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Abstract We propose a mathematical model and a discretization strategy for the
simulation of pressurized fractures in porous media accounting for the poroelastic
effects due to the interaction of pressure and flow with rock deformations. The aim
of the work is to develop a numerical scheme suitable to model the interplay among
several fractures subject to fluid injection in different geometric configurations, in
view of the application of this technique to hydraulic fracturing. The eXtended Fi-
nite Element Method, here employed for both the mechanical and fluid-dynamic
problems, is particularly useful to analyze different configurations without remesh-
ing. In particular, we adopt an ad hoc enrichment for the displacement at the fracture
tip and a hybrid dimensional approach for the fluid. After the presentation of the
model and discretization details we discuss some test cases to assess the impact of
fracture spacing on aperture during injection.
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1 Introduction

Hydraulic fracturing (also called fracking) is the fracturing of various rock layers
by the injection of a pressurized liquid. This technique has been used for decades to
release and produce vast amounts of formerly inaccessible hydrocarbons, both oil
and natural gas, and, more recently, it has been applied in geothermal heat recovery,
i.e. in the extraction of heated water and steam from hot dry rocks. Specific environ-
mental concerns involve the contamination of ground water due to the migration of
fracturing chemicals and the possible effects on fault reactivation. For this reason,
hydraulic fracturing has been studied in depth in recent years, resulting in the need
of accurate and robust mathematical and computational models of fluid filled frac-
tures surrounded by poroelastic media. Hydraulic fracturing is currently simulated
both with phase field [30, 25, 22, 24, 10], with eXtended Finite Element Method
(XFEM) based approaches [17, 16, 8, 27, 15], as well as with cohesive zone models
[7, 20, 9, 31, 29].

The aim of this work is to provide a numerical framework to simulate hydraulic
fractures in a porous medium, which is subject to deformations due to loading
and high fluid pressure. This is a challenging multiphysics problem, because it in-
volves several heterogeneous phenomena. More precisely, there is a fluid-fluid cou-
pling, meaning that the fluid can be exchanged between the fracture and the porous
medium. Then, there is a fluid-solid coupling, as the fluid in the fracture induces
a deformation of the rock matrix, and a solid-fluid coupling, since the rock defor-
mation chages the fracture aperture. Finally, the fluid pressure in the rock matrix
influences the stiffness of the rock.

The aim of this work is to propose a model and a discretization strategy based
on XFEM for the simulation of pressurized fractures in a porous medium. First,
the model governing equations are presented for the porous matrix and for the fluid
pressure, both in the porous medium and in the crack. Then, we reduce the com-
putational cost of solving the system of equations by averaging the flow equations
in the crack along the crack aperture. In this way, we obtain a simplified model for
the crack, which is described as a one/co-dimensional manifold embedded into the
surronding material. A hybrid dimensional weak formulation is obtained, allowing
to describe the fluid pressure in the whole domain with a unique linear system. The
XFEM, with a particular tip enrichment designed to mimic the tip behavior in the
presence of a hydraulic fracture, is used to solve the poroelasticity equation, while
for the fluid equation we allow the pressure gradient to be discontinuous across
the fractures. The hydro-mechanical coupling is then solved in a monolithic fash-
ion via Newton iterations, as a staggered approach did not show convergence due
to the strong nonlinear coupling of the fluid pressure and rock displacement. This
study ends with numerical simulations that investigate the interaction of two or more
cracks located at relatively small distance form each other.
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2 Model set up

In this section we devise the numerical model for the hydro-mechanical coupling of
a fluid-filled hydraulic plane-strain crack in a poroelastic medium.

The model is based on the assumption of quasi-static propagation, linear elasto-
statics, laminar flow in the fracture, and crack opening negligible with respect to
crack length. Moreover, the model developed here solves the full equation of pres-
sure diffusion in the porous medium inside and outside the crack.

As sketched in Figure 1, the crack lips Γ + and Γ− are assumed to divide the do-
main Ω into the surrounding porous medium Ωp and the fracture Ω f . Consistently,
we will indicate with p f and pp the fluid pressure in the crack and in the porous
medium, respectively, and we will require the continuity of pressure on the crack
lips. With n+ and n− we indicate the outwards normals to Ωp on Γ + and Γ−, re-
spectively. Here, we develop the model in two space dimensions. More precisely Ωp
and Ω f are 2-dimensional domains. The centerline of Ω f is indicated with Γ and
will represent a sharp crack later on, when we will eventually exploit the assumption
that the crack length is much higher that the crack opening.

The displacement of the skeleton is indicated with u. Here we have assumed a
linear elastic behavior of the skeleton prior to fracture propagation. In particular, we
will denote with C the fourth order elasticity tensor and with ε(u) the strain.

