation times
obtained from experimental measures. In particular, [40] considered a slab of
tissue, whereas [41] an idealized left ventricle.

A third group of studies addressed qualitative comparisons in real human
geometries. In particular, in [20] the authors compared the phase distribution
during ventricular fibrillation with some reference electrical data, whereas in [8]
they studied the reliability of ECG obtained with an electro-mechanical simula-
tion.

We finally mention [7, 42] where a quantitative comparison between in-vivo
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measures of activation times and those provided by the Eikonal equation in the
presence of a personalized Purkinje network was carried out.

However, a quantitative comparison of the cardiac electrical activity obtained
with monodomain or bidomain models on real human geometries against clinical
measures acquired in vivo is still missing. One reason is that patient-specific
electrical data are very difficult to obtain, since they are based on invasive clinical
procedures and acquired only when strictly necessary for the clinical practice.

Our work aims at proposing a new approach for validating the monodomain
model in the context of the electric propagation in the human left ventricle
using patient-specific activation maps. In particular, we only consider normal
excitation with sinus rhythm, and not, e.g., tachicardia and fibrillation. For each
patient we had at disposal activation times at some points located at the septum
and at the epicardial veins. The first dataset was used to provide an input for
the numerical simulation, whereas the second one was split into two subgroups,
the first one used to estimate the conductivities of the patient and the second
one to validate the accuracy of the numerical solution.

More specifically, we present the mathematical and numerical model in Sec-
tion 2. The whole pipeline of data acquisition and elaboration is reported in
Section 3, whereas the numerical results are presented and discussed in Sec-
tion 4. Finally, in Section 5, we provide conclusions and discuss possible future
developments.

2 Mathematical and numerical model

In this section we present the mathematical model for cardiac electrophysiology,
i.e. the monodomain model, and the corresponding numerical methods consid-
ered in this work. The choice of the monodomain model has been motivated by
its lower computational cost, yet providing comparable accuracy with respect to
the bidomain model, at least in the cases of physiological propagations [26].

Referring to Figure 1, the cardiac tissue conductivity is modeled as a tensor
D defined as

D = σs1+ (σf − σs)f ⊗ f + (σn − σs)n⊗ n, (1)

where σf , σn and σs are the conductivities along the fibers direction f , the
normal direction n and the transversal direction s (orthogonal to the sheets
plane f -n), respectively, to be determined in order to fit the patient-specific
activation times.
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∆t being the time step length, and then on a first order semi-implicit method
for (2a), i.e.
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(6)

where the diffusion term has been treated implicitly and the non-linear terms
have been linearized, see also [33]. In particular, at each time we first updated
wn+1 for a given un by means of (4), then we solved (5) and (6) by using the up-
to-date gating variables. Such time discretization lead to a conditionally stable
method with a bound on time step ∆t which is independent of the mesh size and
which is milder with respect to the ∆t required to reach the desired accuracy
[27, 31].

As for the space discretization, we used continuous Finite Elements of order
1 on hexahedral meshes. The stiffness and the mass matrices were both ap-
proximated consistently, i.e. without lumping the resulting matrices. The ionic
current term Iion has been discretized using the Ionic Current Interpolation (ICI)
method [39]: first Iion has been computed using the values of u and w at the
degrees of freedom, then it has been interpolated at quadrature nodes. Such
approach is relatively inexpensive and less memory-demanding than solving the
ODE system and computing Iion directly at quadrature nodes (SVI), while the
numerical accuracy is not affected at the small mesh size required to capture
the propagating front. The resulting linear system arising at each time step
has been solved by the GMRES method [44] preconditioned with the Jacobi
preconditioner.

Finally, we highlight the importance of including cardiac fibers in electro-
physiology models, since electrical propagation occurs in a different way along
the fibers and orthogonally to them. However, standard imaging techniques
do not provide geometric information on the fibers, whose dimension is typi-
cally smaller than the spatial resolution. For this reason, the fiber orientation
over the myocardial tissue has been here determined using the Laplace-Dirichlet
rule-based algorithm described in [18].
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3 Processing of geometric and electrical data

In this section we illustrate the strategies used for data processing. In particular,
in Section 3.1 we detail the geometric reconstruction, whereas in Section 3.2
the activation time maps and their integration with geometric data. Finally, in
Section 3.3 we set the inverse problem used to provide the integration of electrical
data into the numerical experiments and the estimation of the conductivities for
a validation of the monodomain model in the context of a normal excitation. All
the medical data, both geometric and electrical, have been provided by Ospedale
S. Maria del Carmine, Rovereto (TN), Italy.

