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Accurate and efficient evaluation of failure probability for partial
different equations with random input data

Peng Chen 1 Alfio Quarteroni1, 2

Abstract: Several computational challenges arise when evaluating the failure probability of
a given system in the context of risk prediction or reliability analysis. When the dimension of
the uncertainties becomes high, well established direct numerical methods can not be employed
because of the “curse-of-dimensionality”. Many surrogate models have been proposed with the
aim of reducing computational effort. However, most of them fail in computing an accurate failure
probability when the limit state surface defined by the failure event in the probability space lacks
smoothness. In addition, for a stochastic system modeled by partial differential equations (PDEs)
with random input, only a limited number of the underlying PDEs (order of a few tens) are
affordable to solve in practice due to the considerable computational effort, therefore preventing the
application of many numerical methods especially for high dimensional random inputs. In this work
we develop hybrid and goal-oriented reduced basis methods to tackle these challenges by accurately
and efficiently computing the failure probability of a stochastic PDE. The curse-of-dimensionality
is significantly alleviated by reduced basis approximation whose bases are constructed by goal-
oriented adaptation. Moreover, an accurate evaluation of the failure probability for PDE system
with solution of low regularity in probability space is guaranteed by the certified a posteriori
error bound for the output approximation error. At the end of this paper we suitably extend our
proposed method to deal with more general PDE models. Finally we perform several numerical
experiments to illustrate its computational accuracy and efficiency.

Keywords: failure probability evaluation, model order reduction, reduced basis method, goal-
oriented adaptation, partial differential equations, random input data

1 Introduction

In practical mathematical modeling for engineering problems, uncertainties may unavoidably arise
from many sources: computational geometries, physical parameters, external loadings, etc. The
evaluation of the failure probability for risk prediction or reliability analysis of a given system fea-
turing various uncertainties or random inputs can be made by using computational methods, such
as the Monte Carlo method [19], the first or second order reliability method [44, 50], the response
surface method [18, 8], etc. However, efficient and accurate evaluation of failure probability is diffi-
cult to achieve, especially for a given system modeled by partial differential equations (PDEs) with
high dimensional random inputs. As a matter of fact, evaluation of the output at each realization
requires a complete solution of the underlying PDEs with expensive computational cost, making
the direct approach of solving PDEs and evaluating outputs for a large number of realizations sam-
pled from the high dimensional probability space prohibitive [50, 32]. Secondly, the topological and
geometrical properties of the limit state surface defined by a critical failure value play a crucial role
in the design of appropriate computational methods, especially when the surface lacks smoothness
and/or features possible discontinuity, disconnectivity and singularity [18, 44]. At third, it is a
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well-known challenge of effective and efficient sampling in the evaluation of an extreme failure
probability of some rare event with high consequence [8, 27]. In the present work, we are mainly
dealing with the first two difficulties. The third one will be faced in a forthcoming research work by
combining the computational methods developed in this work with suitable sampling techniques,
such as importance sampling with efficient adaptive procedure guided by sensitivity analysis [9].

To circumvent the difficulty of directly solving the full PDE many times, efficient computational
methods have been designed for constructing accurate and inexpensive surrogate models of the orig-
inal PDE model. However, it has been noticed [28] that no matter how accurate the surrogate
model is, the resulting failure probability evaluated via the surrogate model can be incorrect due
to the non-smoothness of the limit state surface. For instance, when approximating a function by
either projective or interpolative methods based on prescribed dictionary bases, the approximation
error of the surrogate function can converge to zero when the number of basis functions increases.
Nevertheless, the surrogate function may oscillate about the original function due to jump dis-
continuity because of the Gibbs phenomenon, producing therefore erroneous failure probability
estimates if the discontinuity lies in the limit surface space. To deal with this problem, a hybrid
approach consisting in combining the outputs computed from both the surrogate and the original
models was proposed in [28]. The idea is that whenever the surrogate output is close enough to
the critical value controlled by a threshold parameter, one uses the original output computed by
solving the full PDE. However, the threshold parameter of the proposed direct algorithm as well
as the step size and the stopping criterion of the iterative algorithm are exposed to arbitrariness,
potentially leading to a biased failure probability estimate or less efficient surrogate model. When
it comes to high dimensional problems, most of the surrogate models constructed by projective
and interpolative approximation based on prescribed dictionary bases, run into the drawback of
lower accuracy and curse-of-dimensionality. In real-world engineering problems, most of the high
dimensional stochastic problems reside in a relatively low dimensional stochastic manifold named
universality phenomenon [54], which provides rationality for the application of model order reduc-
tion methods to reconstruct the low dimensional manifold of the stochastic solution based on a
series of snapshots, i.e. solutions at some representative samples.

In this work, we develop a hybrid and goal-oriented adaptive computational strategy based on a
certified model order reduction technique - the reduced basis method [39, 48, 42, 6] - to efficiently
and accurately evaluate the failure probability of a PDE with random inputs. In dealing with
high dimensional random input problems, we propose and demonstrate that the reduced basis
approximation space constructed by a goal-oriented greedy algorithm governed by an accurate and
sharp a posteriori error bound for the output approximation error is quasi-optimal, resulting in low
dimensional approximation space when the stochastic solution and output live in a low dimensional
manifold. For an accurate evaluation of the failure probability when the limit state surface is non-
smooth, we design a hybrid computational approach with goal-oriented adaptation. The idea is to
use the surrogate model constructed by the reduced basis method to evaluate a surrogate output.
If the surrogate output falls inside or outside the failure domain with certification, we do not need
to solve the full PDE. Otherwise, we solve the full PDE to evaluate the original output. Since the
sample of the uncertified output is very near to or in the limit state surface, we enrich the reduced
basis space by the solution at this sample to build a more accurate surrogate model, especially
for samples near the limit state surface. For application of the computational strategy to more
general PDE models, we present several generalizations of our technique, including a primal-dual
approach, a POD-greedy sampling algorithm, and an empirical interpolation algorithm for efficient
decomposition of non-affine functions.

The paper is organized as follows: in section 2 we state the problem of failure probability
evaluation based on a benchmark model and present several existing computational methods,
followed by section 3 for the development of the hybrid and goal-oriented adaptive reduced basis
methods. We extend the proposed methods to more general PDE models in section 4 and carry
out a series of experiments to compare and illustrate the advantages of our methods in section 5.
Concluding remarks are drawn in the last section 6.
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2 Problem statement

We first present the generic formulation of failure probability of some quantity of interest depending
on the stochastic solution of a given elliptic PDE with random inputs, then we summarize several
existing computational methods.

2.1 Failure probability of PDE system

Thanks to their simplicity and generality, linear elliptic PDEs with random inputs have been widely
considered as benchmark model for the development of stochastic computational methods to solve
more general stochastic problems formulated as PDEs with random inputs [55, 21, 3, 31, 20, 56,
2, 34, 10, 12]. We will also start from a linear elliptic PDE with random inputs as our benchmark
model and will later extend our proposed methods to more general PDE models in section 4.

Let (Ω,F , P ) be a complete probability space, where Ω is a set of outcomes, F is a σ-algebra of
events and P : F → [0, 1] assigns probability to the events with P (Ω) = 1. Let y = (y1, . . . , yK) :
Ω → R

K be a random vector with each component defined as an independent and real-valued
random variable with probability density function ρk(yk) supported on Γk ⊂ R, 1 ≤ k ≤ K.
Denote the compact forms ρ(y) = ΠK

k=1ρk(yk) and Γ = ΠK
k=1Γk. Let D be a convex, open and

bounded physical domain in R
d (d = 1, 2, 3) with Lipschitz continuous boundary ∂D. We consider

the following elliptic problem: find u : D̄ × Γ → R such that it holds almost surely

−∇ · (a(·, y(ω))∇u(·, y(ω))) = f(·, y(ω)) in D,

u(·, y(ω)) = 0 on ∂D,
(2.1)

where a homogeneous Dirichlet boundary condition is prescribed on the whole boundary ∂D for
simplicity. f : D×Γ → R and a : D×Γ → R are random fields standing for the force term and the
diffusion coefficient, respectively. The following assumptions on f and a are considered in order to
guarantee the well-posedness of problem (2.1) [3, 52]:

Assumption 1 The random force term f is square integrable with respect to the measure ρ(y)dxdy,

i.e.

||f ||L2
ρ(Γ;L

2(D)) ≡
∫

Γ×D

f2(x, y)ρ(y)dxdy <∞. (2.2)

Assumption 2 The random diffusion coefficient a is assumed to be uniformly bounded from below

and from above, i.e. there exist constants 0 < amin < amax <∞ such that the probability

P (ω ∈ Ω : amin < a(x, y(ω)) < amax ∀x ∈ D̄) = 1. (2.3)

In the context of failure probability evaluation or risk prediction, without loss of generality we
are interested in computing the following probability [28]

P0 := P (ω ∈ Ω : s(u(y(ω))) < s0) =

∫

Γ

XΓ0
(y)ρ(y)dy, (2.4)

where s(u) is a functional of the stochastic solution and conventionally called limit state function
or performance function in reliability problem; s0 is a critical value defining the failure domain
Γ0 := {y ∈ Γ : s(u(y)) < s0} and the characteristic function XΓ0

is defined as

XΓ0
(y) =

{

1 if y ∈ Γ0,
0 if y /∈ Γ0.

(2.5)

2.2 A quick review on existing computational methods

In order to evaluate the failure probability (2.4), we need to compute the stochastic solution of
the underlying PDE (2.1) with random inputs. Various stochastic computational methods have
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been developed in the last few years, such as Monte Carlo method and several variations, stochastic
Galerkin method with generalized polynomial chaos, stochastic collocation method based on sparse
grids, surrogate models by different model order reduction techniques, including proper spectral
decomposition, reduced basis, etc. [19, 21, 57, 33, 35, 7]. Let us briefly summarize the basic ideas
and properties of some different stochastic computational methods.

2.2.1 Monte Carlo method

Monte Carlo method is used to solve the stochastic system as well as evaluate the failure probability
[19]. The idea is to generate a series of samples ym ∈ Γ,m = 1, 2, . . . ,M according to the probability
density function ρ(y), solve the underlying PDE problem at each sample to get the stochastic
solution u(ym), compute the output of interest s(u(ym)) and evaluate the failure probability (Monte
Carlo failure probability, denote as Pm

0 ) by taking average as

Pm
0 =

1

M

M
∑

m=1

XΓ0
(ym). (2.6)

The method is extremely straightforward as it requires no additional effort for modification of the
deterministic solver of the PDE. However, in practical application it is too expensive because one
PDE has to be fully solved for each of a large number of samples, leading in general to prohibitive
computational cost. Several accelerated variations of Monte Carlo method have been developed
and used in failure probability evaluation, such as quasi Monte Carlo, Latin hypercube sampling,
multi-level techniques, etc. [45]

2.2.2 Stochastic Galerkin method

Stochastic Galerkin method moves from spectral expansion of both the random inputs and stochas-
tic solution on certain type of polynomial basis, e.g. Hermite polynomials for independent Gaussian
random variables, then apply the Galerkin projection, for instance in finite element space, to ap-
proximate the solution in physical space [21, 52, 3, 53]. Explicitly, we seek the stochastic solution
u in the tensor product space Xd

h ⊗ Y p
K such that

∫

Γ×D

a(x, y)∇u(x, y) · ∇v(x, y)ρ(y)dxdy =

∫

Γ×D

f(x, y)v(x, y)ρ(y)dxdy ∀v ∈ Xd
h ⊗ Y p

K , (2.7)

where the subspace Xd
h ⊂ H1

0 (D) is a finite element space with mesh size h (see [43, 40]), Y p
K ⊂

L2
ρ(Γ) is usually taken as multidimensional orthogonal polynomial space of order upto p with

different settings [5] and the tensor product space Xd
h ⊗ Y p

K is defined as

Xd
h ⊗ Y p

K :=
{

ψ = ψ(x, y) ∈ H1
0 (D)⊗ L2

ρ(Γ) : ψ ∈ span {φ(x)ϕ(y) : φ ∈ Xd
h, ϕ ∈ Y p

K}
}

. (2.8)

This method enjoys fast convergence provided the solution satisfies certain regularity [14]. It has
also been extended for practical applications using generalized polynomial chaos [57] for uncer-
tainties featuring more general distributions inspired by the mathematical coherence of different
types of orthogonal polynomials and stochastic processes. However, a very large algebraic system
is typically derived from the weak formulation (2.7) by stochastic Galerkin approach, which results
in great computational challenge of designing efficient solvers [16].

