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Abstract

In this work we build a realistic, although idealized, computational model of the left human
heart for the study of the blood flow dynamics. We prescribe the left heart wall displace-
ment based on physiological data and we take into account the presence of both the mitral
and aortic valves through a resistive method. We simulate the left heart hemodynamics by
means of the Finite Element method and compare different numerical stabilization tech-
niques to account for the transitional and nearly turbulent nature of the blood flow in a
physiological regime. In particular, we apply a Variational Multiscale Large Eddy Simu-
lation (LES) model and a Streamwise Upwind Petrov-Galerkin method and we critically
analyze the corresponding numerical results.

Keywords: Heart Hemodynamics, Finite Element, Numerical stabilization, VMS-LES,
SUPG

1. Introduction

Non-invasive imaging techniques have progressed substantially in recent years and are
nowadays widely applied to study the hemodynamics in the heart [1, 2, 3, 4]. In particular,
phase-contrast magnetic resonance imaging [5] can be used to visualize and register the
heart movements and determine the blood flow velocity. This technique requires to be
applied to several heart cycles in order to obtain reliable information on the variables of
interest that are indeed averaged over different cycles [1, 2]. Although yielding a meaningful
representation of the blood flow in the heartbeat, these techniques cannot provide highly-
detailed instantaneous values and cycle-to-cycle variations. Moreover, a more detailed
characterization of the blood flow may need some other indicators, such as Wall Shear
Stress and Oscillatory Stress Index [6]. Another useful technique is echocardiography, which
allows for a better resolution, however at the cost of measuring only one component of the
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velocity vector, i.e. the one normal to the probe. We refer the reader to [1, 2, 3, 4, 5] for
an overview of these techniques applied in both physiological and pathological conditions.

In recent years in-silico studies have been increasingly applied to study the hemody-
namics in the whole cardiovascular system [7, 8, 9, 10, 11]. Several works focusing on heart
valve dynamics, aneurysm and stenosis formation and growth in arteries, fluid-structure
interaction between blood and artery walls, and ventricle or heart hemodynamics have been
performed with the main focus being the blood flow and its interaction with the surround-
ing tissue [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. On the other hand, only few works
dealing with the cardiovascular system as a whole and its dynamic response have been per-
formed [7, 24]. Still there is a strong interest in performing patient-specific simulations that
could potentially help physicians in assessing the patient condition and eventually leading
to personalized therapies. However, this task requires a significantly large amount of com-
putational resources which could be prohibitive if routinely applied in therapy assessment.
To overcome this difficulty, reduced order techniques could be exploited by studying para-
metric models by exploring patient-specific variability to obtain valuable information in a
consistent, reliable, and computationally less expensive way [25, 26]. Ahead of this step,
one would need to build a representative reference model of the left heart which will stand
at the base of further studies of geometric and physical data variability. As inter-patients
variability is important to be assessed in this field, the development of a parametrized
model could lead to important achievements towards affordable personalized simulation
and therapy. Moreover, an idealized geometry which resembles that of a mean adult, can
provide a valuable hint on the function of a normal heart.

It has been speculated and reported that the blood flow in the left ventricle is transi-
tional or nearly turbulent [13, 18, 20, 22]. The simulation of a turbulent flow can be based
on several approaches. In Direct Numerical Simulations, in principle all the velocity and
pressure small scales are numerically solved by using spatial and temporal discretizations
which are able to fully resolve Kolmogorov lengths. In Large Eddy Simulations (LES)
only the large scales of the solution are directly simulated, whereas the smaller scales are
modeled[27, 28]. In this respect, the Variational Multi-Scale (VMS) model represents an
alternative way to the widely used Smagorinsky or Germano models in defining a sub-grid
model for the LES [29]. As VMS is in fact a stabilization technique for the Navier-Stokes
equations, in this work we use both a classical Streamwise Upwind Petrov-Galerkin stabi-
lization method and a VMS-LES model and compare the obtained results to assess their
performances and the outputs of interest. We take into account the presence of the heart
valves in the human left heart by means of a resistive method, which is embodied in the
VMS-LES model [12]. Then, we provide an extensive assessment of the properties of the
blood flow in the human left heart by means of an idealized computational model.

This work is organized as follows. We first describe a numerical model for the simulation
of an idealized left heart by considering the presence of the heart valves, the prescribed
wall displacement and we propose the VMS approach for its numerical simulation. We
use physiological data to set up our problem and obtain realistic results. In Section 3
we report the numerical results and compare a few medical outputs with measurements
available from literature. Finally, we draw our conclusions.
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2. Numerical Model