The mechanical behavior of the rock is characterized by the Young’s modulus E,
the Poisson’s ratio ν and the rock is subject to a far field confining stress σ0 > 0.
The fluid is injected with a constant injection rate Q0 and its dynamic viscosity is
µ . The permeability tensor of the porous medium, denoted as K, may depend on
the porosity φ , and, since the medium is permeable we allow for leak-off from the
fracture.

Γ
+

Γ
−

Γ

Ωp

Ωf

n
+

n
−

Fig. 1 The domain is divided by the crack surfaces Γ + and Γ− into Ω f , inside the crack, and Ωp,
outside the crack. Γ is the centerline of the crack.
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2.1 Governing equations

The behavior of the poroelastic medium is given by the theory of poromechanics
[11]. We introduce the total stress tensor σ , which is the sum of two contributions,
one of the elastic stress and one of the pore pressure:

σ =Cε(u)−α ppI. (1)

The parameter α ∈ [0,1] is referred to as the Biot coefficient [3] and accounts for the
grains compressibility. In the last equation, the minus sign is due to the opposite sign
convention for stresses (positive in traction) and pressures (positive in compression).

The equilibrium of the solid matrix can be now stated as
−∇ ·σ = 0 in Ωp

σn =−p f n on Γ +∪Γ−

σn =−σ0n on ∂ΩN

u = u0 on ∂ΩD

, (2)

where we have used the quasi-static assumption, i.e. the solid is at any time at equi-
librium. Notice that the fluid pressure in the fracture acts as a boundary condition
on the poroelastic surrounding medium. Here, ∂ΩN and ∂ΩD denote a partition
of ∂Ωp \ (Γ +∪Γ−), where compression and displacement are prescribed, respec-
tively.

The fluid pressure equation in the porous medium is given by Darcy’s law and
volume conservation. Assuming a constant fluid density, it reads

−∇ ·
(

1
µ

K∇pp

)
=−∂φ

∂ t
in Ωp

pp = p f on Γ +∪Γ−

1
µ

K∇pp ·n = 0 on ∂Ωn

pp = p0 on ∂Ωd

. (3)

Here, ∂Ωn and ∂Ωd denote a partition of ∂Ωp \(Γ +∪Γ−), where no flux and a ref-
erence pressure p0 are prescribed, respectively. Notice that the boundary conditions
set on Γ + ∪Γ− require explicitly the continuity of the pressure inside and outside
the crack. This is a common assumption when the fracture has a high permeability
or, as in our case, when it is empty of debris. In this latter case, fluid flow can be
modeled as a Stokes problem.

We model the feedback of fluid pressure on porosity as follows ∂φ
∂ t = ∂

∂ t (s0 pp +
α∇ ·u), where s0 is called storativity coefficient (or mass storage coefficient) [3, 11].
This equation introduces an additional coupling between the Darcy equation and the
volumetric strain term, recently analyzed in [21], and [13].
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To model the flow inside the crack, we introduce the coordinate system shown
in Figure 2. The geometry that we are considering is that of a straight crack aligned
with the x direction. The centerline of the crack lies on the x axis. The crack is
assumed to be symmetric with respect to the x-axis and its half opening is h and
depends on x, vanishing at the crack tip x = l. A more general framework can be
considered in which the center line of the crack is parametrized with a curvilinear
coordinate system, but it is here avoided for the sake of simplicity.

Γ
+

Γ
−

Ωp

Ωf

0

h(x)

-h(x)

x

z

nγ

nγ

t
+

t
−

n
+

n
−

Γin

Fig. 2 The coordinate system in the cracked domain. The normals n+ and n− point inwards with
respect to Ω f , while the normal nγ points outwards.

The fluid inside the crack is modeled, exploiting the hypothesis of laminar flow,
with the Stokes equations. In [18] a similar model has been devised for the flow in a
fractured porous medium, assuming a “finitely” permeable crack for a fracture filled
with permeable material and modeled the flow in the crack with a Darcy equation
with a different permeability than that of the porous matrix. The coupling conditions
identified on Γ +∪Γ− in [18] were the continuity of pressure and of the normal flux.
However, in the present case, since we solve Stokes equations in the crack, we need
to state a condition for the tangential component of the velocity too, as studied in
[12] for the coupling of Navier-Stokes equations with Darcy equation in modeling
surface and groundwater flows. In [1] it is postulated that the tangential component
of the velocity at the interface differs from the velocity of the flow in the porous
medium, and that shear effects are transmitted from the flow in the crack into the
porous matrix through a boundary layer region. The law proposed by Beavers and
Joseph in [1] for the horizontal component of the Stokes velocity vx, shown to be in
good agreement with the experiments, is