2.2.3 Stochastic collocation method

Stochastic collocation method was developed from the non-intrusive deterministic collocation
method [43]. In principle, it employs multivariate polynomial interpolations for the integral in the
variational formulation of the stochastic system with respect to probability space rather than the
Galerkin approximation in the spectral polynomial space [56, 2].More precisely, taking a sequence
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of collocation nodes y1, y2, . . . , we solve a deterministic problem for each node yn, n = 1, 2, . . .

∫

D

a(x, yn)∇u(x, yn) · ∇v(x)dx =

∫

D

f(x, yn)v(x)dx ∀v ∈ Xd
h, (2.9)

then apply multidimensional interpolation formula to approximate the stochastic solution at any
other node y ∈ Γ. In order to alleviate the curse-of-dimensionality in high dimensional problems,
isotropic or anisotropic sparse grids with suitable cubature rules [33, 32] were applied for stochastic
collocation method to reduce the total computational effort. The sparse grid interpolation formula
is written as

Squ(y) =
∑

q−K+1≤|i|≤q

(−1)q−|i|

(

K − 1
q − |i|

)

(

U i1 ⊗ · · · ⊗ U iK
)

u(y), (2.10)

where U ik is one dimensional interpolation formula with collocation nodes defined via index ik, 1 ≤
k ≤ K that are bounded by the interpolation order q [33, 32]. This method is preferred to the
stochastic Galerkin one for practical applications because it combines the advantages of both direct
computation as Monte Carlo method and fast convergence as stochastic Galerkin method.

2.2.4 Model order reduction method

Model order reduction methods for stochastic problems aim at building a reduced basis approxi-
mation space for the stochastic solution in such a way that the error between the true solution u
and the approximate solution uM is minimized with respect to a given norm || · || [35], i.e.

||u− uM || = min
{wm}M

m=1
∈(H1

0
(D))M

{λm}M
m=1

∈(L2

ρ(Γ))
M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u−
M
∑

m=1

wmλm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.11)

where the approximate solution uM is obtained by solving a Galerkin projection problem in the
reduced basis approximation space. However, the optimal approximation (2.11) is usually not
achievable in practice due to the fact that the stochastic and deterministic space are both infinite
dimensional spaces. How to cheaply and optimally build the reduced basis space is critical for the
computational effectivity and efficiency of model order reduction methods. This is where different
model order reduction techniques, such as generalized spectral decomposition [34, 36], reduced
basis construction by greedy algorithm, proper orthogonal decomposition, Krylov subspace, etc.
[48, 30, 49, 35, 6, 12], diverge one another.

3 Reduced basis methods

To develop hybrid and goal-oriented adaptive reduced basis methods, we first introduce the re-
duced basis method based on the benchmark model (2.1), then we propose a hybrid approach
for evaluation of the failure probability guided by a posteriori error bound. Finally, we present a
goal-oriented adaptive reduced basis method for efficient evaluation of the failure probability.

3.1 Reduced basis method

Nowadays, reduced basis method represents one of the most efficient model order reduction tech-
niques [48, 39, 23, 22] in many engineering applications [41, 13, 42, 26, 47]. For ease of its pre-
sentation, we make the following affine assumption for the random fields a, f based on the elliptic
PDE model (2.1), then we remove it later in section 4.
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Assumption 3 The random fields a and f can be decomposed into finite affine terms as

a(x, y) =

Qa
∑

q=1

Θa
q (y)aq(x) and f =

Qf
∑

q=1

Θf
q (y)fq(x), (3.1)

where Qa, Qf are the number of affine terms, Θa
q ,Θ

f
q are random functions in the probability space

and aq, fq are deterministic functions in the physical space.

Remark 3.1 The assumption of finite affine decomposition of a random field is most often made

in practical stochastic modeling and statistical analysis [3, 31, 20, 2, 34]. In fact, any random field

with finite second moment can be decomposed into a finite number of affine terms by truncated

Karhunen-Loève expansion [51].

Under assumption 3, the semi-weak (only in deterministic space) formulation of the elliptic
problem (2.1) can be written as: for any y ∈ Γ, find u(y) ∈ H1

0 (D) such that

A(u, v; y) = F (v; y) ∀v ∈ H1
0 (D), (3.2)

where the bilinear form A(u, v; y) and the linear form F (v; y) are split as

A(u, v; y) =

Qa
∑

q=1

Θa
q (y)Aq(u, v) and F (v; y) =

Qf
∑

q=1

Θf
q (y)Fq(v), (3.3)

being Aq(u, v) = (aq∇u,∇v) =
∫

D
aq∇u · ∇vdx, 1 ≤ q ≤ Qa and Fq(v) = (fq, v) =

∫

D
fqvdx, 1 ≤

q ≤ Qf . The general paradigm of reduced basis method is formulated as: given any subspace
X ⊂ H1

0 (D) of dimensionN (for instance, a high fidelity finite element space) for the approximation
of the solution of problem (3.2) in the physical space, we hierarchically build an N dimensional
reduced basis space XN = span{u(yn), 1 ≤ n ≤ N} for N = 1, . . . , Nmax until satisfying certain
tolerance requirement at Nmax ≪ N , based on the samples SN = {y1, . . . , yN} suitably chosen
from a training set Ξtrain ⊂ Γ. Given any new sample y ∈ Γ, we seek the solution uN (y) in the
reduced basis space XN by solving

A(uN , v; y) = F (v; y) ∀v ∈ XN , (3.4)

then evaluate sN (y) = s(uN (y)) in order to compute the failure probability in (2.4). To select the
most representative sample set SN , hierarchically build the reduced basis space XN , and efficiently
evaluate the output sN with certification, three specific ingredients of the reduced basis method
play a key role, being greedy algorithm, a posteriori error bound construction and an offline-online
computational decomposition, which are addressed respectively as follows.

3.1.1 Greedy algorithm

The greedy algorithm essentially deals with the following L∞(Γ;X) optimization problem [48]

yN = arg sup
y∈Γ

||u(y)− uN−1(y)||X , N = 2, . . . , Nmax, (3.5)

from which we can find the least matching point (the point where the approximation error is the
largest) yN ∈ Γ by reduced basis approximation in || · ||X norm. In order to solve problem (3.5)
efficiently, we replace the probability domain Γ by a finite training sample set Ξtrain ⊂ Γ and the
approximation error ||u(y) − uN−1(y)||X by the help of an a posteriori error bound △N−1 that
should be as cheap and sharp as possible, i.e.

cN−1△N−1(y) ≤ ||u(y)− uN−1(y)||X ≤ △N−1(y) (3.6)
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where cN−1 < 1 measures the sharpness. For the sake of efficient computation of the approximation
uN and a posteriori error bound △N , we orthonormalize the reduced basis functions in XN by
Gram-Schmidt process to get {ζ1, . . . , ζN} such that (ζm, ζn)X = δmn, 1 ≤ m,n ≤ N and then
build XN = span{ζ1, . . . , ζN}.

Another algorithm that might be used for the sampling procedure is proper orthogonal decom-
position, POD for short [48], which is rather expensive as it deals with L2(Γ;X) optimization and
thus more suitable for low dimensional problems. We remark that for both the greedy and the
POD algorithms, an original training set Ξtrain is needed. Two criteria ought be followed for its
choice: 1, it should be cheap without too many ineffectual samples in order to avoid too much
computation with little gain; 2, it should be sufficient to capture the most representative snapshots
so as to build an accurate reduced basis space. Adaptive approaches for building the training set
have also been well explored by adaptively increasing the number of samples in the probability
domain Γ, see [58] for details.

3.1.2 Construction of a posteriori error bounds

Residual based a posteriori error bounds for reduced basis approximation can be obtained as follows
[48, 39]: for every y ∈ Γ, let R(v; y) ∈ X ′ be the residual in the dual space of X, defined as

R(v; y) := F (v; y)−A(uN (y), v; y) ∀v ∈ X. (3.7)

By Riesz representation theorem [17], we have a unique function ê(y) ∈ X such that

(ê(y), v)X = R(v; y) ∀v ∈ X, (3.8)

and ||ê(y)||X = ||R(·; y)||X′ , where the X-norm is defined as ||v||X = A(v, v; ȳ) at some reference
value ȳ ∈ Γ (we choose ȳ as the center of Γ by convention). Defining the error e(y) := u(y)−uN (y),
we have by (3.2), (3.4) and (3.7) the following equation

A(e(y), v; y) = R(v; y) ∀v ∈ X. (3.9)

By setting v = e(y) and using Cauchy-Schwarz inequality, we have

α(y)||e(y)||2X ≤ A(e(y), e(y); y) = R(e(y); y) ≤ ||R(·, y)||X′ ||e(y)||X = ||ê(y)||X ||e(y)||X , (3.10)

where α(y) is the coercivity constant of the bilinear form A(e(y), e(y); y) at y, so that we can define
the a posteriori error bound △u

N (y) for the approximation error ||u(y)− uN (y)||X as

△u
N (y) := ||ê(y)||X/α(y), (3.11)

yielding ||u(y) − uN (y)||X ≤ △u
N (y) by (3.10). We remark that we don’t consider the spatial

discretization error (finite element approximation error) for the sake of simplicity. For the output
in the compliant case, i.e. s(y) ≡ s(u(y); y) = F (u(y); y), we have the following error bound

|s(y)− sN (y)| = |F (u(y); y)− F (uN (y); y)| = A(e(y), e(y); y) ≤ ||ê(y)||2X/α(y) =: △s
N (y). (3.12)

As for more general output where s(y) 6= F (u(y); y), an adjoint problem of (3.2) can be employed
to achieve faster convergence of the approximation error |s−sN |, which will be extended in section
4. The computation of a posteriori error bound △s

N (y) for the approximation error of the output
|s(y) − sN (y)| turns to the evaluation of the coercivity constant α(y) and the value ||ê(y)||X for
any given y ∈ Γ. For the former, we can employ the successive constraint linear optimization
method (SCM) [25] to compute a random lower bound αLB(y) ≤ α(y) or use a uniform lower
bound αLB ≤ α(y) (provided that the coercivity constants at different samples y ∈ Γ are close to
each other) in order to alleviate the computational effort. For the latter, we use an offline-online
computational decomposition, see next subsection.
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3.1.3 Offline-online computational decomposition

The reduced basis solution uN (y) can be expanded on the reduced basis functions as

uN (y) =

N
∑

m=1

uNm(y)ζm. (3.13)

By Galerkin projection, the problem (3.4) becomes: find uNm(y), 1 ≤ m ≤ N such that

N
∑

m=1

Qa
∑

q=1

Θa
q (y)Aq(ζm, ζn)uNm(y) =

Qf
∑

q=1

Θf
q (y)Fq(ζn), 1 ≤ n ≤ N, (3.14)

where the matrix Aq(ζm, ζn), 1 ≤ q ≤ Qa, 1 ≤ m,n ≤ Nmax and the vector Fq(ζn), 1 ≤ q ≤ Qf , 1 ≤
n ≤ Nmax can be pre-computed and stored in the offline stage. In the online stage, we only need
to assemble and solve the resulting N ×N stiffness system of (3.14) with much less computational
effort compared to solving the original N ×N stiffness system. The approximate compliant output
sN (y) is thus evaluated by NQf operations (scalar multiply and sum) as

sN (y) = F (uN (y); y) =

N
∑

n=1





Qf
∑

q=1

Θf
q (y)Fq(ζn)



uNn(y). (3.15)

To evaluate ||ê(y)||2X for the computation of a posteriori error bound △s
N (y) in (3.12), we first

expand the residual (3.7) as

R(v; y) = F (v; y)−A(uN , v; y) =

Qf
∑

q=1

Θf
q (y)Fq(v)−

N
∑

n=1

(

Qa
∑

q=1

Θa
q (y)Aq(ζn, v)

)

uNn(y). (3.16)

For ∀v ∈ XN , set (Cq, v)X = Fq(v), 1 ≤ q ≤ Qf and (Ln
q , v)X = −Aq(ζn, v), 1 ≤ n ≤ N, 0 ≤ q ≤ Qa,

where Cq and Ln
q are regarded as the representatives in X whose existence is guaranteed by the

Riesz representation theorem. By recalling (3.7) and (3.8) we obtain

||ê(y)||2X =

Qf
∑

q

Qf
∑

q′

Θf
q (y)Θ

f
q′(y)(Cq, Cq′)X + 2

N
∑

n=1

Qf
∑

q=1

Qa
∑

q′=1

Θf
q (y)Θ

a
q′(y)(Cq,Ln

q′)XuNn(y)

+
N
∑

n=1

N
∑

n′=1

Qa
∑

q=1

Qa
∑

q′=1

Θa
q (y)Θ

a
q′(y)uNn(y)(Ln

q ,Ln′

q′ )XuNn′(y).