Several aspects need to be taken into consideration for a realistic simulation of the
fluid dynamics in the left heart. First, the blood is composed of a liquid phase, the
plasma, and of solid cells and platelets carried by the flow, therefore its rheology is rather
complex [8, 22, 30]. However, in large vessels as well as in the heart chambers, it can
be assumed that the blood behaves like a Newtonian fluid with a constant viscosity. For
these reasons, in the following, we assume the blood to be an incompressible Newtonian
fluid with constant density ρ = 1.06 g/cm3 and dynamic viscosity µ = 0.035 g/(cm s).
These properties are typical of a very viscous fluid, therefore, in small arteries and veins,
the flow regime is usually laminar. On the other hand, in the left heart chambers we find
the largest velocities, particularly across the valve sections, where the Reynolds number
can become as high as 5000 [22]. In these conditions, the flow can become transitional
or nearly turbulent and a reliable turbulence model should be considered. The left heart
can be considered as a pump that collects the blood from the lungs and pushes it in the
aorta, by deforming its shape. The ventricle change in volume is of the order of 70% with
respect to its maximum volume while the atrium one is around 30%. To account for these
large variations in the geometry, we use an Arbitrary Lagrangian Eulerian (ALE) reference
frame. Another important issue is the way valves are accounted for. An approach consists
in using a fluid-structure interaction (FSI) model in an ALE framework [13, 15]. The
valves are considered as three-dimensional structures and the interface is represented by
their lateral surface. Another approach makes use of immersed methods by keeping a single
computational domain (the fluid one) and modeling the presence of the valves by means
of a resistive method [12, 38]. Other methods consist in mimicking the valves through
surrogate models [9] or as time-varying boundary conditions [19].

In this section we discuss all of these issues and how they can be addressed in a unified
framework. First, we consider the problem of turbulence modeling and the ALE reference
system, then we report the model of the left heart that accounts for the presence of valves,
and finally we discuss the boundary conditions for the Navier-Stokes equations.

2.1. Navier-Stokes equations in ALE framework

The Navier-Stokes equations in a moving domain Ωt that depends on the time t can be
written as:

∇ · v = 0 in Ωt, t > 0 , (1)

ρ
∂̂v

∂t
+ ρ (v −wALE) · ∇v = ∇ ·T(v, p) in Ωt, t > 0 , (2)

endowed with suitable boundary and initial conditions. In (1-2) ρ is the fluid density, ∂̂
∂t

represents the time derivative in the ALE framework, wALE is the domain velocity and the
stress tensor T(v, p) can be written as a function of the pressure p and of the strain rate
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tensor S(v) as:

S(v) =
1

2

(
∇v +∇vT

)
, (3)

T(v, p) = −pI + 2µS(v) , (4)

where µ is the dynamic viscosity and p the fluid pressure. We also define the advective
velocity va = v−wALE. The domain velocity wALE is determined by prescribing, for each
t > 0, its value on the boundary which is then extended in the computational domain
through a harmonic extension as [31]:

−∇ · (K∇wALE) = 0 in Ωt , (5)

wALE = wdALE on Γt ,

where K is a tensor to be properly set to ensure preservation of the geometric properties of
the domain, and later the mesh upon the introduction of the Finite Element discretization,
[31].

Now, we introduce the VMS-LES model that is based on the weak formulation of the
Navier-Stokes equations. We introduce the infinite dimensional functional spaces needed
to write the variational or weak form of (1-2). Let Ωt be the moving fluid domain and Γt its
boundary that can be split in Γd,t where a Dirichlet condition is applied and Γn,t where a
homogeneous Neumann condition is applied, Γt = Γd,t ∪ Γn,t. Then, we define the space of
integrable functions in Ωt as Q = L2(Ωt) and the spaces of weakly differentiable functions
Vd,t = {u ∈ H1(Ωt) : u = d on Γd,t}, where d is the Dirichlet data on the boundary, and
V0,t = {u ∈ H1(Ωt) : u = 0 on Γd,t}. The weak formulation of Navier-Stokes equations in
ALE framework is to find, for any t > 0, (v, p) ∈ Vd,t×Q such that for all (w, q) ∈ V0,t×Q:∫

Ωt

∇ · v q dΩ = 0 , (6)∫
Ωt

[(
ρ
∂̂v

∂t
+ ρ(v −wALE) · ∇v

)
·w + T(v, p) : ∇w

]
dΩ = 0 . (7)

We now assume a multiscale decomposition of each of the spaces Vd,t, V0,t and Q in the
form S = Sh⊕S ′ with Sh a suitable finite dimensional space and S ′ an infinite dimensional
one. The space Sh is built by means of the finite element space X r

h = {vh : Ωt → R :
vh|k ∈ Pr ∀k ∈ τh}, with r the polynomial degree and τh the partition of Ω0 into mesh
elements (tetrahedrons in our case); the rest of the space notation is understood. In this
way, every function we have defined on the spaces Vd,t, V0,t and Q, can be written as the
sum of a coarse scale and a fine scale component,

v = vh + v′ p = ph + p′ w = wh + w′ q = qh + q′ .