3.1 Imaging data acquisition and geometric reconstruction

In this study four patients have been considered, from now on referred to as
P1, P2, P3, and P4, who underwent a non-contrast enhanced cardiac and res-
piratory gated 3D MRI acquisition of both ventricles. Image sequences were
performed with a 1.5-Tesla MRI Unit (Magnetom Aera, Siemens Medical Sys-
tems, Erlangen, Germany). The following parameters have been used: pixel
resolution 2.34× 2.34 mm2; TE (echo time) 0.99 ms; TR (repetition time) 724
ms; slice thickness 8 mm with 14 slices; acquisition matrix 192× 144; flip angle
40o.

We performed a semi-automatic segmentation of the two ventricle geometries
by using the free open-source software MITK [28], which allowed us to segment
each MRI slice and to interpolate the ventricle surface between slices. The first
step consisted of capping the two surfaces at the base of the ventricle, then
to connect them with a triangulated base using the approach reported in [25].
Once two closed triangulated surfaces of both epicardium and endocardium of
the left ventricle were obtained, a surface mesh was generated by means of a set
of new meshing tools [25] developed as an extension to the VMTK software [22].
A remeshing procedure on the whole closed surface was then performed in order
to prescribe a target mesh size. Finally, a volumetric hexahedral mesh of the
left ventricle was generated. In Figure 2 the four patient-specific reconstructed
volumes of the left ventricles with the generated muscle fibers are displayed.
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measures we have at disposal, in particular it is composed by the points
with the earliest activation times. This set is used to calibrate the conduc-
tivities of the patient;

- epicardial veins data, group II: corresponds to the remaining half of epi-
cardial vein measures, in particular it is composed by the points with the
highest activation times. In the spirit of a cross-validation, this set has
been used to compute the discrepancies with the numerical solution and
thus provide a validation of the latter.

In Table 1 we report the number of activation time measurements NS (sep-
tal), NV

I (epicardial vein, group I) and NV
II (epicardial vein, group II) used in

this work for each patient.

P1 P2 P3 P4

NS 132 15 9 4

NV
I 8 26 19 16

NV
II 8 26 18 15

Table 1: Total number of measurements acquired at the septum and at the
epicardial veins for each patient.

In order to include in our simulation framework measured activation maps
obtained from Ensite NavX (electrical data) onto the reconstructed geometries
obtained from MRI (geometric data), we needed to merge geometric and elec-
trical data. Since the MRI units and the Ensite NavX are two distinct systems
collecting clinical data, the reconstructed patient-specific geometry and the cor-
responding activation map point cloud were linked to two distinct reference
systems.

In order to make them compatible, we applied to each patient the following
procedure based on the following three steps:

- Reference points selection: we selected three points for each set of data
(geometric and electrical) as a reference. Two of them have been chosen
on the coronary sinus, the third one on the septal surface of the right
ventricle (see Figure 3, left block). We then verified, owing to the clinicians
experience, that the two points of each couple in fact corresponded to the
same physical point;

- Geometric alignment: we applied a rotation and translation to the
point cloud of electrical data so that the three couples of reference points
identified at the previous step coincided (see Figure 3, middle block). In
fact, this guaranteed that the point cloud of electrical data lay as much as
possible in correspondence of the geometric MRI data;
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rate, i.e.
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j = tn̄, where n̄ = argmax
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where a first order Euler approximation has been used, consistently with the
order of the monodomain time discretization.

In order to maximize the agreement between numerical simulations and clin-
ical measurements, we looked for the conductivities σ = (σf , σs, σn) in the
physiological range Σ = (0.70, 2.20) × (0.16, 0.48) × (0.03, 0.10)) kΩ−1cm−1

[23, 12, 11, 32, 19]. Specifically, we wanted to minimize the discrepancy between
the computed activation times τh−I

j and the epicardial veins measures belonging

to group I τV−I
j . To this aim, we introduced the following discrete functional:

F (uh(σ)) =

NV −I∑

j=1

1

2

∣∣∣τh−I
j (uh(σ))− τV−I

j

∣∣∣
2

, (8)

where σ̃ is a reference value of the conductivities used in the regularization term.
Notice that we have highlighted the dependence of uh on σ.

The optimization problem then reads: Find the optimal value σ̂ such that

σ̂ = argmin
σ∈Σ

F (uh(σ)), (9)

subjected to the Finite Elements approximation of the discretized-in-time mon-
odomain problem (4)-(5)-(6).

To solve minimization problems similar to the previous one, some efficient
strategies have been proposed for example in [15] for synthetic data and [1]
for optical measurements on animal hearts. Here, since we considered a mini-
mization problem with in-vivo human electrical data, we followed a basic direct

search which is robust with respect to the noise of the electrical data. This is
based on starting by an initial guess of σ taken in Σ and on ongoing corrections
obtained by solving the monodomain problem and by evaluating the functional
(8).