(3.17)

Therefore, we can pre-compute and store (Cq, Cq′)X , 1 ≤ q, q′ ≤ Qf , (Cq,Ln
q′)X , 1 ≤ n ≤ N, 1 ≤ 1 ≤

Qf , 1 ≤ q′ ≤ Qa, (Ln
q ,Ln′

q′ )X , 1 ≤ n, n′ ≤ Nmax, 1 ≤ q, q′ ≤ Qa in the offline stage, and evaluate

||ê(y)||X in the online stage by assembling (3.17) with Q2
f +NQfQa +N2Q2

a operations.
For the evaluation of the failure probability defined in (2.4), we first compute the surrogate

output sN by reduced basis method and evaluate the surrogate failure probability by

P s
0 =

1

M

M
∑

m=1

XΓs
0
(ym), (3.18)

where the surrogate approximate failure domain is defined as Γs
0 := {y ∈ Γ : sN (y) < s0}.

With greedy algorithm to choose the most representative samples, a posteriori error bound
to speed up greedy algorithm as well as certify the approximation accuracy, and an offline-online
decomposition to profit from computational efficiency, a complete reduced basis method for com-
puting failure probability is presented in the following Algorithm 1:
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Algorithm 1 Algorithm for reduced basis method

1: procedure Offline construction:

2: Initialization: mesh, parameters, finite element functions φi, 1 ≤ i ≤ N , etc;
3: pre-compute and store Aq = Aq(φ·, φ·), 1 ≤ 1 ≤ Qa and Fq(φ·), 1 ≤ q ≤ Qf ;

4: sample Ξtrain according to ρ, pre-compute and store αLB(y), y ∈ Ξtrain by SCM [25];
5: choose y1 ∈ Ξtrain, solve u(y

1) by (3.2), compute ζ1 = u(y1)/||u(y1)||X ,
6: construct the first sample set S1 = {y1} and reduced basis space X1 = {ζ1};
7: compute and store Aq(ζ1, ζ1), 1 ≤ q ≤ Qa and Fq(ζ1), 1 ≤ q ≤ Qf ;
8: compute and store (Cq, Cq′)X , (Cq,L1

p)X , (L1
p,L1

p′)X , 1 ≤ q, q′ ≤ Qf , 1 ≤ p, p′ ≤ Qa;
9: for N = 2, . . . , Nmax do

10: compute ||ê(y)||2X by (3.17) and △s
N−1(y) by (3.12) ∀y ∈ Ξtrain;

11: choose yN = argmaxy∈Ξtrain
△s

N−1(y);
12: augment the sample space SN = SN−1 ∪ {yN};
13: solve problem (3.2) at yN to obtain u(yN );
14: orthonormalize the solution u(yN ) by Gram-Schmidt process to get ζN ;
15: augment the reduced basis space XN = XN−1 ⊕ span{ζN};
16: compute and store Aq(ζN , ζn), Aq(ζn, ζN ), 1 ≤ q ≤ Qa, 1 ≤ n ≤ N and Fq(ζN ),

1 ≤ q ≤ Qf ;
17: compute and store (Cq, Cq′)X , (Cq,LN

p )X , (LN
p ,Ln

p′)X , (Ln
p ,LN

p′ )X , 1 ≤ q, q′ ≤ Qf

1 ≤ p, p′ ≤ Qa, 1 ≤ n ≤ N ;
18: if △N−1(y

N ) ≤ εtol then
19: Nmax = N ;
20: return ;
21: end if

22: end for

23: end procedure

24: procedure Online evaluation:

25: given new sample set Ξnew, pre-compute and store αLB(y), y ∈ Ξnew by SCM [25];
26: for each y ∈ Ξnew, solve (3.4) to get uN (y) and compute sN (y) and △s

N (y);
27: evaluate the failure probability by (3.18), where M = |Ξnew|.
28: end procedure

3.2 Hybrid reduced basis method

As anticipated in section 2.2, Monte Carlo method is an accurate and straightforward approach
for evaluation of the failure probability by (2.6), however it is prohibitively expensive as it requires
the solution of a large number of PDEs. In contrast, surrogate models built on other methods may
improve computational efficiency at the expense of producing incorrect output and thus wrong
failure probability estimate. In order to balance the trade-off of computational efficiency and
numerical accuracy, a hybrid approach with either direct or iterative algorithms has been developed
in [28]. The direct hybrid algorithm predefines a neighborhood region of the critical value by a
threshold parameter, then it uses a surrogate model to compute the (surrogate) outputs at samples
outside that region and directly solves the PDEs to evaluate the (direct) outputs at samples
inside the region. However, the choice of the threshold value depends crucially on the accuracy
of the surrogate model, which is not provided in general. On the other hand, the iterative hybrid
algorithm replaces some surrogate output closest to the critical value by direct outputs and conduct
the replacement iteratively until meeting a posteriori error tolerance. This algorithm does not need
to choose the value of a threshold parameter but the accuracy of the failure probability estimate
is again affected by the unknown error of the surrogate model. To improve on this, we propose a
hybrid reduced basis method certified by a posteriori error bound, achieving both the computational
efficiency and the numerical accuracy.

Since the approximation error of the output at sample y can be bounded by (3.12), we can
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define the certified surrogate failure domain

Γc
0 := {y ∈ Γ : sN (y) < s0,△s

N (y) < s0 − sN (y)} (3.19)

and the uncertified surrogate failure domain

Γu
0 := {y ∈ Γ : △s

N (y) ≥ |s0 − sN (y)|}. (3.20)

Whenever the sample y falls in the certified surrogate failure domain Γc
0, we have

s(y) = (s(y)− sN (y)) + sN (y) ≤ △s
N (y) + sN (y) < s0 − sN (y) + sN (y) = s0, (3.21)

so that any sample y ∈ Γc
0 also falls in the original failure domain Γ0. As for the sample in

uncertified failure domain y ∈ Γu
0 , we compute a real output s(y) = s(u(y)) from the solution u(y)

by fully solving the PDE (3.2). Thus, the hybrid failure domain is defined as

Γh
0 := Γc

0 ∪ (Γu
0 ∩ {y ∈ Γ : s(y) < s0}) , (3.22)

and the hybrid failure probability is evaluated by

Ph
0 =

1

M

M
∑

m=1

XΓh
0

(ym). (3.23)

By construction, we have that the evaluation of the hybrid failure probability is cheap thanks to
the use of the surrogate model and accurate in the sense that it is equal to the Monte Carlo failure
probability, Ph

0 = Pm
0 .

In dealing with high dimensional problems, we usually apply an iterative algorithm for Monte
Carlo sampling with an increasing number of samples to enhance computational efficiency on the
one hand and provide a posteriori error estimate for the Monte Carlo evaluation on the other. The
following Algorithm 2 implements the hybrid reduced basis method.

Algorithm 2 Iterative algorithm for hybrid reduced basis method

1: procedure Offline construction:

2: Construct a reduced basis space XN by Algorithm 1.
3: end procedure

4: Initialize tolerance ǫtol and a posteriori error ep1 = 2ǫtol, choose the number of initial samples
M , adaptive size parameter β as well as a maximum iteration number Imax;

5: procedure Iterative evaluation:

6: for i = 1, . . . , Imax do

7: sample ΞM with |ΞM | =M , pre-compute and store αLB(y), y ∈ ΞM by SCM [25];
8: compute surrogate output sN (y) and the error bound △s

N (y) by (3.12) for ∀y ∈ ΞM ;

9: evaluation the failure probability Ph,i
f by formula (3.23);

10: if i > 1 then

11: compute the a posteriori error for failure probability epi = |Ph,i
f − Ph,i−1

f |;
12: if epi < ǫtol then
13: Imax = i;
14: return ;
15: end if

16: end if

17: increase the number of sample size by setting M = βi+1M ;
18: end for

19: end procedure
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3.3 Goal-oriented adaptive reduced basis method

In order to avoid too many direct solves of the full underlying PDE, we need to increase the portion
of the samples in the certified surrogate failure domain, which in turn requires using a more accurate
surrogate model constructed with more reduced basis functions. However, the computational cost
of both the offline construction and the online evaluation of reduced basis method depends critically
on the number of reduced basis functions, suggesting therefore the use of a low number of reduced
basis functions, especially for high dimensional problems. In addition, when the surrogate output is
far from the critical value, a rather crude surrogate approximation with a small number of reduced
basis functions would be sufficient as long as the a posteriori error bound for the approximation
error of the output is smaller than the distance between the surrogate output and the critical value.
To take full advantage of the reduced basis approximation and a posteriori error bound, we develop
a goal-oriented adaptive strategy to construct a surrogate model with fine approximation of the
output manifold close to the limit state surface {y ∈ Γ : s(y) = s0} and coarse approximation of
the output manifold far away from it.

Goal-oriented adaptive strategies have been developed in many contexts (e.g. [37, 38]). For
its application in the construction of surrogate model, we first run the Algorithm 1 for reduced
basis method with a relatively small training set Ξtrain and large tolerance εtol as stopping criteria.
Given any new sample set ΞM with M samples, we compute the surrogate outputs sN and the
associated error bounds △s

N , from which we define the following adaptive criteria

△a
N (y) =

△s
N (y)

|sN (y)− s0|
∀y ∈ ΞM . (3.24)

We apply again the greedy algorithm to select the most mismatching sample

yN+1 = arg min
y∈ΞM

△a
N (y) such that △a

N (yN+1) ≥ 1, (3.25)

and enrich the reduced basis space by XN+1 = XN ⊕ span{ζN+1} where ζN+1 is the orthonor-
malized version of the solution u(yN+1) of problem (3.2). We carry out the sample procedure of
reduced basis construction with N = N + 1 until △a

N (yN+1) < 1. Then we compute the failure
probability by formula (3.18), which is accurate since △s

N (y) < |sN (y)− s0| ∀y ∈ ΞM and thus the
certified surrogate failure domain Γc

f is the real failure domain Γf .
Algorithm 3 combines the goal-oriented adaptive strategy with the iterative scheme for Monte

Carlo evaluation of failure probability.

3.4 Remarks on approximation error and computational cost

The approximation error of the failure probability by the three different approaches described
above can be generally split into the one arising from the surrogate models and the other from
Monte Carlo method. In the first approach (described in section 3.1), the approximation error of
the surrogate model may lead to a large error or even wrong evaluation of the failure probability
due to the discontinuous or singular properties of the limit state surface, while in the last two
approaches (described in section 3.2 and 3.3), the contribution of the approximation error from
surrogate models is null and the Monte Carlo approximation error takes full responsibility with a
slow algebraic decaying rate M−1/2.