∂vx

∂y
= β (vx−V ), β =

α√
k

(4)

where V is the velocity of the fluid in the porous medium in the tangent direction to
the interface, α is a dimensionless parameter, and k is the (isotropic) permeability of
the material. In the limit of a vanishing permeability in the porous medium, β → ∞

and the condition (4) becomes vx = V . This law is also used in [5] to couple the
Brinkmann model in the crack with the Darcy flow in the surrounding medium.
Assuming a low permeability of the surrounding porous medium with respect to that
of the crack, which will be the case of our simulations, it is reasonable to require
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continuity of the fluid velocities at the interface Γ +∪Γ−. Also, accounting for the
movement of the boundary of the domain, as the crack opens, leads to a contribution
of the boundary displacement rate (i.e. boundary velocity) ∂u

∂ t to the fluid velocity
inside the crack at the boundary Γ +∪Γ−. Hence, the Stokes velocity of the fluid at
the crack boundary is

v =− 1
µ

K∇pp +
∂u
∂ t

on Γ +∪Γ−. (5)

Remark 1. Notice the standard regularity of the solution of Darcy’s equation does
not allow to define the trace of K∇pp · t on Γ + ∪Γ−, being t the tangent vector to
the boundary, which is required for (5) to make sense. For this and other reasons we
will require, later in this section, extra regularity for the weak solution of the fluid
pressure problem.

Finally, we have to account for the fluid injection, which takes place at Γin with an
injection rate Q0 expressed in m2/s. Referring to Figure 2, Q0/2 is the flow entering
Γin, which is the inlet boundary of half of the domain. Consistently, we prescribe
here a parabolic profile at the inflow of the form

v =
3
8

Q0

h3

(
h2− z2) on Γin,

which, integrated along z between −h(0) and h(0), results in the inflow Q0/2.
To sum up, we model the fluid flow in the crack with the following system of

equations: 

−µ∆v+∇p f = 0 in Ωp

∇ · v = 0 in Ωp

v =− 1
µ

K∇pp +
∂u
∂ t

on Γ +∪Γ−

v =
3
8

Q0

h3

(
h2− z2)ex on Γin

. (6)

We now make the further assumption, motivated by the high aspect ratio of the
fracture, that the fracture opens mainly along the normal direction, that is

∂u
∂ t
≈ ∂h

∂ t
nγ ,

being nγ the outwards normal to Ω f in Γ +∪Γ−.
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2.2 A hybrid dimensional formulation

In this paragraph we propose a hybrid dimensional formulation of the equations pre-
sented in the previous paragraph for the flow in the crack, which will be described
as a one co-dimensional entity. Let us denote by w the fracture aperture measured in
the normal direction of each point of the manifold Γ (see Figure 1). Exploiting the
assumption that the crack aperture is small, namely l� w, the equations of System
(6) will be projected in the tangential direction to the crack, while the normal com-
ponent of the equations will give the coupling with the surrounding porous medium,
in terms of fluid mass exchange. This process will result in an equation, similar to
the lubrication equation, defined on the centerline Γ of the crack. Then, a unified
weak formulation will be devised for the whole fluid pressure problem. The advan-
tage of this formulation is that the mesh used for the finite element discretization
will not need to match the fracture, as it is for example in [7], and the crack will not
be required to follow the mesh elements interfaces.

Under the hypothesis that l � w, one can assume that n+ = −n− and t+ = t−,
with reference to the notation of Figure 2. Furthermore, in the geometry of a straight
crack along the x direction, one has n+ =−ez and t+ = ex. In the following, we will
indicate with v+ and K+∇p+p , and with v− and K−∇p−p the traces of v and K∇pp
on Γ + and Γ−, respectively.

First of all, the assumption that l� w implies that

∆ ≈ ∂ 2

∂ z2 .

We consider now the first equation of the momentum balance of the fluid, that is

−µ
∂ 2vx

∂ z2 +
∂ p f

∂x
= 0,

where we have indicated with vx the x component of the fluid velocity v. We make
the same assumption, under which the lubrication equation is obtained, that the
gradient of the pressure along the crack direction ∂ p f

∂x does not depend on z. Hence,
one has

∂ 2

∂ z2 vx(x,z) =
1
µ

∂ p f

∂x
(x), (7)

which means that, for some functions A(x), B(x), and C(x)

vx(x,z) = A(x)z2 +B(x)z+C(x). (8)

Now, the value of A(x) is easily determined through (7) and is

A(x) =
1

2µ
∂ p f

∂x
(x),
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while B(x) and C(x) are determined by the coupling with the flow in the porous
medium. Indeed, evaluating Equation (8) on Γ +, one has

vx(x,h(x)) =
1

2µ
∂ p f

∂x
(x)h(x)2 +B(x)h(x)+C(x),

which should match on Γ + with:(
− 1

µ
K+

∇p+p +
∂h
∂ t

nγ

)
· ex =−

1
µ

K+
∇p+p · ex.