By representing (6-7) into coarse and fine scale components and integrating by parts the
fine scale terms into the coarse scale equations we obtain the coarse equations, with the fine
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scale terms not appearing under differential operators [29, 32]. We can close the problem
by modeling the fine scales as:

v′ = −τM(vh) rm(vh, ph) (8)

p′ = −τC(vh) rc(v
h) , (9)

where rm(vh, ph) and rc(v
h) are the element-wise strong residuals of (2) and (1), respec-

tively:

rm(vh, ph) = ρ
∂̂vh

∂t
+ ρ(vh −wALE) · ∇vh −∇ ·T(vh, ph) , (10)

rc(v
h) = ∇ · vh . (11)

The stabilization parameters τM(vh) and τC(vh) will be defined later. In this work we use
a Backward Differentiation Formula (BDF) of order σ to advance the ordinary differential
problem in time, once the Finite Element space discretization of the equations has been
achieved. In order to address the nonlinear nature of these equations it is necessary to
solve a nonlinear problem, by means of, e.g., Picard fixed point or Newton iterations.
It is also possible to use a semi-implicit formulation [32]. Here the nonlinear terms are
linearized by means of a Newton-Gregory extrapolation of order σ of the variables in the
nonlinear terms. The extrapolation is based on the solution at the previous time steps
[32]. In this way the equations are linear and can be solved once at each time step. This
method is computationally cheaper than Newton method, for instance, but there might be
a restriction on the time-step to be used in the BDF discretization to obtain reliable and
stable results.

2.2. Left heart geometry and wall displacement

The left heart (LH) is composed of two chambers, the left atrium (LA) and the left
ventricle (LV), which are separated by the mitral valve. Four pulmonary veins (PV) are
connected to the left atrium (LA) and the aorta is connected to the LV through the aortic
valve (AV). The LH geometry consists of an idealized LA (see [33, 34]) anchored to an
idealized LV represented by half of a prolate ellipsoid, see [18, 19, 20]. In this work, we
match the base of the LA with the LV through an idealized mitral valve section which
is about 5 cm2 large. Moreover, we model the aortic root as a cylinder whose diameter
is DAV = 3 cm and the pulmonary veins as four equally sized cylinders with diameter
DPV = 1.5 cm. The geometry of the idealized LH at the end systolic phase, i.e. when
the LV volume is smaller than the LA one, is reported in Figure 1. Here we consider
only the volume occupied by the blood, so that there are time intervals of the heartbeat
during which the LV volume is actually smaller than the LA one. In the time instant
reported in Figure 1, corresponding to t = 0 s in Figure 3, the LV volume is approximately
53 mL, while the LA one is 92 mL. The left atrial appendage (LAA) is a small chamber
linked to the atrium through an orifice. Its morphology is variable among individuals and
four reference types have been classified [35]. The one reported in Figure 1 approximately
corresponds to a “CauliFlower” type LAA; see [21, 35].
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Figure 1: The idealized LH geometry at the end systolic phase. The atrium (LA) is located over the
ventricle (LV) and the two chambers are separated by the mitral valve section (MV), the pulmonary veins
(PV) and the left atrial appendage (LAA) are also indicated. The aortic root is attached to the LV.

The physiological heart cycle is divided into two main phases, the diastole and the
systole. We define Thb the total time length of one heartbeat, tdias the time length of
the diastole and tsyst the systole one. During diastole, blood enters in the LA from the
pulmonary veins and flows to the LV passing through the MV, which is open. The AV
is closed so that the blood cannot flow out of the LV. The LV expands during this phase
while the LA reduces its size. The volume reduction of the LA is due to the LV movement
towards the LA and to an atrial contraction during the last part of the diastole. When the
LV stops expanding and starts contracting, the MV closes due to the pressure difference; a
very fast iso-volumetric phase takes place in which the LV pressure rises until it overtakes
the aortic pressure, so that the AV opens. The systole is the phase during which the LV
contracts, the oxygenated blood is pushed from the LV into the aorta, the LA dilates and
is filled with blood coming from the PVs. In this phase, the MV is closed. Finally, after
the LV has attained its minimum volume, it starts expanding again, the intraventricular
pressure drops and the AV closes due to the pressure difference between the aorta and
the LV. There is another very fast iso-volumetric phase in which both of the valves are
closed and the LV pressure drops until it reaches the LA values, then the MV opens and
a new cycle begins. These phases are represented in the well known Wiggers diagram
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Figure 2: Volumes of the atrium and ventricle as a function of time.

[8, 36]. From a modeling point of view, since we assume the blood to be an incompressible
fluid, we cannot straightforwardly represent the iso-volumetric phases when the pressure
change is due to small volume variations. With this aim, one should allow some limited
compressibility to the fluid so that this process can be captured. However, since these
phases are fast, we assume the switch between diastole and systole is instantaneous as well
as the valves change in configuration from open to closed. Therefore, there are only two
possible configurations in our model: diastole with expanding LV, contracting LA, MV
open and AV closed and systole with contracting LV, expanding LA, MV closed and AV
open.