As for computational cost, the first approach is the cheapest one as it does not necessitate to
solve a full PDE in the evaluation procedure once the offline construction is finished. In contrast,
the hybrid approach is relatively expensive, as it requires to solve the full PDE whenever the a
posteriori error bound is larger than the distance between the surrogate output and the critical
value. The goal-oriented adaptive approach is much cheaper than the hybrid one since it starts
from a rather crude reduced basis construction and replaces many direct outputs in the hybrid
approach by surrogate outputs based on adaptively enriched reduced basis space. Moreover, it
might be even cheaper than the first approach if its total offline construction is less expensive than
that of the first approach.
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Algorithm 3 Iterative algorithm for goal-oriented adaptive reduced basis method

1: procedure Offline construction:

2: Construct a crude reduced basis space XN by Algorithm 1.
3: end procedure

4: Initialize tolerance ǫtol and a posteriori error ep1 = 2ǫtol, choose the number of initial samples
M , adaptive size parameter β as well as a maximum iteration number Imax;

5: procedure Adaptive construction:

6: for i = 1, . . . , Imax do

7: sample ΞM with |ΞM | =M , pre-compute and store αLB(y), y ∈ ΞM by SCM [25];
8: compute surrogate outputs sN (y) and adaptive criteria △a

N (y) by (3.24) for ∀y ∈ ΞM ;
9: choose adaptive sample yN+1 = argmaxy∈ΞM

△a
N (y);

10: while △a
N (yN+1) ≥ 1 do

11: augment the sample space SN+1 = SN ∪ {yN+1};
12: solve problem (3.2) at yN+1 to obtain u(yN+1);
13: orthonormalize the solution u(yN+1) by Gram-Schmidt process to get ζN+1;
14: augment the reduced basis space XN+1 = XN ⊕ span{ζN+1};
15: compute and store Aq(ζN+1, ζn), Aq(ζn, ζN+1), 1 ≤ q ≤ Qa, 1 ≤ n ≤ N + 1

and Fq(ζN+1), 1 ≤ q ≤ Qf ;
16: compute and store (Cq, Cq′)X , (Cq,LN+1

p )X , (LN+1
p ,Ln

p′)X , (Ln
p ,LN+1

p′ )X ,
1 ≤ q, q′ ≤ Qf , 1 ≤ p, p′ ≤ Qa, 1 ≤ n ≤ N + 1;

17: set N = N + 1;
18: compute sN (y) and △a

N (y) by (3.24) ∀y ∈ ΞM ;
19: choose adaptive sample yN+1 = argmaxy∈ΞM

△a
N (y);

20: end while

21: evaluation the failure probability P s,i
f by formula (3.18);

22: if i > 1 then

23: compute the a posteriori error for failure probability epi = |P s,i
f − P s,i−1

f |;
24: if epi < ǫtol then
25: Imax = i;
26: return ;
27: end if

28: end if

29: increase the number of sample size by setting M = βi+1M ;
30: end for

31: end procedure

4 Extension to more general PDE models

The development of both hybrid and goal-oriented adaptive reduced basis methods is based on
the benchmark linear elliptic PDE with random inputs (2.1), which is assumed to be compliant
in the output, time independent, affine in the random inputs and coercive. In this section, we
remove these limitations and extend the proposed methods to more general PDE models. The key
elements in the extension are to accurately compute cheap, reliable and sharp a posteriori error
bound for the approximation error of the output and efficiently decompose the approximation
procedure into the offline construction stage and the online evaluation stage. We remark that
most of the techniques we are using have been well studied for the development and application of
reduced basis method [42], and we briefly summarize them with specific application in the context
of failure probability computation.

4.1 Non-compliant problems

When the output is compliant, i.e. s(y) ≡ s(u(y); y) = F (u(y); y), y ∈ Γ, as presented in section
3.1.2, we obtain a posteriori error bound △s

N (y) being quadratic with respect to the residual norm
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||ê(y)||X . However, when the output is non-compliant in more general conditions, i.e.

s(y) ≡ s(u(y); y) = L(u(y); y), (4.1)

where L : X → R is a bounded and affine functional, L 6= F , we have the following upper bound

|s(y)− sN (y)| ≤ ||L(y)||X′ ||u(y)− uN (y)||X ≤ 1

α(y)
||L(y)||X′ ||ê(y)||X , (4.2)

which depends only linearly on the residual norm ||ê(y)||X . Moreover, evaluation of the dual norm
of the functional ||L(y)||X′ is expensive and might not be uniformly bounded in the probability
domain Γ. In order to seek an effective and efficient a posteriori error bound for the output
approximation error, we apply the primal-dual computational strategy [48, 39, 42] by solving an
additional problem, known as the dual problem associated to the functional L: ∀y ∈ Γ find the
dual variable ψ(y) ∈ X such that

A(v, ψ(y); y) = −L(v; y) ∀v ∈ X. (4.3)

By the same reduced basis approximation procedure as in section 3.1, we construct the reduced
basis space for the approximation of the dual variable ψ as Xdu

Ndu
:= span{ζdu1 , . . . , ζduNdu

} where

ζdun , 1 ≤ n,≤ Ndu are determined via orthonormalization from the solution {ψ(yn), 1 ≤ n ≤ Ndu}
(at suitable values of yn, 1 ≤ n ≤ Ndu), then the reduced basis solution ψNdu

(y) at sample y ∈ Γ
is obtained by solving the reduced system

A(v, ψNdu
(y); y) = −L(v; y) ∀v ∈ Xdu

Ndu
. (4.4)

Let us denote the primal reduced basis space as Xpr
Npr

:= span{ζpr1 , . . . , ζprNpr
} and rewrite the

reduced system for the primal reduced basis solution uNpr
as

A(uNpr
(y), v; y) = F (v; y) ∀v ∈ Xpr

Npr
. (4.5)

Furthermore, let us define the primal residual and dual residual respectively as

Rpr(v; y) = F (v; y)−A(uNpr
(y), v; y) and Rdu(v; y) = −L(v; y)−A(v, ψNdu

(y); y). (4.6)

By solving the primal and dual reduced system, we can evaluate the non-compliant output by

sN (y) = L(uNpr
(y))−Rpr(ψNdu

(y); y). (4.7)

The following lemma provides an efficient a posteriori error bound for the output [48, 39, 42].

Lemma 4.1 The approximation error on the output |s(y) − sN (y)| is bounded from above by the

following a posteriori error bound △s
N (y)

|s(y)− sN (y)| ≤ △s
N (y) :=

||Rpr(·; y)||X′ ||Rdu(·; y)||X′

αLB(y)
∀y ∈ Γ, (4.8)

where ||Rpr(·; y)||X′ and ||Rdu(·; y)||X′ are the dual norms of the primal and dual residuals.

Remark 4.1 Besides converging faster, the primal-dual computational strategy does not require

the computation of the dual norm ||L(y)||X′ , ∀y ∈ Γ. On their turn, the dual norms ||Rpr(·; y)||X′

and ||Rdu(·; y)||X′ can be efficiently evaluated by the offline-online computational decomposition as

presented in section 3.1.3.

As for the evaluation of failure probability in non-compliant problems, the reduced basis method
in Algorithm 1 remains the same as in the compliant case, and the hybrid reduced basis method
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in Algorithm 2 is essentially the same as in compliant problems except for the replacement of a
posteriori error bound (4.8). In the goal-oriented adaptive Algorithm 3, we enrich simultaneously
both the primal and the dual reduced basis spaces governed by the posteriori error bound (4.8)
in order to gain more computational efficiency for the evaluation of failure probability in non-
compliant problems.

4.2 Non-steady problems

If the state variable depends not only on the spatial variable x ∈ D but also the temporal variable
t ∈ I ≡ [0, T ], we have to face a non-steady PDE; a suitable time discretization needs to be taken
into account for both the offline construction of reduced basis space and the online evaluation of
the output. For the sake of simplicity [23, 42], we consider the following parabolic problem in
semi-weak formulation: find u(y) ∈ L2(I;X) ∩ C0(I;L2(D)) such that it holds, almost surely

M

(

∂u

∂t
(t; y), v; y

)

+A(u(t; y), v; y) = g(t)F (v; y) ∀v ∈ X, (4.9)

subject to initial condition u(0; y) = u0 ∈ L2(D). Here, g ∈ L2(I) is a time dependent control
function; X is a spatial approximation space as defined in section 3.1, e.g. finite element space; the
bilinear form A and linear form F are defined as in the elliptic problem, and the bilinear form M
is assumed to be uniformly continuous and coercive and featuring the following affine expansion

M(w, v; y) =

Qm
∑

q=1

Θm
q (y)Mq(w, v) ∀w, v ∈ X. (4.10)

Using (without loss of generality) the backward Euler scheme for time discretization, we find at
every time step

M(ui(y), v; y) +△tA(ui(y), v; y) = △tg(ti)F (v; y) +M
(

ui−1(y), v; y
)

∀v ∈ X, (4.11)

subject to the initial condition u(t0; y) = u0, where △t is the time step size, ui(y) ≃ u(ti; y), 0 ≤
i ≤ IT ≡ T/△t. We remark that we don’t take into account the time discretization error for the
sake of simplicity. We consider a compliant output s(ti; y) = F (ui(y); y), 1 ≤ i ≤ IT , y ∈ Γ. As for
non-compliant output, we apply the primal-dual computational strategy presented in section 4.1,
see non-steady problems with more general outputs in [23, 46]. A reduced problem associated to
(4.11) can be formulated as: find uiN (y) ∈ XN , 1 ≤ i ≤ IT such that

M(uiN (y), v; y) +△tA(uiN (y), v; y) = △tg(ti)F (v; y) +M
(

ui−1
N (y), v; y

)

∀v ∈ XN , (4.12)

where the reduced basis space XN can be constructed by a POD-greedy sampling algorithm gov-
erned by cheap a posteriori error bound as well as an efficient offline-online computational decom-
position procedure, which are presented in the following subsections respectively.

4.2.1 A POD-greedy algorithm

In non-steady problems, the samples for the construction of the reduced basis space involve not
only the random samples y ∈ Ξtrain ⊂ R

K in multiple dimensions but also the temporal samples
ti ∈ I ⊂ R, 1 ≤ i ≤ IT in one dimension. A pure greedy sampling algorithm in both probability
space and temporal space has been demonstrated inefficient and resulting in occasional infinite loop
[24]. A POD-greedy algorithm, based on POD selection in temporal space and greedy selection
in probability space, has been effectively used in [42] for tackling these difficulties. A general
formulation for POD is stated as follows: given a training set Xtrain with ntrain elements, the
function XM = POD(Xtrain,M) leads to an optimal subset XM ⊂ span{Xtrain} with M bases
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such that

XM = arg inf
YM⊂span{Xtrain}

(

1

ntrain

∑

v∈Xtrain

inf
w∈YM

||v − w||2X

)1/2

. (4.13)

In practice, we solve the eigenvalue problem Cζ = λζ, where the correlation matrix C is assembled
by the weighted correlation of the elements vn ∈ Xtrain, 1 ≤ n ≤ ntrain as

Cmn =
1

ntrain
(vm, vn)X , 1 ≤ m,n ≤ ntrain, (4.14)

and the subset XM = span{ζm, 1 ≤ m ≤ M} where ζm, 1 ≤ m ≤ M are the orthonormal
eigenfunctions corresponding to the M largest eigenvalues. Provided a tolerance εpod is given, we
can also redefine the function XM = POD(Xtrain, εpod) such that the sum of ntrain −M smallest
eigenvalues is smaller than εtol. The POD-greedy algorithm for the construction of reduced basis
space in non-steady problems is presented in Algorithm 4 [42, 24].

Algorithm 4 A POD-greedy algorithm

1: Initialize a random sample y∗ ∈ Ξtrain, the tolerances εtol and εpod, an empty reduced basis
space Y as well as a maximum number of reduced basis functions Nmax, set N = 0;

2: procedure Iterative construction:

3: while N ≤ Nmax do

4: solve the parabolic problem (4.11) at sample y∗ and time ti, 1 ≤ i ≤ It;
5: compute XM1

= POD({ui(y∗), 1 ≤ i ≤ It}, εpod);
6: enrich the reduced basis space Y = Y ∪XM1

;
7: update the number of reduced basis functions N = N +M2, where M2 ≤M1;
8: construct the reduced basis space XN = POD(Y,N);
9: choose sample y∗ = argmaxy∈Ξtrain

△s
N (T ; y) by greedy algorithm;

10: if △s
N (T ; y∗) ≤ εtol then

11: Nmax = N ;
12: return ;
13: end if

14: end while

15: end procedure

We remark that in Algorithm 4 the step integer M1 is controlled by the tolerance of the
internal POD algorithm, offering flexibility in choosing the number of reduced basis functions from
the elements ui(y∗), 1 ≤ i ≤ It, and M2 is chosen to be smaller than M1 in order to minimize
duplication of the reduced basis functions. The random sample y∗, which might be the same in
different iteration steps, is chosen by greedy algorithm governed by cheap and sharp a posteriori
error bound △s

N (T ; y), y ∈ Γ constructed in the following sections.