4 Numerical results

In this section, we show the numerical results obtained in terms of conductivi-
ties estimation and corresponding comparison between measured and computed
activation times.

The Laplace-Dirichlet rule-based fiber generation algorithm described in [18],
as well as all the numerical methods for the monodomain equation presented in
Section 2, have been implemented within lifex ((https://lifex.gitlab.io/lifex),
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a new in-house developed high-performance C++ library mainly focused on car-
diac applications, based on the deal.II Finite Element core [9]; for further
details on the implementation of the fibers generation see [36]. We have used
Finite Elements of order 1, time step ∆t = 0.025ms [27, 31], characteristic mesh
size h ≃ 0.35mm [16] and a set of parameters for (2)-(3) reported in Table 2.
Notice that both the values of ∆t and h are small enough to allow the recovery
of an accurate propagation front.

χ [F/m2] Cm [m−1] Vo [s] V1 [s] V2 [s] Ṽ [s] τ1 [s]

0.01 1× 105 0.006 0.3 0.015 1.58 11× 10−3

τ3 [s] τo1 [s] τo2 [s] τ21 [s] τ22 [s]

2.8723× 10−3 6× 10−3 6× 10−3 43× 10−3 0.2× 10−3

Table 2: Values of the coefficients used in (5)-(6) [2].

In Table 3 we report the estimation of the conductivities obtained for the
four patients by solving the minimization problem (9). Notice that all the values
fall in the physiological range Σ reported in Section 3.3.

σ̂f σ̂s σ̂n
P1 1.11 0.21 0.05

P2 1.87 0.41 0.08

P3 1.23 0.25 0.07

P4 1.39 0.30 0.07

Table 3: Values of the optimal conductivity σ̂ expressed in kΩ−1cm−1.

In Figure 5 we show for the four patients the action potential at different in-
stants computed by the numerical simulations with the estimated conductivities
reported above.
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Patient Mean relative error eII [%] Standard deviation [%]

P1 6.17 3.28

P2 4.12 2.19

P3 5.05 2.88

P4 5.42 1.95

Table 4: Values of the mean relative errors, over the whole set of epicardial veins
data belonging to group II, between numerical results and measurements and
corresponding standard deviation.

For all the four cases, in Figure 7 we report the boxplots of the relative errors.
This technique is useful to display groups of data through their quartiles. It is
based on a five-number summary: the minimum and the maximum values of the
dataset (shown by the lower and the upper lines on the whisker), the median
(red dashed line), and the first and third quartile (lower and upper bounds of
the box). To better show the distribution of the errors, we also reported the
values of the single relative error by using green dots.

Figure 7: Boxplots of relative errors for the four patients with minimum and
maximum values, median, and first and third quartiles.

From these results, we observe an excellent quantitative agreement between
epicardial vein measurements not used in the parameter estimation (group II)
and our computed results. The mean error was in any case below 6.2% and the
standard deviation confirmed a low error variability. We notice from Table 1
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that for P2 and especially for P3 and P4 our accurate results were found with
few input data (septal measurements). This means that it is enough to have at
disposal very few measurements of activation times where the signal starts in
order to well predict the activation in the epicardial veins. Moreover, from the
statistical analysis reported in Figure 7, we can observe that the errors are quite
well confined in a small region, the maximum relative error being in any case
less than 10%.

The previous findings are of utmost importance for clinical applications. For
example, for the Cardiac Resynchronization Therapy (CRT) cardiologists often
uses the point with the latest activation time (LAT) at the epicardial veins to
locate the left electrode [14, 43] Then, thanks to our accurate numerical method,
this information can be provided without a complete mapping of the epicardial
veins. Indeed, only a few septal data to provide the input and a few epicardial
veins data for the parameter estimation (group I) are needed. This will shorten
the invasive procedure based on the insertion of catheters (up to a couple of
hours) and reduce the exposition of the patient to radiations.

5 Conclusions

In this paper we have performed an important step towards the validation of the
monodomain model in the context of a normal excitation with sinus rhythm by
using in-vivo data of activation times acquired in four patients. For each case,
we have used a set of measures at the epicardial veins to calibrate the three
conductivities and another set of measures at the same location to compute
the error with the numerical results and assess an important step toward the
validation of the model. The mean error found in this cross-validation test was
in any case less than 6.2%.

The results of the present work could have important clinical implications.
For example, our validated computational tool could be used to estimate with
good accuracy the point with latest activation time, commonly used during CRT
to locate the left electrode, with a reduced mapping procedure with respect to
the traditional case. This will allow to reduce the time of exposition of the
patient to an invasive procedure and to radiations.
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main model of the ventricular specialized conduction system of the heart.
SIAM J. Appl. Math., 72(5):1618–1643, 2012.