To model the wall displacement of the LH, we assume the variations in volume to be
in the physiological range, with the LV volume in the range of 53 to 164 mL while LA
spans between 55 to 92 mL [3]. To define the wall movement, we assume several other
constraints: the ratio between the height and the diameter of the LV is kept around 1.7÷2
[18, 22, 37]. Moreover, the LV apex movement is directed towards the LA, as it is known
from medical images. Finally, we assume that the LA volume variation is similar to the
one of a sphere with changing volume, so that the displacement is directed towards the
center of the LA. With these constraints, we proceed by decomposing the wall dependence
in time and in space. The volume variation in time should correctly represent two different
filling stages of the LV during diastole, called the Early wave (E-wave) and the After wave
(A-wave). We report in Figure 2 the volume versus time for the idealized LV and LA.
These are obtained with a Fourier expansion in time of the volume function in [18] that
has been also adapted to the LA problem. In Figure 3 we display snapshots of the geometry
of the LH at several time instants. Being based on an analytical characterization of the
wall displacement, our model can be easily parametrized in order to represent a wide range
of physiological variability among patients.
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Figure 3: Snapshots of the LH geometry at different time instants of the heartbeat.

2.3. Heart valves

Modeling the heart valves is a problem that has and is currently being extensively
studied, see e.g. [12, 13, 15, 16, 17, 24, 38]. The dynamics of the leaflets is very complex
and subject to strong fluid-structure interaction. In some preliminary studies [24], the
valve dynamics is approximated by a zero-dimensional model, according to which the state
of the valve is completely determined by a few variables, such as the leaflets angle or the
valve open area. Usually, these models take into account the pressures at both sides of
the valve, the blood flux through the valve and few other variables, yielding a system of
Ordinary Differential Equations (ODEs) [12, 24]. In other works [13, 16, 17, 38], the valve
is instead considered as a three-dimensional object and a full fluid-structure interaction
problem should be solved, either in a moving mesh framework or with immersed methods.
In this work, we assume that the valve dynamics is known a priori and that the interactions
of the valve with the fluid are limited to a no-slip condition at the valve leaflets or, better
said, that the fluid adheres to the valve. That is, similarly to [19, 20], we model only the
fluid problem in a deforming domain. To achieve this goal we use a resistive method as in
[12], and we assume the valves to be in either their open or closed configurations. We do
not explicitly represent the valve leaflets, but rather we let them “disappear” in the valve
open configuration. Then, we identify the regions (AV for aortic valve and MV for mitral
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Figure 4: Locations of the mitral and aortic valves. The subsets of the geometry in red stands for the
region in the domain where the velocity is enforced to adhere to the domain velocity when the valves are
closed, i.e. during diastole for the aortic valve and during systole for the mitral valve.

valve) occupied by the valves in their closed configurations in which we set the velocity
to be equal to the domain velocity wALE. In Figure 4, we report the location where we
enforce the fluid velocity to be equal to the domain velocity. We remark that the aortic
valve is closed during diastole, while the mitral valve is closed during systole.

To account for the valves with the resistive method, the momentum equation in the
Navier-Stokes equations (6-7) is supplemented with an additional term,∫

Ωt

Rh (v −wALE) dΩ , (12)

where the function Rh has support in the subsets of Ωt where the valves lay; ‖Rh‖2
L(Ωt) is

“sufficiently” large to effectively enforce the adherence of the fluid velocity to the domain
motion velocity wALE. Note that Rh = Rh(x, t) [12]. In this work, after Finite Element
discretization in space, we use a function Rh which is piecewise discontinuous onto the
Finite Element mesh.

The standard VMS-LES formulation of the Navier-Stokes equations is modified to ac-
count for the presence of the resistive term. The definition of the stabilization parameters
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is [12, 29, 32]:

τM(vh) =

(
ρ2σ2

∆t2
+ ρ2 vha · G vha + Cµ2 G : G +R2

)− 1
2

, (13)

τC(vh) =
1

τM(vh)g · g
, (14)

where σ is a constant equal to the order of the time discretization based on BDF (Backward
Differentiaion Formulas), C = 60, G is a second-rank metric tensor and g is the metric
vector:

G =

(
∂ξ

∂x

)T
∂ξ

∂x
, (15)

g =
3∑
j=1

(
∂ξ

∂x

)
ji

, (16)

where ∂ξ
∂x

is the inverse Jacobian of the mapping between the reference and the physical
domain. See [29, 32] for more details.

To summarize, the VMS-LES formulation with resistive term is: find, for each time
t > 0, (vh, ph) ∈ Vhd,t ×Qh such that, for all (wh, qh) ∈ Vh0,t ×Qh∫

Ωt

(
∇ · vh qh − v′ · ∇qh

)
dΩ = 0 , (17)

∫
Ωt

[(
∂̂vh

∂t
+ ρ(vh −wALE) · ∇vh +R

(
vh −wALE

))
·wh + Th : ∇wh

]
dΩ (18)