4.2.2 Construction of a posteriori error bound

We follow the procedure in section 3.1.2 to briefly introduce how to construct a posteriori error
bound for the parabolic problem (4.11). Firstly, we define the reduced residual for 1 ≤ i ≤ It,

Ri(v; y) = g(ti)F (v; y)− 1

△tM(uiN (y)− ui−1
N (y), v; y)−A(uiN (y), v; y) ∀v ∈ XN . (4.15)

By Riesz representation theorem [17], we have a unique function êi(y) ∈ X, 1 ≤ i ≤ It such that
(êi(y), v)X = Ri(v; y) and ||êi(y)||X = ||Ri(·; y)||X′ , 1 ≤ i ≤ It. Furthermore, it can be proven that
the reduced basis approximation error for the output is bounded by [23]

|s(ti; y)− sN (ti; y)| ≤ △s
N (ti; y) :=

1

αLB(y)

i
∑

i′=1

||êi′(y)||2X , 1 ≤ i ≤ It. (4.16)
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4.2.3 Offline-online computational decomposition

By expansion of the reduced basis solution at time ti, 1 ≤ i ≤ It in the reduced basis functions

uiN (y) =
N
∑

m=1

uiNm(y)ζm, (4.17)

we have the reduced basis problem by Galerkin projection in (4.11) as: find uiNm(y), 1 ≤ m ≤
N, 1 ≤ i ≤ It such that

N
∑

m=1

Qm
∑

q=1

Θm
q (y)Mq(ζm, ζn)u

i
Nm(y) +△t

N
∑

m=1

Qa
∑

q=1

Θa
q (y)Aq(ζm, ζn)u

i
Nm(y)

= △tg(ti)
Qf
∑

q=1

Θf
q (y)Fq(ζn) +

N
∑

m=1

Qm
∑

q=1

Θm
q (y)Mq(ζm, ζn)u

i−1
Nm(y) 1 ≤ n ≤ N,

(4.18)

where the matrices Mq(ζm, ζn), 1 ≤ q ≤ Qm, 1 ≤ m,n ≤ N , Aq(ζm, ζn), 1 ≤ q ≤ Qa, 1 ≤ m,n ≤ N
and the vectors Fq(ζn), 1 ≤ q ≤ Qf , 1 ≤ n ≤ N can be pre-computed and stored in the offline
construction stage. In the online evaluation stage, we only need to assemble and solve a N × N
system (4.18) to get the solution uiN (y) and evaluate the output by NQf operations

sN (ti; y) = F (uiN (y); y) =

N
∑

n=1





Qf
∑

q=1

Θf
q (y)Fq(ζn)



uiNn(y). (4.19)

As for the evaluation of the error bound (4.16), we substitute the reduced basis solution (4.17) in
the residual (4.15) and compute the residual norm ||êi(y)||X by assembling

||êi(y)||2X = g2(ti)

Qf
∑

q

Qf
∑

q′

Θf
q (y)Θ

f
q′(y)(Cq, Cq′)X

+ 2
g(ti)

△t
N
∑

n=1

Qf
∑

q=1

Qm
∑

q′=1

Θf
q (y)Θ

m
q′ (y)(Cq,Mn

q′)Xϕ
i
Nn(y)

+ 2g(ti)

N
∑

n=1

Qf
∑

q=1

Qa
∑

q′=1

Θf
q (y)Θ

a
q′(y)(Cq,Ln

q′)Xu
i
Nn(y)

+
1

△t2
N
∑

n=1

N
∑

n′=1

Qm
∑

q=1

Qm
∑

q′=1

Θm
q (y)Θm

q′ (y)ϕ
i
Nn(y)(Mn

q ,Mn′

q′ )Xϕ
i
Nn′(y)

+ 2
1

△t
N
∑

n=1

N
∑

n′=1

Qm
∑

q=1

Qa
∑

q′=1

Θm
q (y)Θa

q′(y)ϕ
i
Nn(y)(Mn

q ,Ln′

q′ )Xu
i
Nn′(y)

+

N
∑

n=1

N
∑

n′=1

Qa
∑

q=1

Qa
∑

q′=1

Θa
q (y)Θ

a
q′(y)u

i
Nn(y)(Ln

q ,Ln′

q′ )Xu
i
Nn′(y),

(4.20)

where ϕi
Nn(y) = uiNn(y) − ui−1

Nn (y), Cq, 1 ≤ q ≤ Qf and Ln
q , 1 ≤ q ≤ Qa, 1 ≤ n ≤ N are defined

as in the elliptic case in section 3.1.3, and Mn
q , 1 ≤ q ≤ Qm, 1 ≤ n ≤ N are defined such that

(Mn
q , v)X = −Mq(ζn, v), ∀v ∈ X, which are pre-computed and stored in the offline stage. In the

online stage, we only need to assemble (4.20) by O((Qf + NQm + NQa)
2) operations, which is

very efficient because the values Qf , Qm, Qa, N ≪ N are small.
Methods for the evaluation of failure probability in non-steady problems is not different than

those used in the elliptic problems. In particular, we can use the same goal-oriented adaptive
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procedure 3 with the POD-greedy sampling Algorithm 4 governed by the a posterior error bound
(4.16).

4.3 Non-affine problems

The affine assumption made in (3.1) is crucial for an effective offline-online computational de-
composition. In the case of a more general non-affine random field denoted by g(x, y), we seek a
computational method to approximately decompose the random field g(x, y) in finite affine terms,
written as

g(x, y) ≈ IQ[g](x, y) =
Q
∑

q=1

Θq(y)gj(x). (4.21)

4.3.1 Empirical interpolation method

Among many possible affine approximation schemes, e.g. Lagrange interpolation at different points,
Fourier expansion on various bases, etc., an empirical interpolation procedure [4, 11] has been de-
veloped and extensively used as a very efficient approach in the context of reduced basis method.
In principle, it shares similar idea as reduced basis approximation by constructing the affine de-
composition in a greedy way governed by a posteriori error. An empirical interpolation for affine
decomposition is presented in the following Algorithm 5 [4, 11].

We remark that the nodes in the vertex set Vx are chosen as the discretization nodes in the
deterministic approximation method, e.g. finite element nodes. The L∞(Vx) optimization problem
(4.22) is solved by a linear programming procedure [4], which is expensive if the cardinalities
|Vx|, |Ξy| are large. In practice, we can replace (4.22) by a cheaper L2(Vx) optimization problem
[22] or the following optimization problem with residual as surrogate a posteriori error for further
computational efficiency [29, 11]:

yQ+1 = arg max
y∈Ξy

(

ess sup
x∈Vx

|rQ+1(x, y)|
)

. (4.27)

It has been proven in [11] that the empirical interpolation Algorithm 5 achieves quasi-optimal
affine approximation with an error bound presented in the following proposition.

Proposition 4.2 The empirical interpolation approximation error can be bounded by

||g(y)− IQ[g](y)||L∞(Vx) ≤ (Q+ 1)2QdQ(L
∞(Vx); y), (4.28)

where dQ is the Kolmogorov width [6] quantifying the optimal approximation error by any possible

Q dimensional subspace HQ of a Hilbert space H, defined as

dQ(H; y) := inf
HQ

sup
g(y)∈H

inf
h∈HQ

||g(y)− h||H. (4.29)

Remark 4.2 Proposition 4.2 states that the empirical interpolation error can not be worse than

the best possible approximation error upon multiplication by a factor (Q+1)2Q. Specifically, when

dQ ≤ ce−rQ with r > log(2), we have the following a priori error estimate with exponential decay

||g − IQ[g]||L∞(Vx) ≤ ce−(r−log(2))Q. (4.30)

4.3.2 Global a posteriori error estimate

Let us now extend the affine assumption (3.1) to more general non-affine random fields for both
the diffusion coefficient a and the force term f in (2.1). By empirical interpolation, we obtain the
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Algorithm 5 An empirical interpolation for affine decomposition

1: procedure Offline construction:

2: Given function g ∈ C0(Γ;L∞(D)), we choose finite set Ξy ⊂ Γ and Vx ⊂ D;
3: find y1 = argmaxy∈Ξy

(ess supx∈Vx
|g(x, y)|) and x1 = arg ess supx∈Vx

|g(x, y1)|;
4: define r1 = g, set the first affine basis g1(x) = r1(x, y

1)/r1(x
1, y1),

5: set Q = 1, Qmax, specify tolerance εtol, build W1 = span{g(x, y1)};
6: while Q < Qmax & rQ(x

Q, yQ) > εtol do

7: find yQ+1 ∈ Ξy such that

yQ+1 = arg max
y∈Ξy

(

inf
h∈WQ

||g(y)− h||L∞(Vx)

)

; (4.22)

8: find Θ(yQ+1) = (Θ1(y
Q+1), . . . ,ΘQ(y

Q+1))T by solving

Q
∑

q=1

Θq(y
Q+1)gq(x

i) = g(xi, yQ+1) 1 ≤ i ≤ Q; (4.23)

9: define rQ+1 : D × Γ → R as

rQ+1(x, y) = g(x, y)−
Q
∑

q=1

Θq(y)gq(x); (4.24)

10: find xQ+1 ∈ Vx such that

xQ+1 = arg ess sup
x∈Vx

|rQ+1(x, y
Q+1)|; (4.25)

11: define gQ+1 : D → R as

gQ+1(x) =
rQ+1(x, y

Q+1)

rQ+1(xQ+1, yQ+1)
; (4.26)

12: update WQ+1 = span{g(x, yi), 1 ≤ i ≤ Q+ 1} and set Q = Q+ 1.
13: end while

14: end procedure

15: procedure Online evaluation:

16: For ∀y ∈ Γ, construct (4.21) by solving (4.23) with yQ+1 = y.
17: end procedure

following affine decomposition

a ≈ aQa
≡ IQa

[a] =

Qa
∑

q=1

Θa
q (y)aq(x) and f ≈ fQf

≡ IQf
[f ] =

Qf
∑

q=1

Θf
q (y)fq(x). (4.31)

For the reduced basis approximation with affine decomposition of the non-affine random inputs,
we state the following two lemmas for global a posteriori reduced basis approximation error estimate
of the solution and the output. The proofs are deferred to the Appendix.

Lemma 4.3 Suppose the approximation by affine decomposition (4.31) results in an approximate

solution uQ of problem (3.2) and a reduced basis solution uQ,N of (3.4). The following a posteriori

error bound for the reduced basis approximation error holds

||u(y)− uQ,N (y)||X ≤ Eu
Q(y) +△u

N (y), (4.32)

18



where △u
N is a posteriori error bound for the reduced basis approximation defined in (3.11), EQ the

error due to the affine approximation of the data a and f , defined as

Eu
Q(y) :=

C1

αLB(y)
||f(y)− fQf

(y)||L∞(D) +
C1C2

α2
LB(y)

||a(y)− aQa
(y)||L∞(D)||fQf

(y)||L∞(D), (4.33)

C1, C2 two constants bounded by (A.18) and αLB(y), y ∈ Γ a lower bound of the coercivity constant

of the bilinear form (A.4) with respect to the norm || · ||X .

Lemma 4.4 As for the approximation error between the compliant output s(y) = (f(y), u(y)) and

the approximate compliant output sQ,N (y) = (fQf
(y), uQ,N (y)), we have

|s(y)− sQ,N (y)| ≤ Es
Q(y) +△s

N (y), (4.34)

where △s
N is a posteriori error bound for the reduced basis approximation corresponding to (3.12),

Es
Q is the error due to the affine approximation of data a and f , defined as

Es
Q(y) :=

C2
1

αLB(y)
||f(y)− fQf

(y)||L∞(D)||fQf
(y)||L∞(D) + C1||f(y)||L∞(D)Eu

Q(y), (4.35)

where the constant C1, the lower bound αLB(y) and Eu
Q(y), y ∈ Γ, are defined in Lemma 4.3.

Remark 4.3 As a result of Lemma 4.3 and Lemma 4.4, the approximation error for both the

solution and the output can be decomposed into two components: one arising from the empirical

interpolation error of the random fields and another from the reduced basis approximation error.

Unfortunately, the evaluation of the empirical interpolation error for each sample y ∈ Γ in (4.33)

and (4.35) involves computing || · ||L∞(D) norm with at least O(N ) operations, being N = |Vx| the
number of the finite element nodes. This would spoil the cheap online evaluation cost for a large

number of samples required in the computation of failure probability, especially when N becomes

very large.

4.3.3 Cheap a posteriori error bound

To overcome the drawback of computational inefficiency pointed out in Remark 4.3, we seek the
upper bounds Eu,b

Q and Es,b
Q for the affine approximation error of the solution Eu

Q ≤ Eu,b
Q and the

output Es
Q ≤ Es,b

Q , whose computational cost is small and independent of N .
By the empirical interpolation Algorithm 5, we obtain from (4.25) and (4.27) the error bound

||a(y)− aQa
(y)||L∞(D) ≤ raQa+1(x

Qa+1, yQa+1) ∀y ∈ Ξa
y (4.36)

and
||f(y)− fQf

(y)||L∞(D) ≤ rfQf+1(x
Qf+1, yQf+1) ∀y ∈ Ξf

y , (4.37)

where raQa+1 and rfQf+1 are the the empirical interpolation errors defined in (4.24) corresponding

to the non-affine random fields a and f , respectively. Although the relation (4.36) and (4.37) hold
true only in the sample sets Ξa

y and Ξf
y , we remark that in practice they hold almost surely in the

whole probability domain Γ, especially when the cardinality of sample sets is big or the random
fields are rather smooth with respect to the random vector y.