Hence,
1

2µ
∂ p f

∂x
(x)h(x)2 +B(x)h(x)+C(x) =− 1

µ
K+

∇p+p · ex. (9)

Similarly, on Γ−, it holds

1
2µ

∂ p f

∂x
(x)h(x)2−B(x)h(x)+C(x) =− 1

µ
K−∇p−p · ex. (10)

By the sum of Equations (9) and (10), one has

C(x) =− 1
2µ

∂ p f

∂x
(x)h(x)2− 1

µ
{

K∇pp
}
· ex,

where we have set {a} := a++a−
2 , while by the difference of Equations (9) and (10),

one has
2B(x)h(x) =− 1

µ
JK∇ppK · ex,

where we have introduced the notation JaK := a+−a−. It follows that

vx(x,z) =−
1

2µ
∂ p f

∂x
(x)
(
h(x)2− z2)− 1

2µ
JK∇ppK ·ex

z
h(x)
− 1

µ
{

K∇pp
}
·ex. (11)

We now use the continuity equation

∂vx

∂x
+

∂vz

∂ z
= 0

and integrate it in dz between z =−h(x) and z = h(x) to obtain

vz(x,h)− vz(x,−h)+
∂
∂x

∫ h(x)

−h(x)
vx(x,z) dz = 0,

that is, using (11),
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0 = (v+ · (−n+))− (v− ·n−)+ ∂
∂x

∫ h

−h

(
− 1

2µ
∂ p f

∂x

(
h2− z2)− 1

µ
{

K∇pp
}
· ex

)
dz

=
1
µ

K+
∇p+p ·n++

1
µ

K−∇p−p ·n−+2
∂h
∂ t
− ∂

∂x

(
2h3

3µ
∂ p f

∂x
+

2h
µ
{

K∇pp
}
· ex

)
.

We set n := n+, so that we can write

1
µ

K+
∇p+p ·n++

1
µ

K−∇p−p ·n− =
1
µ

JK∇ppK ·n.

Reminding that w = 2h is the aperture of the crack, we can formulate on Γ the
following variant of the lubrication equation:

− ∂
∂x

(
w3

12µ
∂ p f

∂x
+

w
µ
{

K∇pp
}
· ex

)
=−∂w

∂ t
− 1

µ
JK∇ppK ·n. (12)

Equation (12) states an averaged mass conservation of the fluid on Γ . The term

w3

12µ
∂ p f

∂x
+

w
µ
{

K∇pp
}
· ex

represents an integral of the fluid velocity across the width of the fracture. Notice
that the tangential component of the pressure gradient of the porous medium enters
in the definition of the fluid flow, while the normal component to the crack enters
the equation as a source term. The latter term accounts for the mass fluid exchange
between the fracture and the surrounding medium.

We now need formulate a reduced version of the inflow condition as well. To this
aim, we integrate the inflow velocity v in dz on Γin and get∫ h(0)

−h(0)
v dz =

∫ h(0)

−h(0)

3
8

Q0

h(0)3 (h(0)
2− z2)ex dz =

Q0

2
ex.

In this one dimensional formulation, the inflow boundary collapses into the point
(0,0), and the natural inflow boundary condition for this problem is

w3

12µ
∂ p f

∂x
+

w
µ
{

K∇pp
}
· ex =−

Q0

2
at (0,0).

To sum up, the boundary value problem that governs the flow in Γ is
− ∂

∂x

(
w3

12µ
∂ p f

∂x
+

w
µ
{

K∇pp
}
· ex

)
=−∂w

∂ t
− 1

µ
JK∇ppK ·n onΓ

w3

12µ
∂ p f

∂x
+

w
µ
{

K∇pp
}
· ex =−

Q0

2
at(0,0)

(13)

No boundary condition is prescribed at the tip, as, there, the opening is zero and
System (13) is degenerate.
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Let us obtain now a weak formulation of Systems (2), (3), and (13). Consis-
tently with what was done to devise System (6), we have to reformulate the systems
for a lower dimensional crack Γ , introducing, if required, jumps of variables. We
now proceed formally and we will introduce the proper functional setting in the
following, detailing the required regularity for the functions involved. Let ϕ be a
sufficiently regular test function for the displacement u such that ϕ = 0 on ∂ΩD. We
have ∫

Ωp

σ(u) : ε(ϕ)+
∫

∂ΩN

σ0ϕ ·n+
∫

Γ+
p+f ϕ+ ·n++

∫
Γ−

p−f ϕ− ·n− = 0.