−
∫

Ωt

[
v′ · (ρ(vh −wALE) · ∇wh)− p′∇ ·wh

]
dΩ

−
∫

Ωt

v′ · (ρ(vh −wALE) · (∇wh)T ) dΩ

−
∫

Ωt

(v′ ⊗ v′) · ∇wh dΩ = 0 ,

together with initial conditions v = 0, p = 0 and the fine scale velocity and pressure v′, p′

defined as in (8-9). The definition of the residual rm(vh, ph) in (8) is modified, to account
for (12),

rm(vh, ph) = ρ
∂̂vh

∂t
+ ρ(vh −wALE) · ∇vh +Rh

(
vh −wALE

)
−∇ ·T(vh, ph) . (19)

We remark that in (18) the first integral is the residual of the momentum equation, the
second integral accounts for a SUPG stabilization term, the third integral is a stabilization
term due to the VMS model and the fourth integral is the Reynolds stress term, which
yields the VMS-LES modeling using (8).
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2.4. Boundary conditions

Based on the Wiggers diagram, the boundary conditions differ when considering diastole
and systole since the valve behavior has a strong influence on the flow. In particular, during
diastole, the AV is closed and the whole volume variation of the LH must be balanced by
an equal blood inflow from the PVs. During systole, the flow rate in the LA coming from
the PVs must be equal to the LA volume variation, while the aorta outflow is equal to
the LV volume variation. Since the flow is periodic, we define the boundary conditions on
a time period corresponding to one heartbeat time Thb, and then, at each new heartbeat,
the same boundary conditions are applied. By defining t∗ ∈ [0, Thb) as the time in one
heartbeat we have

QPV =


dVven
dt

+
dVatr
dt

t∗ ∈ [0, tdias]

dVatr
dt

t∗ ∈ (tdias, Thb)

(20)

We assume the inflow at the PVs to be equally split among the veins, and a parabolic
velocity profile for the blood in the veins, as this flow can be assumed to be laminar. To
define a parabolic profile in each vein, we solve an additional problem for a scalar variable
χ in the volume Ωt, see Figure 1, written as:

−∆χ = 1 in Ωt ,

χ = 0 on Γw , (21)

∇χ · n = 0 on ΓPV ,

where ΓPV,t is the inlet surface of the pulmonary veins and Γw = ∂Ωt\ΓPV,t. The variable
χ represents the value of the blood velocity normal to the PV sections. With this variable
we define a reference inflow velocity profile viref with total flux equal to 1 on each i inlet
vein as

viref =
χn∫

Γi
PV
χdΓ

i = 1, 2, 3 ,

where n is the unit vector normal to ΓiPV and ΓiPV is the subset of ΓPV to a single pulmonary
vein i = 1, 2, 3. Given an inflow fluxQPV , we rescale the velocity viref to obtain the Dirichlet
boundary condition at the pulmonary vein simply as v|Γi

PV
= 0.25QPV viref . On the last

pulmonary vein, i = 4, we set a Neumann boundary condition to impose the pressure in
the atrium during the whole cycle. Based on physiological data, we choose the pressure at
the 4th pulmonary vein to be equal to 10 mmHg.

The boundary conditions at the outlet of the left heart, namely at the aorta section
behind the aortic valve, should take into account the rest of the cardiovascular system as
well as its resistance to the fluid exiting from the heart. A common way to accommodate
this request is to use boundary conditions of resistance type [39, 40, 41]. The stress on
the outlet section is split in its normal and tangential components. Then, the tangential
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components are set to zero, whereas the normal component is expressed as the sum of two
terms, one assigning the minimum pressure of the system and the second one accounting
for a resistance due to the outflow. In summary, after denoting the normal vector to the
outlet with n and the tangential vectors with t1 and t2, we set

Tn = −(CrQout + pao)n , Tt1 = 0 , Tt2 = 0 ,

where Qout is the blood flux through the aortic section, Qout =
∫

Γao
v ·n dΓ, Cr is a constant

that has to be set up to obtain a correct physiological pressure during systole, and pao is
the minimum pressure in the aorta. During diastole, we assume Cr = 0 and we set the
aortic pressure as linear in time with physiological values extrapolated from the Wiggers
diagram. During systole, the resistance of the circulatory system is active, and we set a
minimum arterial pressure of 70 mmHg. Therefore:

Cr =


0 t∗ ∈ [0, tdias]

400 t∗ ∈ (tdias, Thb]

pao =


70

(
1− 20

t∗ − tdias
tdias

)
t∗ ∈ [0, tdias]

70 t∗ ∈ (tdias, Thb]

where the units are [dyn s/cm5] for Cr and [mmHg] for the pressure.

3. Numerical results and discussion

Our numerical simulations were carried out by means of the computing resources of
the Swiss National Supercomputing Center (CSCS) in Lugano using up to 20 nodes of Piz
Daint Cray XC40 system. We used P1-P1 tetrahedral linear elements and a Backward
Differentiation Formula of order σ = 2 for the time integration and equal order extrapo-
lation for the nonlinear terms, see [32]. Our software implementation was realized in the
open-source finite element library LifeV [42]. We tested both the VMS-LES formulation as
reported in (17-18) and a SUPG stabilization. The latter is simply realized by removing
the last two terms on the left hand side of Eq. (18). For both stabilization methods, in
order to obtain a fully developed flow, we started the computation with a null solution and
disregarded the first two heartbeats. Then, the simulation is continued for further four
heartbeats.