Since computing ||fQf
(y)||L∞(D) in (4.33) and (4.35) for y ∈ Γ is expensive, we bound the

quantity ||uQ(y)||X in (A.13) directly by

||uQ(y)||X ≤ ||uQ,N (y)||X +△u
N (y), (4.38)
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(instead than by (A.14)), which can be cheaply evaluated in the online stage. Now we can compute
the following error bound for the affine approximation error of the solution by using (4.36), (4.37)
and (4.38),

Eu,b
Q (y) :=

C1

αLB(y)
rfQf+1(x

Qf+1, yQf+1)

+
C2

αLB(y)
raQa+1(x

Qa+1, yQa+1)(||uQ,N (y)||X +△u
N (y)).

(4.39)

As for the error bound Es,b
Q (y), we also need to compute ||f(y)||L∞(D) for y ∈ Γ, which is rather

expensive. Alternatively, we can bound the second term |(f(y), u(y)− uQ(y))| in (B.4) by

|(f(y), u(y)− uQ(y))| = |(a(y)∇u(y),∇(u(y)− uQ(y)))|
≤ amaxC2||u(y)||X ||u(y)− uQ(y)||X
≤ amaxC2(Eu,b

Q (y) +△u
N (y) + ||uQ,N ||X)Eu,b

Q (y),

(4.40)

where the first inequality follows from the definition of the constants amax in (2.3) and C2 in
(A.12), while the second inequality holds because of the triangular inequality with the associated
error bounds

||u(y)||X ≤ ||u(y)− uQ(y)||X + ||uQ(y)− uQ,N (y)||X + ||uQ,N (y)||X . (4.41)

In conclusion, a cheaper error bound for the output Es,b
Q (y) reads

Es,b
Q (y) := C1r

f
Qf+1(x

Qf+1, yQf+1) (||uQ,N (y)||X +△u
N (y))

+ amaxC2

(

||uQ,N ||X +△u
N (y) + Eu,b

Q (y)
)

Eu,b
Q (y).

(4.42)

4.3.4 On the evaluation of failure probability

In the evaluation of failure probability, the reduced basis method stays the same as presented
in Algorithm 1, while the a posteriori error bound used in the hybrid reduced basis method in
Algorithm 2 is modified as the global a posteriori error bound Es,b

Q + △s
N . In both methods, we

prefer to construct a more accurate empirical interpolation for the non-affine random fields and a
richer reduced basis space with small approximation error in order to improve the computational
accuracy and efficiency, especially for N large entailing a costly solution of the full PDE. As for
the goal-oriented reduced basis method, we adopt different computational strategies for different
properties of the non-affine random fields.

When the random fields are rather regular (smooth manifold) with respect to the random
vector y, the decay of the optimal approximation error or Kolmogorov width dQ is very fast,
so the empirical interpolation error also converges rapidly to zero thanks to proposition 4.2. In
this case, the affine approximation error could be very small and dominated by the reduced basis
approximation error. Therefore, goal-oriented adaptive reduced basis construction is still effectively
governed by the a posteriori reduced basis approximation error bound. Whenever the distance
between the approximate output and the critical value is smaller than the affine approximation
error bound at sample y ∈ Γ, i.e. |sQ,N (y) − s0| ≤ Es,b

Q (y), which is extremely rare, we solve the
full PDE to evaluate an accurate output.

On the other hand, if the non-affine random fields are far from smooth in the probability
space, the affine approximation error bound Es,b

Q (y) could be relatively large for small Q. In
order to guarantee that the affine approximation error bound is dominated by the reduced basis
approximation error bound, the number of the affine terms Qa, Qf might be very large, resulting in
relatively more expensive online evaluation with O((Qf+NQa)

2) operations. In this circumstance,
we choose to start from a crude approximation with small Qa, Qf , N for sake of computational
efficiency and adaptively enrich the bases in the reduced basis space as well as refine the empirical
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interpolation with more affine terms governed by the error bounds △s
N and Es,b

Q .

5 Numerical experiments

In this section, we carry out several numerical experiments to illustrate the computational diffi-
culties encountered by conventional methods and demonstrate the accuracy and efficiency of our
proposed methods for the evaluation of failure probability. Moreover, we apply our methods to
more general PDE models of non-compliant, non-steady and non-affine types.

5.1 Benchmark models

5.1.1 One dimensional problems

First of all, we study the benchmark model of the elliptic problem (2.1) with different one di-
mensional random inputs. The physical domain is specified as a square D = (0, 1)2. We take a
deterministic force term f = 1 for simplicity and consider the random diffusion coefficient a in
different cases. The solution of the PDE model in physical domain is approximated by piecewise
linear finite element functions. In probability domain Γ, we approximate the solution by stochastic
collocation method introduced in section 2.2.3 and reduced basis method, respectively. For the
latter, we use a uniform lower bound αLB ≤ α(y), ∀y ∈ Γ, for the sake of computational efficiency.

Figure 5.1: Finite element mesh for the physical domain D with 1 disk (left) and 9 disks (right)

In the first test, we take a random field a(x, y) = (1.1 + yX1(x))/10, x ∈ D, y ∈ Γ where y is a
random variable uniformly distributed in Γ = [−1, 1] and X1 is a characteristic function supported
on a disk with radius 0.4 and center (0.5, 0.5), i.e. X1(x) = 1, (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.42, see
the left of Figure 5.1. Note that the random field a is a first order polynomial of y, thus smooth in
the probability domain Γ. In the second test, we take a(x, y) = (1.1+(1−2X0.5(y))X1(x))/10, x ∈
D, y ∈ Γ, where X0.5(y) = 1, |y| ≤ 0.5. The random field a is now discontinuous in the probability
domain Γ, in fact taking only two different values. The critical value of the output is taken as
s0 = 0.2845 in the first test and s0 = 0.2726 in the second. For the approximation of the output
s in probability domain, we first approximate the solution u by employing stochastic collocation
method with hierarchical Clenshaw-Curtis rule [33], where the number of collocation nodes is
N = 2n + 1, 1 ≤ n ≤ 5, then evaluate the output sN = s(uN ) at the approximate solution uN .

Figure 5.2 displays the output s(y), y ∈ Γ and the stochastic collocation approximation of the
output for both the smooth and the discontinuous random fields. From the left of Figure 5.2,
we can observe that the output approximated by stochastic collocation method converges to the
accurate output when increasing the number of collocation nodes. The worst approximation error
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Figure 5.2: Stochastic collocation approximation of the output with different collocation nodes.
Left, the random coefficient a is smooth; right, the random coefficient a is discontinuous in Γ.

maxy∈Γ |s(y) − sN (y)| is shown in Table 5.1, which decreases to zero very fast and the failure
probability P (ω ∈ Ω : s(y(ω)) < s0) converges to the true value 0.20. As for the discontinuous
test, we can see from the right of Figure 5.2 that the approximate output oscillates around and
does not converge to the accurate output, because of the Gibbs phenomenon (see also [15]). Due to
the Gibbs phenomenon, the worst approximation error does not converge to zero but increases and
the failure probability evaluated by the stochastic collocation method is far from the true value 0,
as can be seen in Table 5.1 for Test 2. In order to compute an accurate failure probability, the
threshold value in the hybrid approach must be so large that too many outputs (at samples in half
of the probability domain in this example) have to be evaluated by fully solving the underlying
PDE, which severely deteriorates the advantage of hybrid scheme. In the extreme case, the hybrid
scheme may not gain any computational efficiency due to the fact that the outputs at most of the
samples have to be evaluated by solving a full PDE.

Test \ Number of collocation nodes N = 3 N = 5 N = 9 N = 17 N = 33
Test 1, maxy∈Γ |s(y)− sN (y)| 0.41 0.16 0.026 7.7e-4 6.3e-7
Test 1, P (ω ∈ Ω : s(y(ω)) < s0) 0.46 0.31 0.27 0.21 0.20
Test 2, maxy∈Γ |s(y)− sN (y)| 0.95 0.95 1.03 1.06 1.07
Test 2, P (ω ∈ Ω : s(y(ω)) < s0) 0.00 0.28 0.22 0.24 0.20

Table 5.1: Worst approximation error and failure probability of Test 1 (smooth) and Test 2 (dis-
continuous) evaluated by stochastic collocation method with different number of nodes.

In comparison, the worst approximation error for the output by reduced basis method decreases
extremely fast, reaching 2.4×10−14 with only four bases in the first test of smooth random field, and
it completely vanishes with only two bases in the second test of discontinuous random field. The
failure probability evaluated by the reduced basis method is exact in both tests. This remarkable
computational accuracy and efficiency can be attributed to the fact that the reduced basis method
takes the solution (only two different solutions in the discontinuous case) as the approximation
basis and solves a reduced PDE that inherits the same structure of the full PDE. Consequently,
the reduced basis method overcomes the challenge of Gibbs phenomenon in the discontinuous case
by avoiding the usage of dictionary basis.

5.1.2 Multidimensional problems

To further investigate the computational accuracy and efficiency of different methods for the eval-
uation of failure probability, we consider a multidimensional problem with many random inputs.
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The physical domain D and force term f are specified as in previous case. We suppose that there
are nine disks in the domain (see the right of Figure 5.1) and define the background coefficient as
a0(x, y) = 1, x ∈ D, y ∈ Γ and coefficients in the disks as ak(x, y) = 10ykXk(x), 1 ≤ k ≤ 9, x ∈
D, y ∈ Γ, where yk, 1 ≤ k ≤ 9 are independent and obeying uniform distribution in Γk = [−2, 2],
the characteristic functions are defined as Xk(x) = 1, (x1 − xk1)

2 + (x2 − xk2)
2 ≤ 0.12, with the

centers at the points ((2i − 1)/6, (2j − 1)/6), 1 ≤ i, j ≤ 3 where 3(i − 1) + j = k. The random
coefficient a is defined as a = (a0 + a1 + · · ·+ a9)/10.
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Figure 5.3: Comparison of output error between stochastic collocation approximation and reduced
basis approximation. Left: error at one sample; right: worst approximation error.

In this numerical test, we employ the sparse grid stochastic collocation method introduced in
section 2.2.3 to approximate the output s directly. 100 realizations of the random input y ∈ Γ are
sampled according to its probability distribution to specify the training set for the construction of
the reduced basis space and another 100 realizations are sampled to test the two approximation
methods. Figure 5.3 reports the comparison of the output error |s− sN | between stochastic collo-
cation approximation and reduced basis approximation. On the left, the comparison is performed
at one sample randomly chosen from the probability domain Γ, from which we can observe that the
reduced basis approximation error decreases monotonically and much faster than the stochastic
collocation approximation error, which starts to oscillate when the number of collocation nodes
gets large due to over fitting problem. On the right, the comparison is carried out for the worst
approximation error (the largest approximation error among 100 test samples randomly chosen in
the probability domain), which shows that the reduced basis approximation is much more efficient
than the stochastic collocation approximation in that only a small number (≤ 38) of the full PDEs
need to be solved in order to gain the same worst approximation error compared to a significant
large number (≥ 26017) of samples for the sparse grid collocation approach. The method becomes
especially efficient when the solution lives in a low dimensional manifold while the random inputs
are in high dimensions.

Figure 5.4 displays the effectivity of the employment of a posteriori error bound. On the left,
we report the decay of the error bound △s

N and the real output error |s− sN | with respect to the
number of reduced basis functions at one sample randomly chosen from the probability domain.
On the right, the effectivity defined as △s

N/|s − sN | at 100 test samples is shown. It proves that
△s

N ≥ |s−sN | for all the samples and the error bound △s
N is not far from the real error |s−sN | at

most of the samples, so that it is reasonable to use the a posteriori error bound for both certification
of the approximation output and construction of the reduced basis space.

For the evaluation of the failure probability, we test both the hybrid reduced basis method and
the goal-oriented reduced basis method. From the same training set with 100 samples, we construct
a fine reduced basis space with tolerance εtol = 1 × 10−4 for the former method, resulting in 38
bases, and a coarse reduced basis space with tolerance εtol = 1×10−2 for the latter method, leading
to 18 bases. We compute the failure probability by hybrid algorithm 2 and goal-oriented adaptive
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Figure 5.4: Left: comparison of error bound △s
N and real error |s−sN | with repsect to the number

of reduced basis functions N at one sample; right: effectivity △s
N/|s− sN | at 100 test samples.