We require the pressure to be continuous across Γ , that is p+f = p−f , but allow the
displacement to jump across Γ . Hence, the model with the reduced one-dimensional
fracture becomes∫

Ω\Γ
σ(u) : ε(ϕ)+

∫
∂ΩN

σ0ϕ ·n+
∫

Γ
p f JϕK ·n = 0. (14)

Let now η be a sufficiently regular test function for the fluid pore pressure pp
such that η = 0 on ∂Ωd . We have∫

Ωp

(∂φ
∂ t

+
1
µ

K∇pp ·∇η
)
−
∫

Γ+

1
µ

K+
∇p+p ·n+η+−

∫
Γ−

1
µ

K−∇p−p ·n−η− = 0,

which, since pressure is continuous across Γ (and consequently η), becomes∫
Ω\Γ

(∂φ
∂ t

+
1
µ

K∇pp ·∇η
)
−
∫

Γ

1
µ

JK∇ppK ·nη = 0. (15)

If we use the same η , or more precisely its trace on Γ (provided that it is well
defined, as will be guaranteed by the assumptions made in the following), as a test
function for p f we can write the weak formulation of the equation of the fluid in the
crack as

∫
Γ

(
w3

12µ
∂ p f

∂x
+

w
µ
{

K∇pp
}
· ex

)
∂η
∂x

+
∫

Γ

∂w
∂ t

η +
∫

Γ

1
µ

JK∇ppK ·nη− Q0

2
η(0,0) = 0. (16)

Notice that the term ∫
Γ

1
µ

JK∇ppK ·nη

appears both in (15) and in (16). One can obtain a unified weak formulation for
the fluid by eliminating this mass exchange term from the two equations, as in [4].
Indeed, the hypothesis of continuity of pressure allows to define a pressure p in Ω :
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p =

{
pp in Ω \Γ
p f on Γ

,

and write the global weak formulation for the fluids as

∫
Ω

(∂φ
∂ t

+
1
µ

K∇p ·∇η
)

+
∫

Γ

(
w3

12µ
∂ p
∂x

+
w
µ
{K∇p} · ex

)
∂η
∂x

=−
∫

Γ

∂w
∂ t

η +
Q0

2
η(0,0). (17)

Notice that this unique formulation for the pressure in the crack and in the porous
medium guarantees the mass conservation of the fluid crossing and entering the
fracture in a straightforward way.

We now define the functional setting for Equations (14) and (17), for a given
fracture Γ . Concerning Equation (14), we require, for a given Γ , that u ∈ U and
ϕ ∈U0, where the spaces U and U0 are defined as

U :=
{

ϕ ∈ [H1(Ω \Γ )]2 : JϕK ·n ∈ L2(Γ ), ϕ|∂ΩD
= u0

}
, (18)

and
U0 :=

{
ϕ ∈ [H1(Ω \Γ )]2 : JϕK ·n ∈ L2(Γ ), ϕ|∂ΩD

= 0
}
, (19)

and equipped with the norm

||ϕ||U :=
(
||ϕ||2L2(Ω\Γ )+ ||∇ϕ||2L2(Ω\Γ )+ ||JϕK ·n||2L2(Γ )

) 1
2
. (20)

Concerning Equation (17), we need to require that p ∈P and η ∈P0, where

P :=
{

η ∈ H1(Ω) : η |Γ ∈ H1(Γ ) and η |∂Ωd
= p0

}
, (21)

and
P0 :=

{
η ∈ H1(Ω) : η |Γ ∈ H1(Γ ) and η |∂Ωd

= 0
}
. (22)

We notice that H
3
2 (Ω)∩H1

∂Ωd
(Ω) ⊂P0 ⊂ H1

∂Ωd
(Ω). The same space P is also

chosen in [4] to deal with the discretization of hybrid dimensional Darcy flows in
fractured porous media. Some results about the space (21) are shown in [4], includ-
ing a density result of C∞(Ω̄) in P. P0 is a Hilbert space with respect to the norm

||η ||P :=
(
||η ||2L2(Ω)+ || η |Γ ||

2
L2(Γ )+ ||∇η ||2[L2(Ω)]2 + ||∇t η |Γ ||2L2(Γ )

) 1
2
,

being ∇t the tangential gradient to Γ .
Since we are working in two space dimensions and consequently Γ is a one-

dimensional manifold, the functions in H1(Γ ) are continuous on Γ̄ . Then, it is pos-
sible to evaluate the pressure p and the corresponding test function η at any point
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of the crack and the notation η(0,0) of (16) and (17) makes sense. Furthermore, the
choice of space P guarantees that ∇p ∈ L2(Γ ) so that the trace of ∇p on Γ is well
defined.

3 Weak formulation and numerical approximation

The weak formulation of the whole coupled problem is: Find u ∈ U and p ∈P
such that∫

Ω
Cε(u) : ε(ϕ)−

∫
Ω

α ptr(ε(ϕ))+
∫

∂ΩN

σ0ϕ ·n+
∫

Γ
pJϕK ·n = 0 ∀ϕ ∈U0,∫

Ω

( ∂
∂ t

(s0 pp +α∇ ·u)η +
1
µ

K∇p ·∇η
)

+
∫

Γ

(
(JuK ·n)3

12µ
∂ p
∂x

+
JuK ·n

µ
{K∇p} · ex

)
∂η
∂x

=−
∫

Γ

∂ (JuK ·n)
∂ t

η +
Q0

2
η(0,0) ∀η ∈P0,

(23)
where we have used that w = JuK ·n and that ∂φ

∂ t = ∂
∂ t (s0 pp +α∇ ·u). To guarantee

the convergence of the integrals in (23) we have to require that w∈C0(0,T ;L∞(Γ )).
We finally assume that during the whole time evolution it holds w≥ 0.