We tested several meshes progressively refined and we selected the one with 3′343′277
elements and 2′170′320 degrees of freedom. This choice was made upon checking a posteriori
the LES quality of the simulation by using the Pope criterion presented in [27]. According
to [27], the fraction of the turbulent kinetic energy in the resolved motions is defined as

Mh(x, t) =
kr(x, t)

Kh(x, t) + kr(x, t)
, (22)
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where kr is the kinetic energy of the unresolved scales and Kh is the kinetic energy of the
resolved scales,

Kh =

∫
Ω(t)

ρ

2
vh(x, t) · vh(x, t) dΩ , (23)

which is available through the computed velocity vh. Therefore, Mh is a measure of how
much energy is actually resolved in the numerical simulation; to perform a “good” quality
LES we set a maximum value of Mmax

h = 0.2 [27] everywhere in the computational domain.
If the value of Mh is larger than Mmax

h , then one would need to refine the computational
mesh. The problem in this method is how to compute the kinetic energy of the unresolved
scales. In our residual based VMS-LES formulation we propose to use (8) to approximate
the unresolved scales and to compute Mh as follows

Mh(x, t) =

∫
Ω(t)

v′ · v′ dΩ∫
Ω(t)

vh · vh dΩ +
∫

Ω(t)
v′ · v′ dΩ

. (24)

We checked the results of the simulations and we found that with this mesh the largest
values of Mh are observed close to the valves and the LA and LV walls, but these never
exceed the value Mmax

h . Far from the walls and the valves, we have Mh < 10−4 so we
assume that the flow is well resolved with this mesh.

We now describe the flow results obtained with the VMS-LES stabilization method and
a time step of ∆t = 4 · 10−4 s. The flow in the left heart features a very complex pattern;
to visualize it, we use the volume rendering of the velocity magnitude in Figure 5 and,
in Figure 6, the Q-criterion. The latter represents a standard way to visualize coherent
vortex structures in the flow [34]. The Q function is

Q = 0.5(|A|2 − |S|2) ,

where A and S are, respectively, the antisymmetric and symmetric part of the velocity
gradient. Coherent vortex structures appear in regions of a positive Q; in order to visualize
them, we plot the iso-contours of Q by selecting a suitable positive value.

In Figure 5, we report the velocity magnitude in the left heart at several instants of the
sixth heartbeat, when the flow is fully developed. In Figure 6, we display the iso-contours
of Q = 500 colored according to the velocity magnitude, in the same heartbeat. During
early diastole, the velocity is very small, especially in the LV, with some structures still
visible in the LA. When the E-wave starts, a high speed flux crosses the MV section and
produces a large non-symmetrical structure in the upper part of the LV. The jets coming
from the PVs impact in the center of the LA and then progressively dissipate until the
A-wave starts. The blood flux through the MV generates a coherent structure in the LV,
the so-called O-ring [18, 22, 43]. The latter breaks into smaller structures as the blood
flow moves towards the apex and finally impinges the LV wall. Within the A-wave, a small
vortex structure is visible under the mitral section but it is broken immediately at the
MV closure and the opening of the AV which marks the beginning of the systole. During
systole, a high velocity jet is visible in the aorta and the coherent structures present in the
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Figure 5: Snapshots of velocity magnitude (volume rendering) at different time instants of the heartbeat.
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Figure 6: Snapshots of Q-criterion contours (for Q = 500) colored by the velocity magnitude at different
time instants of the heartbeat.
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Figure 7: Flow rates through the PVs, the MV section and the aortic section versus time along two
heartbeats.
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Figure 8: Average pressure in the LA, LV and aorta versus time along one heartbeat.

LV are flushed out with the blood flow. The LA is refilled with blood coming from the PVs
that produces again an impact between jets, although weaker than the one of the E-wave.
At the end of the systole, some structures are still visible in the LA and a small one in
the LV just under the mitral section. The velocity is very small apart from the aorta and
the veins where inertia is still mixing the blood. All of these features of the blood flow are
consistent with those reported in [18, 19, 20, 22, 43].