[38] Krishnamoorthi S., Perotti L.E., Borgstrom N.P., Ajijola O.A., Frid A.,
Ponnaluri A.V., Weiss J.N., Qu Z., Klug W.S., Ennis D.B., and Garfinkel A.
Simulation methods and validation criteria for modeling cardiac ventricular
electrophysiology. PLoS ONE, 9(12):e114494, 2014.

[39] Krishnamoorthi S., Sarkar M., and Klug W.S. Numerical quadrature
and operator splitting in finite element methods for cardiac electrophysiol-
ogy. International journal for numerical methods in biomedical engineering,
29(11):1243–1266, 2013.

[40] Niederer S., Kerfoot E., Benson A.P., Bernabeu M.O., Bernus O., Bradley
C., Cherry E.M., Clayton R., Fenton F., Garny A., Heidenreich E., Land S.,
Maleckar M., Pathmanathan P., Plank G., Rodr̀ıguez J.F., Roy I., Sachse
F.B., Seemann G., Skavhaug O., and Smith N.P. Verification of cardiac
tissue electrophysiology simulators using an n -version benchmark. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 369(1954):4331–4351, 2011.

[41] Niederer S., Plank G., Chinchapatnam P., Ginks M., Lamata P., Rhode
K.S., Rinaldi C.A., Razavi R., and Smith N.P. Length-dependent tension
in the failing heart and the efficacy of cardiac resynchronization therapy.
Cardiovascular Research, 89(2):336–343, 2010.

[42] Palamara S., Vergara C., Catanzariti D., Faggiano E., Pangrazzi C., Cen-
tonze M., Nobile F., Maines M., and Quarteroni A. Computational gen-
eration of the Purkinje network driven by clinical measurements: the

20



case of pathological propagations. Int. J. Numer. Meth. Biomed. Engng.,
30(12):1558–1577, 2014.

[43] Liang Y., Yu H., Zhou W., Xu G., Sun Y., Liu R., Wang Z., and Han
Y. Left ventricular lead placement targeted at the latest activated site
guided by electrophysiological mapping in coronary sinus branches improves
response to cardiac resynchronization therapy. Journal of Cardiovascular
Electrophysiology, 26(12):1333–1339, 2015.

[44] Saad Y. and Schultz M.H. Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM Journal on scientific and
statistical computing, 7(3):856–869, 1986.

21



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

16/2020 Paolucci, R.; Mazzieri, I.; Piunno, G.; Smerzini, C.; Vanini, M.; Ozcebe, A.G.
Earthquake ground motion modelling of induced seismicity in the Groningen
gas field

18/2020 Fumagalli, A.; Scotti, A.; Formaggia, L.
Performances of the mixed virtual element method on complex grids for
underground flow

17/2020 Cerroni, D.; Formaggia, L.; Scotti, A.
A control problem approach to Coulomb's friction

15/2020 Fumagalli, I.; Fedele, M.; Vergara, C.; Dede', L.; Ippolito, S.; Nicolò, F.; Antona, C.; Scrofani, R.; Quarteroni, A.
An Image-based Computational Hemodynamics Study of the Systolic Anterior
Motion of the Mitral Valve

13/2020 Pozzi S.; Domanin M.; Forzenigo L.; Votta E.; Zunino P.; Redaelli A.; Vergara C.
A data-driven surrogate model for fluid-structure interaction in carotid
arteries with plaque

14/2020 Calissano, A.; Feragen, A; Vantini, S.
Populations of Unlabeled Networks: Graph Space Geometry and Geodesic
Principal Components

11/2020 Antonietti, P.F.; Facciola', C.; Houston, P.;  Mazzieri, I.; Pennes, G.; Verani, M.
High-order discontinuous Galerkin methods on polyhedral grids for
geophysical applications: seismic wave propagation and fractured reservoir
simulations

12/2020 Azzolin, L.; Dede', L.; Gerbi, A.; Quarteroni, A.
Effect of fibre orientation and bulk value on the electromechanical modelling
of the human ventricles

09/2020 Rea, F.; Ieva, F.,; Pastorino, U.; Apolone, G.; Barni, S.; Merlino, L.; Franchi, M.; Corrao, G.
Number of lung resections performed and long-term mortality rates of
patients after lung cancer surgery: evidence from an Italian investigation

08/2020 Antonietti, P. F.; Facciolà, C.; Verani, M.
Polytopic Discontinuous Galerkin methods for the numerical modelling of
flow in porous media with networks of intersecting fractures