Remark 2. Existence and uniqueness have been established in [14] for a similar
problem involving the lubrication equation for crack pressure, the Darcy equation
for the porous medium pressure, and poroelasticity for rock displacement. However,
the problem analyzed in [14] is linearized by assuming a known w3 term in the lu-
brication equation, in case of a non propagating crack. To this date, the analysis of
the coupled nonlinear system is an open problem, even in case of a non propagating
hydraulic fracture.

3.1 XFEM approximation

The numerical approximation of the fluid and mechanical problems is based on the
Extended Finite Element Method (XFEM), originally proposed by Belytschko and
Black in [2] and improved by Moës, Dolbow and Belytschko in [26].

The finite element mesh is generated irrespectively of the geometry of the crack,
Figure 3. In particular, we consider a triangulation Th and, following [19], we re-
quire that the forthcoming hypotheses are satisfied:

H1. The triangulation Th is shape-regular, i.e. ρK . hK . ρK ∀K ∈Th, with hK the
diameter of K and ρK the diameter of the largest ball contained in K;
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H2. If Γ ∩K 6= /0, K ∈Th, then Γ intersects ∂K exactly twice, and each (open) edge
at most once.

Moreover, in the general case of a curved fracture, one has to assume Γ can be
accurately represented by a piecewise straight line Γh, defined by the zero level of a
level set function approximated by means of linear finite elements.

Fig. 3 Fracture geometry, example of the bulk mesh and local coordinates at the tips.

The main advantage of the extended finite element method with respect to the
classical finite element method is that in XFEM the mesh does not need to match
the discontinuity caused by the fracture, as the method incorporates in the approxi-
mation space discontinuous functions to represent the jump in displacement across
the crack, and near-tip asymptotic functions.

Let I be the set of the classical mesh nodes. We can define the set J of the nodes
to be enriched with the discontinuous function, and the sets K1 and K2 of the nodes
to be enriched for the first and the second crack tip. More precisely, if x1 and x2
denote the two tips, K1 and K2 can be defined as

K1 := {k ∈ I : x1 ∈ ω̄k}
K2 := {k ∈ I : x2 ∈ ω̄k}

J := { j ∈ I : ω j ∩Γ 6= /0, j /∈ K1, j /∈ K2},

being ωk the support of the basis function associated to the degree of freedom k.
The displacement field u is approximated as follows:
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uh = ∑
i∈I

uiφi + ∑
j∈J

b jφ jH(x)+ ∑
k∈K1

φk

(
4

∑
l=1

cl,1
k F1

l (r1,θ1)

)
(24)

+ ∑
k∈K2

φk

(
4

∑
l=1

cl,2
k F2

l (r2,θ2)

)
,

where (ri,θi) is the local polar coordinate system at the crack tip i. The basis func-
tions φi are the classical piecewise quadratic basis functions. The Heaviside function
H(x) is defined as follows: let x∗ be the closest point to x on the crack; at x∗, we build
the tangential and normal vector to the curve es and en, such that ez = es∧en. Then,
H(x) = sign((x−x∗) ·en). The tip enrichment functions Fl used in this work are the
following (see Figure 4):

{Fl(r,θ)}= r2/3
{

sin
(

2
3

θ
)
,cos

(
2
3

θ
)
,sin

(
2
3

θ
)

sinθ ,cos
(

2
3

θ
)

sinθ
}
.

These functions have been designed for hydraulic fracture applications [23], to
match the asymptotic behavior of the crack opening at the tip. Indeed, in the as-
sumptions of small fracture toughness and impermeable rock the opening at the tip
behaves as (`(t)− x)2/3. Note that in the case of dry fractures the enrichment is
∝ (`(t)− x)1/3.

As concerns the fluid flow problem the pressure field is approximated by means
of the following enriched space,

ph = ∑
i∈I

piηi + ∑
j∈J

b jη jΦ(x), (25)

where the basis functions ηi are the classical piecewise linear basis functions, and
Φ(x) is the (unsigned) distance from Γ , i.e. Φ(x) = |(x− x∗)|. This choice is moti-
vated by the fact that pressure is continuous across the fracture, but its gradient can
be discontinuous. In practice, we do not implement the discontinuous functions H
and Φ , but rather duplicate the degrees of freedom in the cut elements according
to the formulation proposed in [19] where the standard basis functions φi or ηi are
restricted to each sub-element K1,2. For the approximation of pressure we then im-
pose the continuity by means of a Lagrange multiplier λ approximated as piecewise
constant in the elements cut by the fracture.

Note that the same basis functions, restricted to the fracture Γ , are used to ap-
proximate the pressure in the fracture.