We post-process the results to obtain the flow rates at the inlet, outlet and mitral
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Figure 9: Specific kinetic energy ρEk in the LV and in the LA of the idealized LH versus time in a phase
averaged heartbeat. Results obtained with VMS-LES and SUPG stabilization.

sections as reported in Figure 7. The inlet and outlet blood flow rates versus time are
reported for the first two heartbeats but, since they correspond to the volume variations,
these show negligible differences among cycles. The mitral flow, on the other hand, could
vary since it depends on the blood flow that develops in the LH; however, we notice that
this variable shows the same behavior in time among different heartbeats. A possible
explanation is that the mitral flow depends mostly on the wall displacement and volume
variations and not on specific features of the flow and geometry. In Figure 8, we report
the average pressure computed in the LA, in the LV and on the aorta section versus time,
for one heartbeat. To evaluate the average pressure in the LA and in the LV, we selected a
small volume in approximately the center of each of these chambers and averaged therein
the value to obtain the data plotted in Figure 8. In a similar way, we selected a small
area in the center of the aorta section and averaged to obtain the pressure at the aorta
section. We remark that the pressure in the aorta is prescribed during diastole and that
during the first cycle we increase its value starting from zero. During systole, the pressure
in the aorta is obtained using the resistance outlet boundary condition [19, 39, 40, 41].
The pressure in the LA shows small oscillations around the average value of 10 mmHg that
can be linked to the blood flow coming from the veins. On the other hand, the pressure
in the LV increases when the MV closes and overcomes the pressure in the aorta. In late
systole the aortic pressure overcomes the LV pressure and this leads to the closing of the
aortic valve with a delay, if a proper valve model is used. In our model the aortic valve
simply closes at a fixed time and the LV pressure falls down again to values similar to the
LA ones because of the MV opening. The plots of the flow rates and pressure obtained
show the same features of the Wiggers diagram.

The blood flow is periodic; in order to study a representative blood flow among different
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heartbeats, we perform a phase averaging of the variables defining the phase average of the
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Diastole Systole
LV VMS-LES 5.06 mJ 3.35 mJ
LA VMS-LES 1.80 mJ 0.95 mJ
LV SUPG 5.19 mJ 3.40 mJ
LA SUPG 1.79 mJ 0.94 mJ
Healthy LV [2] 2.0 ± 0.8 mJ 1.6 ± 0.6 mJ
Diseased LV [2] 3.2 ± 2.3 mJ 2.2 ± 1.4 mJ

Table 1: Average kinetic energy in the LV and LA obtained with VMS-LES turbulence model, SUPG
stabilization and measured experimentally [2].

velocity and its root mean square as:

vi(x, t
∗) =

1

Nc

Nc−1∑
j=0

vi(x, t
∗ + j Thb) t∗ ∈ [0, Thb] , i = 1, 2, 3 , (25)

vrmsi (x, t∗) =
1

Nc

Nc−1∑
j=0

√
v2
i (x, t

∗ + j Thb)− v2
i (x, t

∗) t∗ ∈ [0, Thb] , i = 1, 2, 3 . (26)

We set Nc = 4 and we discard the first two heartbeats to remove the influence of the non-
physical initial condition. The quantity vrms provides information on the flow variability
among heartbeats and can be used as an indicator of transition to turbulence [20]. With
these phase averaged quantities we compute some global indicators of the flow, such as the
total kinetic energy, the fluctuating kinetic energy and the enstrophy, defined respectively
as:

Ek(t
∗) =

ρ

2

∫
Ωt∗

v · v dΩ , (27)

Ekfl(t
∗) =

ρ

2

∫
Ωt∗

vrms · vrms dΩ , (28)

S(t∗) =
1

2

∫
Ωt∗

ω · ω dΩ , (29)

where ω is the vorticity computed with the phase averaged velocity, ω = ∇ × v. These
quantities provide information on the nature of the flow and in some cases these can be
measured experimentally. For example, the total kinetic energy of the blood flow in healthy
and diseased left ventricles have been measured with 4D Magnetic Resonance Imaging in
[2], where the results obtained from the measurement of the kinetic energy were tentatively
linked to a physiological or pathological condition of the patient. This method could be
used to evaluate the results of simulations on patient-specific or idealized and parametrized
geometries to study particular pathologies, such as mitral valve regurgitation or atrial
fibrillation. The values of the total kinetic energy in the LV and LA obtained with the VMS-
LES model, the SUPG stabilization and published in [2] are reported in Table 1. We notice
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that the results obtained with VMS-LES and SUPG stabilization models are very similar
and that we obtain values that are two times larger with respect to the experimental results
for the healthy LV. This could be due to a different choice of the measurement regions or
to a higher velocity in the LV in our model due to possible geometrical variations.

The same quantities can be divided by the blood mass in the LV and LA, respectively,
in order to obtain values that can be easily compared between the LA and the ventricle
and among different patients. Therefore, we define

ρEk(t
∗) =

Ek(t
∗)

ρ|Ω(t∗)|
ρEkfl(t

∗) =
Ekfl(t

∗)

ρ|Ω(t∗)|
ρS(t∗) =

S(t∗)

ρ|Ω(t∗)|
, (30)

and we study their trend during a complete heartbeat. In Figures (9-11) we report the
specific kinetic energy, the specific fluctuating kinetic energy and the specific enstrophy
versus time for the LA and the LV and compare the results obtained with VMS-LES
and SUPG stabilization. First we remark that the results obtained with the two different
stabilization methods are very similar and in some cases, for example for the total kinetic
energy, they cannot be distinguished at all. The specific kinetic energy ρEk(t