Algorithm 3 by settingM0 = 1000 initial samples, the scaling parameter β = 4 and a posterior error
tolerance ǫtol = 1×10−3. The comparison results are recorded in Table 5.2, from which we can see
that the reduced basis space for the hybrid method is fine enough and we only need to solve 329 full
PDEs in total in order to evaluate the outputs at 341000 samples. By the goal-oriented adaptive
approach, the total number of full PDEs that should be solved is 132. Nevertheless, only 36 PDEs
need a full solving thanks to the adaptation of the reduced basis space at each iteration, which
achieves further computational efficiency. Moreover, owing to an effective and cheap a posteriori
error bound, both the hybrid approach and the goal-oriented adaptive approach result in the same
failure probability (0.027 for a critical value s0 = 0.25) as being solved directly by Monte Carlo
method. In summary, both the hybrid and the goal-oriented adaptive reduced basis methods have
been successfully applied to efficiently and accurately compute the failure probability, with the
goal-oriented adaptive approach gaining remarkable computational efficiency thus more suitable
to solve complex PDEs with time-consuming solver.

Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 341M0

Hybrid RBM, # (|s− sN | < △s
N ) 0 3 22 59 245 329

Adaptive RBM, # (|s− sN | < △s
N ) 41 41 20 8 22 132

Adaptive RBM, # adapted bases 8 9 6 5 8 36
Failure probability P

m
f = P

h
f = P

g

f 0.043 0.033 0.030 0.027 0.027 0.027

Table 5.2: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the
number of samples for which the full PDE have to be solved; M0 = 1000.

5.2 Non-compliant problems

We take D = (0, 1)2 and suppose that the covariance fields of the random inputs are available
and both the diffusion coefficient a and the force term f are obtained from truncation of the
Karhunen-Loève expansion of covariance fields [51], expressed as

a(x, y(ω)) = E[a] +

Qa
∑

q=1

√

λaqaq(x)yq(ω) and f(x, y(ω)) = E[f ] +

Qf
∑

q=1

√

λfq fq(x)y
f
q (ω), (5.1)

where (λaq , aq)
Qa

q=1 and (λfq , fq)
Qf

q=1 are the eigenvalues and orthonormal eigenfunctions associated to

their corresponding covariance fields, yaq , 1 ≤ q ≤ Qa and yfq , 1 ≤ q ≤ Qf are mutually uncorrelated
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with mean zero and unit variance. For the i−th coordinate, i = 1, . . . , d, the general formula of a
Gaussian random field g(xi, y) is written as [33]

g(xi, y) = E[g] +

(√
πL

2

)1/2

yg1(ω) +

K
∑

k=1

√

λn
(

sin(kπxi)y
g
2k(ω) + cos(kπxi)y

g
2k+1(ω)

)

. (5.2)

where the random variables ygk, 1 ≤ k ≤ 2K + 1 are assumed to be uniformly distributed in

[−
√
3,
√
3]. For simplicity, we assume that the covariance fields for a and f are Gaussian fields

depending on x1 coordinate and x2 coordinate, respectively, with the same correlation length L =
1/4 and eigenvalues λ1 = 0.3798, λ2 = 0.2391, λ3 = 0.1106, λ4 = 0.0376, λ5 = 0.0094, λ6 = 0.0017,
etc. We take Qa = Qf = 13 with K = 6 in (5.2) leading to a 26 dimensional problem, which
accounts for around 99% uncertainties of the random field. The expectation of the random force f
given by (5.2) is taken as E[f ] = 6; the expectation of a random field ã given by (5.2) is specified
as E[ã] = 5 and we take a = ã/10. The output s(y) = s(u(y)) =

∫

D
10u(x, y)dx is different from

the force term.
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Figure 5.5: Worst primal-dual reduced basis approximation error of hybrid type with εtol = 1×10−4

(left) and goal-oriented adaptive type with εtol = 1× 10−2 (right) at 100 test samples.

We adopt the primal-dual computational strategy for non-compliant problems presented in
section 4.1. We set the tolerance εtol = 1 × 10−4 for ||Rpr||2X′/αLB and ||Rdu||2X′/αLB (see the
definition of residual in (4.6)) in the hybrid reduced basis method and εtol = 1 × 10−2 in the
goal-oriented adaptive reduced basis method. The constructed hybrid reduced basis space for the
primal problem contains 27 bases and 14 bases for the dual problem, while for the construction
of the goal-oriented adaptive reduced basis method, there are 9 and 7 bases respectively. We test
the reduced basis approximation for both the primal and the dual problems with 100 test samples
and present the worst approximation errors in Figure 5.5, which illustrates the exponentially fast
convergence of the reduced basis approximation in high dimensional random inputs. Figure 5.6
depicts the dependence of the worst approximation error for the output maxy∈Ξtest

|s(y)− sN (y)|
with respect to the number of bases in the primal and dual reduced basis space (left) as well as
the effectivity of the a posterior error bound defined as △s

N (y)/|s(y)− sN (y)| (right), from which
we can observe that simultaneous increase of the bases in both primal and dual reduced basis
spaces not only leads to faster convergence of the output approximation error but also improves
the sharpness of the a posteriori error bound, thus enhances the computational efficiency for the
evaluation of the failure probability.

The error tolerance for the failure probability is set to ǫtol = 1×10−4 with a critical value s0 = 4.
We test both the hybrid and the goal-oriented adaptive approaches, with the results recorded in
Table 5.3. Due to the fact that the solution lies in a very low dimensional stochastic manifold, the
fine hybrid reduced basis approximate output is very close to the true value and there are only
52 out of 1365000 samples that cannot be determined; as for the goal-oriented adaptive approach,
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Figure 5.6: Worst primal-dual reduced basis approximation error of hybrid type with εtol = 1×10−4

(left) and goal-oriented adaptive type with εtol = 1× 10−2 (right) at 100 test samples.

48 samples can be not determined and only 21 PDEs are fully solved for adaptation of the primal
and dual reduced basis spaces. From this experiment, we can see that we don’t gain much more
computational efficiency by the goal-oriented adaptive method than by the hybrid method, so that
it’s sufficient to use the hybrid reduced basis method to compute failure probability for problems
with very smooth solution in the probability space.

Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 1024M0 1365M0

Hybrid RBM, # (|s− sN | < △s
N ) 1 0 0 1 11 39 52

Adaptive RBM, # (|s− sN | < △s
N ) 3 4 7 5 15 14 48

Adaptive RBM, # adapted bases 2 1 3 4 6 5 21
Failure probability P

m
f = P

h
f = P

g

f 0.361 0.372 0.3823 0.3864 0.3832 0.3831 0.3831

Table 5.3: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the
number of samples for which the full PDE have to be solved; M0 = 1000.

5.3 Non-steady problems

We consider a heat transfer problem in a thermal fin with the geometry displayed in Figure 5.7,
where the thermal conductivity in the main body and the four extended surfaces depends on five
independent random variables obeying uniform distribution in [−2, 2], i.e.

a0(x, y) = 1 + 10y0X0(x), and ak(x, y) = 10ykXk(x), 1 ≤ k ≤ 4,

where the characteristic functions Xk, 0 ≤ k ≤ 4 are supported in the sub domains Dk, 0 ≤ k ≤ 4.
Moreover, we consider the Biot number on the Robin boundaries as a random field as

b(x, y) = 10y5X∂Dr
(x),

where the characteristic function X∂Dr
(x) is supported on the Robin boundaries. The time depen-

dent heat transfer problem is formulated in the strong form as

∂u(t, x, y)

∂t
−

4
∑

k=0

∇(ak(x, y)∇u(t, x, y)) = 0, (t, x) ∈ [0, T ]×D, a.s. y ∈ Γ, (5.3)
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where Γ = [−2, 2]6; we take T = 5 and impose homogeneous initial condition u(0, x, y) = 0
everywhere; we also prescribe heat flux f(x) = 1, x ∈ ∂D1

n at the bottom edge, homogeneous
Neuman boundary condition on the boundary ∂D2

n and the following Robin boundary condition
on the boundary of the extended surfaces ∂Dr

4
∑

k=0

ak(x, y)∇u(t, x, y) · n+ b(x, y)u(t, x, y) = 0, (t, x) ∈ [0, T ]× ∂Dr, a.s. y ∈ Γ,

By the first order backward Euler scheme for time discretization with time step ∆t = 0.05, we can
write the semi-weak formulation of the problem (5.3) as: find ui(y) ∈ X, 1 ≤ i ≤ 100 such that the
following equation holds almost surely y ∈ Γ

M(ui(y), v; y) + ∆t

4
∑

k=0

Ak(u
i(y), v; y) + ∆tB(ui(y), v; y) = ∆tF (v; y) +M(ui−1(y), v; y), v ∈ X

(5.4)
where B(ui(y), v; y) =

∫

∂Dr
ui(x, y)v(x)dx and F (v; y) =

∫

∂D1
n
f(x)v(x)dx.

Figure 5.7: Geomtry of a thermal fin, with domain D0 (blue) defined as the main body, Dk, 1 ≤
k ≤ K (black) as the extended surfaces, ∂D1

n (red) where imposing heat flux, ∂D2
n (blue) for

homogeneous Neuman boundary conditions and the left boundary ∂Dr as Robin boundary.

We define the compliant output as the heat on the flux boundary at the upper time T = 5,
i.e. s(y) = s(T ; y) = F (u(T ; y); y), and consider a critical value s0 = 2.3 with failure probability
(ineffective heat transfer) defined as Pf (ω ∈ Ω : s(y(ω)) > s0). Figure 5.8 displays temperature
distribution at three different samples at the end of the simulation, being the first one very effective
for heat transfer and the last one ineffective.
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Figure 5.8: Temperature distribution at T = 5 for three different samples: left, yk = 2, effective
heat transfer; middle, reference yk = 0; right, yk = −2, 0 ≤ k ≤ 5, ineffective heat transfer.
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Figure 5.9: Left: decay of worst approximation error maxy∈Ξtest
|s(y)− sN (y)| with respect to the

number of reduced basis functions N ; right: error bound effectivity △s
N/|s− sN | at 100 samples.

Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 341M0

Hybrid RBM, # (|s− sN | < △s
N ) 0 600 1500 3800 12400 18300

Adaptive RBM, # (|s− sN | < △s
N ) 700 1200 500 2300 1400 6100

Adaptive RBM, # adapted bases 400 400 200 700 300 2000
Failure probability P

m
f = P

h
f = P

g

f 0.0280 0.0315 0.0288 0.0304 0.0308 0.0308

Table 5.4: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the
number of samples for which the full PDE have to be solved; M0 = 1000.

We build the reduced basis space for hybrid method with tolerance εtol = 1 × 10−4, resulting
in 93 bases as shown in the left of Figure 5.9; as for goal-oriented adaptive method, we set the
tolerance εtol = 1 × 10−2, leading to 42 initial bases. The effectivity for a posteriori error bound
at 100 test samples is displayed in the right of Figure 5.9, which are sharp and distributed close to
a constant smaller than 10. The results for the evaluation of failure probability with a tolerance
ǫtol = 1× 10−3 are shown in Table 5.4, from which we can observe that the goal-oriented adaptive
approach is much more efficient than the hybrid approach, solving only 2000 full PDEs (5.4) instead
of 18300 in the latter approach.

5.4 Non-affine problems

Instead of the affine expansion (5.1) of the random fields a and f , we consider the Karhunen-Loève
expansion for the logarithmic function of the random fields a and f , written as follows:

log (a(x, y(ω))− E[a]) = Ca

Pa
∑

q=1

√

λaqaq(x)yq(ω),

log (f(x, y(ω))− E[f ]) = Cf

Pf
∑

q=1

√

λfq fq(x)y
f
q (ω),

which are widely used in practical engineering models [33] in that the random fields are guaranteed
to be positive, so that the random variables in the Gaussian random field expansion (5.2) are
allowed to be standard Gaussian random variables with zero mean and unit variance. We take a
correlation length L = 1/16 smaller than in section 5.2 for both the diffusion random coefficient
a(x1, y) depending only in x1 and the random force f(x2, y) depending only in x2 in the formula
(5.2). This leads to Pa = Pf = 51 terms to cover 99% of the total randomness, thus yielding a
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high dimensional stochastic problem with Pa + Pf = 102 independent standard Gaussian random
variables in total. The physical domain is set as D = (0, 1)2.
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Figure 5.10: Decay of the error bound rQ+1(x
Q+1, yQ+1) and the worst approximation error

maxy∈Ξtest
||g(y)− gQ(y)||L∞(D) for a (left) and f (right) by empirical interpolation method.