3.2 Solution of the nonlinear problem

We have adopted an iterative solver based on the Newton linearization of the coupled
nonlinear system. This approach is adopted after the discretization in time and space
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Fig. 4 Shape of the additional basis functions: a) Heaviside H, b) absolute value, c) radial functions
Fi.

has been performed. To this purpose, we define a sequence of time steps tn = t0 +
n∆ t, n = 1, . . . ,N, and we apply the Backward Euler method for time discretization.
In particular, starting from an initial guess u0

h ∈ Uh and p0
h ∈Ph, we execute the

following two-step algorithm that define a sequence of approximations uk
h ∈Uh and

pk
h ∈Ph. We notice that, for simplicity of notation, we omit the index n+1 to the

unknown at the current time step, but we explicitly write only the index n, denoting
the previous time step. Given uk

h ∈Uh and pk
h ∈Ph solve the linearized problem∫

Ω
Cε(uk+1

h ) : ε(ϕ)−
∫

Ω
α pk+1

h trε(ϕ)+
∫

Γ
pk+1

h JϕK ·n = 0 ∀ϕ ∈Uh,

∫
Ω

( s0 pk+1
h +α∇ ·uk+1

h
∆ t

η +
1
µ

K∇pk+1
h ·∇η

)
+
∫

Γ

(
(Juk

hK ·n)3

12µ
∂ pk+1

h
∂x

+
Juk

hK ·n
µ

{
K∇pk+1

h

}
· ex

)
∂η
∂x

+
∫

Γ
(Juk+1

h K ·n)
(
(Juk

hK ·n)2

4µ
∂ pk

h
∂x

+
1
µ

{
K∇pk

h

}
· ex

)
∂η
∂x

+
∫

Γ

Juk+1
h K ·n
∆ t

η =

+
∫

Γ

(
(Juk

hK ·n)3

4µ
∂ pk

h
∂x

+
Juk

hK ·n
µ

{
K∇pk

h

}
· ex

)
∂η
∂x

+
Q0

2
η(0,0)+

∫
Ω

s0 pn
h +α∇ ·un

h
∆ t

η +
∫

Γ

Jun
hK ·n
∆ t

η ∀η ∈Ph .
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The iterations are stopped when the following norm of the increment falls below a
prescribed tolerance,

‖uk+1
h −uk

h‖H1(Ω)+‖pk+1
h − pk

h‖H1(Ω) .

The linear system resulting at each iteration is the following:

A B

C D

U

P

=

0

F
,

where

Ai j =
∫

Ω
Cε(ϕ j) : ε(ϕ i),

Bi j =−
∫

Ω
αη jtrε(ϕ i)+

∫
Γ

η jJϕ iK ·n,

Ci j =
∫

Γ

(
(JukK ·n)2

4µ
∂ pk

∂x
+

1
µ

{
K∇pk

}
· ex

)
Jϕ jK ·n

∂ηi

∂x
+
∫

Γ

Jϕ jK ·n
∆ t

ηi +
∫

Ω

α
∆ t

∇ ·ϕ jηi ,

Di j =
∫

Ω

( s0

∆ t
η jηi +

1
µ

K∇η j ·∇ηi

)
+
∫

Γ

(
(JukK ·n)3

12µ
∂η j

∂x
+

JukK ·n
µ

{
K∇η j

}
· ex

)
∂ηi

∂x
,

Fi =
Q0

2
ηi(0,0)+

∫
Ω

s0 pn
h +α∇ ·un

h
∆ t

ηi +
∫

Γ

Jun
hK ·n
∆ t

ηi

+
∫

Γ

(
(JukK ·n)3

4µ
∂ pk

∂x
+

JukK ·n
µ

{
K∇pk

}
· ex

)
∂ηi

∂x
.

Notice that this linear system is not block diagonal, nor symmetric. Since we are
considering two-dimensional problems the size of the system allows the solutions
with direct methods. The initial guess for the iterative method are the following
constant functions:

w0 = 0.001 m on Γ n ,

p0 = 5 MPa on Γ n .

The monolithic strategy has shown a robust behavior with respect to changes in the
initial guess, unlike more naive staggered approaches.
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4 Numerical simulations

In this section we discuss applications of the computational model to hydraulic frac-
turing. We refer here to the classical configuration of a fractured reservoir featuring
an horizontal well where a sequence of planar equally spaced penny shaped frac-
tures have been generated. These are the reservoir configurations addressed for ex-
ample in [6]. Thanks to the unfitted FEM approach adopted here, the numerical
scheme is particularly fit to study the interaction of subsequent fractures with re-
spect to their spacing, which is a parameter that can be continuously varied without
changing the computational mesh used for simulations.