∗) shows a very
large peak corresponding to the E-wave in the LA and, with a small delay, in the LV too.
A peak corresponding to the A-wave is visible in the LA, while the kinetic energy of the
LV does not change much during the A-wave. During systole, there is another peak in the
LV when blood flows through the aorta and then the kinetic energy shows the minimum.
In the LA, the refilling leads to a smoother increase of kinetic energy; we remark also that
the minimum value of ρEk(t

∗) in the LA is higher than the one in the LV. The fluctuating
kinetic energy reported in Figure 10 shows a different trend with only one large peak after
the E-wave in both the LA and LV. These peaks are delayed with respect to the kinetic
energy and they correspond to the breakup of the large vortex structures created during
the E-wave. This means that the breakup process is highly variable among heartbeats and
we suggest that it could be indicative of transition to turbulence. We also remark that
the trend of ρEkfl(t

∗) in the LA is flatter than in the LV; this means that the LA flow is
more regular among heartbeats. Finally, we analyze the specific enstrophy ρS(t∗). This
quantity is strongly linked to the dissipation of the kinetic energy of the flow and it is an
indicator of high or low vorticity and transition to turbulence [44, 45]. In Figure 11, we
report the specific enstrophy as a function of time. We notice again the presence of a peak
corresponding to the E-wave with some delay in both the LA and the LV and a second
stronger peak in the LA. The peaks correspond to the time instants when the kinetic energy
is mostly dissipated. Moreover, we remark that the values between the LA and the LV
are quite similar, so we can assume that the blood flow in the two chambers shows similar
vorticity and dissipative features.

Several other indicators have been introduced to assess the cardiovascular situation of
patients [6, 46]. In this work, we study the Oscillatory Shear Index (OSI) and the Relative
Residence Time (RRT) which are both based on the computation of the Wall Shear Stress
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Figure 12: Oscillatory Shear Index and Relative Residence Time computed by using the phase averaged
wall shear stress, VMS-LES model.
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(WSS). These are defined, respectively, as:

OSI = 0.5

1−

∣∣∣∫ T0 WSS dt
∣∣∣
2∫ T

0

∣∣WSS
∣∣
2
dt

 , (31)

RRT =

[
(1− 2OSI)

T

∣∣∣∣∫ T

0

WSS dt

∣∣∣∣
2

]−1

, (32)

where |·|2 denotes the Euclidean modulus of a vector. The OSI is mostly used in arteries
when studying the deposition of plaques that can lead to stenosis formation or atheroscle-
rosis. It has been suggested that the OSI can be a valuable indicator of the locations
where the deposition of material is more likely to happen in arteries [6]. The RRT is an
indicator of how much time a blood particle spends in the vicinity of a wall, so it can be
linked to a weak blood turnover in the regions where RRT is high [46]. In Figure 12 on the
left, we report the OSI as computed using the WSS based on the phase averaged velocity.
The OSI is higher in the LA in the opposite wall with respect to the LAA and in the LV
it is asymmetric with one side where the oscillations are higher in the top part and the
other side where oscillations are higher in the LV bottom. In Figure 12 (right), the RRT is
shown. This quantity shows a few spots where it is high, in the bottom of the LAA and in
the LV bottom. In particular the very high values in the LAA have been already reported
in simulations of patient-specific geometries [21, 23], so our model can reproduce also this
characteristic feature of the flow in the LA.

4. Conclusions

In this work, we studied the hemodynamics of an idealized left heart. We developed
a computational model for the left heart geometry and we prescribed the wall displace-
ment based on physiological data. We considered the VMS-LES method to stabilize the
discretized incompressible Navier-Stokes equations in the ALE reference system used to
account for the moving domain. Valves are modeled by means of the resistive method,
which involves a modification of the momentum equation in the fluid problem. Hence,
in this paper, we accordingly modified the VMS-LES to account for the presence of the
valves induced by the resistive method. The resulting system of equations has been solved
through high performance computing platform and the LES quality of the results has been
confirmed by means of the Pope indicator [27]. We analyzed and post-processed the nu-
merical results to obtain clinically meaningful medical indicators and compared them with
experimental and numerical results available in literature. VMS-LES and SUPG stabiliza-
tion techniques produced very similar results in this setup. Our model provides an overall
detailed description of the blood flow in the left heart and we suggest it can be employed
in the future to perform parametric studies of specific heart pathologies, such as mitral
flow regurgitation, or to study blood flow at faster heartbeat rate. In these cases, the
turbulence level of the flow is larger than in the physiological case, and a VMS-LES model
can correctly capture all the small structures with a smaller dissipation level than the one
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introduced by SUPG. The results indicate that a transition to turbulence is more likely to
occur after the E-wave, being initiated by the breakup of the large vortex structures in the
LV.
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[20] A. Tagliabue, L. Dedè, and A. Quarteroni. Complex blood flow patterns in an idealized left ventricle:
A numerical study. Chaos, 27:093939, 2017

[21] A. Masci, M. Alessandrini, D. Forti, F. Menghini, L. Dedè, C. Tommasi, A. Quarteroni, and C. Corsi.
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