We perform an empirical interpolation procedure to affinely decompose the non-affine random
fields a (with Ca = 50 and E[a] = 0.1) and f (with Cf = 20 and E[f ] = 0.1) with error tolerance
εtol = 1 × 10−8 in Algorithm 5. The decay of the error bound rQ+1(x

Q+1, yQ+1) and the worst
approximation error maxy∈Ξtest

||g(y)−gQ(y)||L∞(D) computed in a test set Ξtest with 100 samples
are displayed in Figure 5.10, from which we can see that the empirical interpolation reaches very
small error (1× 10−8) by only a few affine terms, Qa = 33 for aQa

and Qf = 17 for fQf
in (4.31),

which are smaller than 51. By setting Θa
q , 1 ≤ q ≤ 33 and Θf

q , 1 ≤ q ≤ 17 as new random variables
in the affine decomposition formula (4.31), we can view the empirical interpolation as an efficient
dimension reduction method in order to alleviate the curse-of-dimensionality, especially when the
manifold of stochastic solution is in low dimensional probability space. Moreover, the error bound
rQ+1(x

Q+1, yQ+1) is accurate and very sharp (close to the worst approximation error) as can be
observed from Figure 5.10, so that the cheap a posteriori error bounds constructed in (4.39) and
(4.42) are also accurate and sharp.
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Figure 5.11: Worst approximation error |s − sQ,N |, reduced basis error bound △s
N and empirical

interpolation error bound Es,b
Q for N reduced basis functions (left), and at 100 test samples (right).

To evaluate the a posteriori error bound Es,b
Q in (4.42) from the contribution of affine decom-

position, we first compute C1 = 1, C2 = 1 from (A.18) and bound a almost surely by the estimate
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amax = 10; the bound for the empirical interpolation error are taken from the construction of the
affine decomposition as raQa+1(x

Qa+1, yQa+1) = 1.9×10−9 and rfQf+1(x
Qf+1, yQf+1) = 9.9×10−9.

We construct the reduced basis space with error tolerance εtol = 1 × 10−4, leading to 10 bases
as shown on the left of Figure 5.11, where the reduced basis error bound △s

N (y) as well as the

empirical interpolation error bound Es,b
Q (y) are also shown at the sample y that leads to the worst

approximation real error y = argmaxy∈Ξtest
|s(y)−sQ,N (y)|. It can be observed that the empirical

interpolation error bound Es,b
Q is much smaller than the reduced basis error bound △s

N , so that
we can enrich the reduced basis space in order to obtain better approximation of the output with
certified small error from affine decomposition. On the right of Figure 5.11, the different error
bounds computed with 10 bases in the reduced basis space as well as the real output error are
displayed at 100 test samples, which confirms the observation of the left figure for most of the
samples (with one exception where the reduced basis approximation of the output is extremely
close to the real output). Moreover, we can see that the reduced basis error bound is accurate and
sharp, being very close to the real error at most of the samples. In order to evaluate the failure
probability with critical value s0 = 0.3 and tolerance ǫtol = 1 × 10−3, we set the reduced basis
construction tolerance εtol = 1×10−4 for hybrid approach, resulting in 10 bases and εtol = 1×10−2

for goal-oriented adaptive approach with 4 bases. The results are displayed in Table 5.5, which
shows that the reduced basis space is in very low dimensions (only 10 dimensions for the hybrid
approach and 4 + 7 = 11 dimensions for the goal-oriented adaptive approach) due to the fact that
the stochastic solution and output live in a very low dimensional manifold, even though the random
inputs are in high dimensions.

Number of Monte Carlo samples 1M0 4M0 16M0 64M0 256M0 341M0

Hybrid RBM, # (|s− sN | < △s
N ) 0 1 1 7 33 42

Adaptive RBM, # (|s− sN | < △s
N ) 13 2 5 1 14 35

Adaptive RBM, # adapted bases 2 1 1 1 2 7
Failure probability P

m
f = P

h
f = P

g

f 0.064 0.059 0.062 0.065 0.064 0.064

Table 5.5: Comparison between hybrid RBM and goal-oriented adaptive RBM in terms of the
number of samples for which the full PDE has to be solved; M0 = 1000.
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6 Concluding remarks

In this paper we developed a hybrid and goal-oriented adaptive computational strategy based on
reduced basis method to efficiently and accurately compute the failure probability of partial differ-
ential equations with random inputs. In particular, we designed an efficient sampling scheme by
the goal-oriented greedy algorithm to construct an accurate reduced basis model to approximate
the stochastic output, especially for high dimensional problems with many random inputs. In or-
der to compute the failure probability of low regularity system with respect to the random inputs,
we developed a hybrid approach with goal-oriented adaptation governed by cheap and sharp a
posteriori error bound for both the construction of reduced basis space and the approximation of
the output with certification. We extended the proposed methods to more general PDE models
of non-compliant, non-steady and non-affine types, using appropriate techniques. In the numeri-
cal experiments, we studied different PDEs with uncertainties from physical parameters, external
loadings, boundary conditions as random inputs obeying uniform distribution and normal distri-
bution. However, the numerical experiments are based on simple academic examples with specific
design for testing the computational properties of our proposed methods. Further research will
be devoted to the development and application of our methods in practical engineering problems
with more general PDE models and random inputs. We also remark that we didn’t take temporal
and spatial discretization errors into account, which might be important, e.g. in highly nonlinear
or advection-dominated problems. To carry out a global error analysis and design suitable global
error bounds are helpful for more rigorous evaluation of failure probability.

Acknowledgement: We acknowledge the use of the Matlab packages rbMIT developed by the
group of Prof. Anthony Patera in MIT for reduced basis method, MLife previously developed by
Prof. Fausto Saleri from MOX, Politecnico di Milano for finite element solver and spinterp by Dr.
Andreas Klimke from Universität Stuttgart for sparse grid interpolation. The authors thank Dr.
Gianluigi Rozza for helpful insights in reduced basis method. This work is partially supported by
Swiss National Science Foundation under grant N.200021 141034

A Proof of Lemma 4.3

Proof The total approximation error can be bounded by the sum of two terms

||u(y)− uQ,N (y)||X ≤ ||u(y)− uQ(y)||X + ||uQ(y)− uQ,N (y)||X , (A.1)

the former due to the affine approximation error of the random fields a and f , the latter arising
from the reduced basis approximation error. Using (3.11), we have

||uQ(y)− uQ,N (y)||X ≤ △u
N . (A.2)

Thus, we only need to control the first part with an error bound denoted as

||u(y)− uQ(y)||X ≤ Eu
Q(y). (A.3)

To bound the first term, we consider the weak formulation of the problem (2.1) with the original
random fields a and f as well as the approximate aQa

and fQa
,

(a∇u,∇v) = (f, v) ∀v ∈ H1
0 (D) (A.4)

and
(aQa

∇uQ,∇v) = (fQf
, v) ∀v ∈ H1

0 (D) (A.5)

respectively. Subtracting (A.5) from (A.4), we have

(a∇u− aQa
∇uQ,∇v) = (f − fQf

, v) ∀v ∈ H1
0 (D), (A.6)
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which can be transformed by adding and subtracting a∇uQ as

(a∇(u− uQ),∇v) = (f − fQf
, v) + ((aQa

− a)∇uQ,∇v) ∀v ∈ H1
0 (D). (A.7)

Taking v = u− uQ in (A.7) and applying the coercive property of the left hand side, we have

l.h.s. ≥ α(y)||u(y)− uQ(y)||2X ≥ αLB(y)||u(y)− uQ(y)||2X . (A.8)

As for the right hand side of (A.7), we have the following bound by Cauchy-Schwarz inequality,

r.h.s ≤ ||f(y)− fQf
(y)||L∞(D)||u(y)− uQ(y)||L1(D)

+ ||a(y)− aQa
(y)||L∞(D)||∇uQ(y)||L2(D)||∇(u(y)− uQ(y))||L2(D).

(A.9)

By Poincaré inequality [1], we have that

||u(y)− uQ(y)||L1(D) ≤ CP ||∇(u(y)− uQ(y))||L1(D) (A.10)

where CP ≤ dD/2 with dD standing for the diameter of the domain D. Moreover, we have again
by Cauchy-Schwarz inequality the following relation

||∇(u(y)− uQ(y))||L1(D) ≤ CD||∇(u(y)− uQ(y))||L2(D), (A.11)

where CD =
√

|D| with |D| representing the Lebesgue measure of the domain D. By the definition

of the norm ||v||X =
√

(a(ȳ)∇v,∇v) at a reference value ȳ ∈ Γ, we have

||∇v||L2(D) ≤ CX ||v||X ∀v ∈ H1
0 (D), (A.12)

where CX ≤
√

||1/a(ȳ)||L∞(D). Using the inequalities (A.10), (A.11) and (A.12), we have the
following bound for the right hand side (A.9)

r.h.s ≤ CDCPCX ||f(y)− fQf
(y)||L∞(D)||u(y)− uQ(y)||X

+ C2
X ||a(y)− aQa

(y)||L∞(D)||uQ(y)||X ||u(y)− uQ(y)||X .
(A.13)

Furthermore, by setting v = uQ in the weak formulation (A.5), we obtain

||uQ(y)||X ≤ CDCPCX

αLB(y)
||fQf

(y)||L∞(D), (A.14)

for which we have used the following coercive property with lower bound αLB(y) ≤ αQa
(y)

(aQa
∇uQ,∇uQ) ≥ αQa

(y)||uQ(y)||2X ≥ αLB(y)||uQ(y)||2X (A.15)

as well as the following bound by the inequalities (A.10), (A.11) and (A.12)

(fQf
, uQ) ≤ ||fQf

(y)||L∞(D)||uQ(y)||L1(D) ≤ CDCPCX ||fQf
(y)||L∞(D)||uQ(y)||X . (A.16)

A combination of (A.13) and (A.14) leads to the following bound for the right hand side of (A.7)

r.h.s ≤ CDCPCX ||f(y)− fQf
(y)||L∞(D)||u(y)− uQ(y)||X

+
CDCPC

3
X

αLB(y)
||a(y)− aQa

(y)||L∞(D)||fQf
(y)||L∞(D)||u(y)− uQ(y)||X .

(A.17)

By comparing the left hand side (A.8) and the right hand side (A.17), we obtain the error bound
(4.33) depending only on the data a, f and their empirical interpolation errors, where C1 and C2
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are defined as

C1 := CDCPCX ≤
√

|D|dD
2

√

∣

∣

∣

∣

∣

∣

∣

∣

1

a(ȳ)

∣

∣

∣

∣

∣

∣

∣

∣

L∞(D)

and C2 := C2
X ≤

∣

∣

∣

∣

∣

∣

∣

∣

1

a(ȳ)

∣

∣

∣

∣

∣

∣

∣

∣

L∞(D)

. (A.18)

�

B Proof of Lemma 4.4

Proof Similar to the proof of Lemma 4.3, we split the output approximation error into

|s(y)− sQ,N (y)| ≤ |s(y)− sQ(y)|+ |sQ(y)− sQ,N (y)|, (B.1)

where the first part corresponds to the affine approximation error of the random fields a and f
and the second part arises from the reduced basis approximation error bounded by

|sQ(y)− sQ,N (y)| ≤ △s
N (y), (B.2)

which can be evaluated from (3.12). As for the first part, we seek a bound denoted as

|s(y)− sQ(y)| ≤ Es
Q(y). (B.3)

By definition of the output s = (f, u) and the approximate output sQ = (fQf
, uQ), we have

|s(y)− sQ(y)| = |(f(y), u(y)) + (fQf
(y), uQ(y))|

≤ |(f(y)− fQf
(y), uQ(y))|+ |(f(y), u(y)− uQ(y))|

≤ ||f(y)− fQf
(y)||L∞(D)||uQ(y)||L1(D) + ||f(y)||L∞(D)||u(y)− uQ(y)||L1(D)

≤ C1||f(y)− fQf
(y)||L∞(D)||uQ(y)||X + C1||f(y)||L∞(D)||u(y)− uQ(y)||X

≤ C2
1

αLB(y)
||f(y)− fQf

(y)||L∞(D)||fQf
(y)||L∞(D) + C1||f(y)||L∞(D)Eu

a,f (y),

(B.4)

where the first inequality is due to the triangular inequality, the second one to the Cauchy-Schwarz
inequality, the third one follows from combining (A.10), (A.11) and (A.12), and the fourth inequal-
ity follows from using (A.14) and the error bound (A.3). �
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