Parameter Symbol Units Values
Fluid viscosity µ Pa s 10−3

Young’s modulus E Pa 17×109

Poisson’s ratio ν 0.2
Hydraulic permeability K11 m2 50×10−13

Hydraulic permeability K22 m2 200×10−13

Mass storativity coeff. s0 Pa−1 6.8910−5

Biot-Willis constant α 1
Injection rate Q m2/s 0.1
Initial pressure p0 Pa 5×106

Simulation time T s 2×104

Time step ∆ t s 100

Table 1 Main physical parameters for the test cases in Section 4.

The parameters used in the simulations are reported in Table 1, while the geo-
metric configuration of the test case, including the characteristic space scales and
boundary conditions, is described in Figure 5 (top left panel). The physical time of
the simulations is of about 5.5 hours. Such interval is partitioned into time steps of
100 s each. All the simulations of this section are obtained with a C++ code based
on the finite element library GetFem++, which provides an extensive set of tools for
the implementation of XFEM (e.g. enrichment functions, level sets, integrals on non
matching interfaces) [28].

We want to evaluate the effect on fracture aperture of the spacing d between
the two cracks. To this purpose we consider three different configurations with d =
10m, d = 20m and d = 30m respectively, keeping fixed all other parameters. The
corresponding pressure fields at the end of the simulation are represented in Figure
5. We observe that these results confirm the expected general trend, namely that
if the spacing is small, the pressure is high between the fractures. In Figure 6 we
represent the corresponding vertical displacement of the crack lips, whose difference
quantifies the fracture opening in the three cases. Note that, thanks to the symmetry
of the problem, we show the opening of one of the two fractures (in this case the
top one), since the second is symmetric apart from small discretization errors. As
the spacing increases, the displacement becomes more symmetric and the opening
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Fig. 5 The geometrical configuration of the test cases in Section 4.

decreases. This is due to the fact that for larger spacing and the same injection rate
we obtain lower pressures inside the fractures, thus, smaller openings. We point out
that, for fixed pressures in the fractures instead, an increase in the spacing has the
opposite effect, i.e. it favors crack opening.

We also investigate the effect of the permeability of the porous matrix on pres-
sure and opening. We set d = 15m and consider a diagonal permeability tensor K =
diag{K11,K22} : in the first case we set K11 = 50⇥10�13m2, K22 = 200⇥10�13m2

(as in the previous test), while in the second we reduce both of an order of magni-
tude, letting K11 = 50⇥ 10�14m2, K22 = 200⇥ 10�14m2. The corresponding pres-
sure profiles in the top crack are represented in Figure 8 at the final time. As expected
a lower permeability in the porous matrix corresponds to a higher pressure inside
the cracks, and, therefore, to a larger opening as we can observe in Figure 9.

Fig. 6 Pressure distribution at t = T for different values of the spacing d: from left to right, d = 10,
d = 20, d = 30.

Fig. 5 The geometrical configuration of the test cases isshown on the top left panel. The pressure
distribution at t = T for different values of the spacing: d = 30, d = 20, d = 10 is shown from left
to right, top to bottom.

decreases. This is due to the fact that for larger spacing and the same injection rate
we obtain lower pressures inside the fractures, thus, smaller openings. We point out
that, for fixed pressures in the fractures instead, an increase in the spacing has the
opposite effect, i.e. it favors crack opening.

We also investigate the effect of the permeability of the porous matrix on pres-
sure and opening. We set d = 15m and consider a diagonal permeability tensor K =
diag{K11,K22} : in the first case we set K11 = 50×10−13m2, K22 = 200×10−13m2

(as in the previous test), while in the second we reduce both of an order of magni-
tude, letting K11 = 50× 10−14m2, K22 = 200× 10−14m2. The corresponding pres-
sure profiles in the top crack are represented in Figure 7 at the final time. As expected
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a lower permeability in the porous matrix corresponds to a higher pressure inside
the cracks, and, therefore, to a larger opening as we can observe in Figure 8.

Fig. 6 Opening of the top fracture t = T for different values of the spacing d.

Fig. 7 Pressure distribution at t = T for two different values of the permeability.

Fig. 8 Opening of the top fracture at t = T for two different values of the permeability.

5 Conclusions

Unfitted Finite Element Methods, originally developed for solid mechanics appli-
cations, has become an established technique for approximating partial differential
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equations with weak or strong singularities in many areas of application. Here, we
study an unfitted FEM technique for a multi-physics problem arising from the in-
teraction of fluid and solid mechanics in hydraulic fracturing. More precisely, we
propose enrichment techniques to capture jump discontinuities of the solid matrix
displacement and weak discontinuity of the fluid pressure in a poroelastic material.
The numerical scheme is also combined with a Newton method to solve the geomet-
ric nonlinearity arising from the interplay of matrix deformations with variations of
the computational domain of the fluid. The computational results confirm that the
scheme behaves as expected for an idealized test case that aims at illustrating the
interaction of a train of parallel fractures generated on planes normal to a horizontal
well. Improvements of this study to more realistic reservoir configurations, possibly
embedding fracture propagation are in order.
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