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Abstract

In this article we design and analyze a class of two-level non-overlapping
additive Schwarz preconditioners for the solution of the linear system of
equations stemming from discontinuous Galerkin discretizations of second-
order elliptic partial differential equations on polytopic meshes. The pre-
conditioner is based on a coarse space and a non-overlapping partition of
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the computational domain where local solvers are applied in parallel. In
particular, the coarse space can potentially be chosen to be non-embedded
with respect to the finer space; indeed it can be obtained from the fine grid
by employing agglomeration and edge coarsening techniques. We investi-
gate the dependence of the condition number of the preconditioned system
with respect to the diffusion coefficient and the discretization parameters,
i.e., the mesh size and the polynomial degree of the fine and coarse spaces.
Numerical examples are presented which confirm the theoretical bounds.

1 Introduction

The process of defining a computational grid characterized by standard tri-
angular/tetrahedral or quadrilateral/hexahedral-shaped elements is one of the
potential bottlenecks when traditional finite element methods are employed for
the numerical approximation of problems characterized by strong complexity of
the physical domain, such as, for example, in geophysical applications, fluid-
structure interaction, or crack propagation problems. In order to overcome this
issue, during the last decade a wide strand of literature has focused on the design
of numerical methods that support the use of computational meshes composed of
general polygonal and polyhedral elements. In the conforming setting we men-
tion, for example, the Composite Finite Element Method [49, 8], the Mimetic Fi-
nite Difference Method [50, 28, 27, 24, 7], the Polygonal Finite Element Method
[60], the Extended Finite Element Method [61, 45], the Virtual Element Method
[22, 23, 2], and the Hybrid High-Order Method [37, 35, 36]. A major issue in the
design of conforming methods on such general polytopic meshes is the definition
of a suitable space of continuous piecewise polynomial functions; in this context,
this is far from being a trivial task, particularly for high-order approximations.
An alternative strand of literature has focused on the non-conforming setting,
where the ease of defining spaces of piecewise polynomial functions is naturally
associated with the flexibility provided by polytopic meshes. Here, we men-
tion, for example, Hybridizable Discontinuous Galerkin Methods [33, 34], non-
conforming Virtual Element Methods [19, 13, 32], Gradient Schemes [39], and
Discontinuous Galerkin (DG) Methods [4, 21, 20, 8, 9, 31, 30, 11, 5, 14, 3, 1, 6].
In particular, DG methods represent a class of powerful non-conforming nu-
merical schemes in which the use of numerical grids characterized by general
polytopic elements couples very well with the possibility to build the under-
lying discrete space in the physical frame, thereby avoiding the need to map
polynomial spaces from a reference/canonical element.

However, as was shown in [10], the condition number of the matrix in a sys-
tem of linear equations stemming from DG methods may be prohibitively large;
indeed, by writing h to denote the mesh-size and p the polynomial degree, the
condition number of the DG approximation to Poisson’s equation grows like
O(p

4
/h2) as h tends to zero and p tends to infinity. For this reason, in re-

cent years, the development of fast solvers and preconditioners for systems of
linear equations stemming from (high-order) DG discretizations has been an
active area of research. A variety of two-level and multigrid/multilevel tech-
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niques have been proposed, both in the geometric and algebraic settings, for
the solution of DG discretizations; see, for example, [47, 38, 26, 25, 16]. In
particular, the availability of efficient geometric multilevel solvers is strongly
related to the possibility of employing general-shaped polytopic grids; indeed, if
polytopic grids can be employed, then the sequence of grids which are required
within a multilevel iteration can be defined by agglomeration; see [11, 15] for
details. Besides multigrid, a recent strand in the literature has focused on
Schwarz domain decomposition methods; see, for example, [62], for a general
abstract overview of these methods. In the DG setting where standard triangu-
lar/tetrahedral or quadrilateral/hexahedral grids are employed, one of the first
contributions in terms of domain decomposition solvers was presented for the
solution of elliptic problems in [44], where bounds of order O(H/δ) and O(H/h)
were obtained for the condition number of the preconditioned system in the
framework of overlapping and non-overlapping Schwarz methods, respectively;
here, H, h, and δ represent the size of the coarse grid, the fine grid, and the
amount of overlap, respectively. Dryja and Sarkis proposed in [42] an addi-
tive Schwarz preconditioner for the solution of second-order elliptic problems
with discontinuous coefficients. There, the authors showed that the condition
number of the of the matrix of the preconditioned system is independent of the
jumps of the coefficients across the substructure boundaries and outside a thin
layer along the substructure boundaries. A further development of this algo-
rithm, which is very well suited for parallel computation, can be found in [41].
Concerning the setting of high-order DG methods, we mention the work in [10],
where additive and multiplicative Schwarz preconditioners were introduced for
efficiently solving systems of linear equations arising from the discretization of
second-order symmetric elliptic boundary-value problems using hp-version DG
methods; there, hp-spectral bounds of order O(σp

2H/h) were derived for a class
of domain decomposition preconditioners for DG discretizations, where σ is the
coefficient of the interior penalty stabilization parameter, p is the polynomial
approximation degree, and H, h is the size of the coarse and fine mesh, respec-
tively. Recently, in [12], this condition number estimate was improved to yield
the optimal rate of O(σp

2H/qh), where q denotes the polynomial approximation
degree employed within the coarse grid solver; cf. [53] for related work. We also
mention the recent work presented in [51], where the influence of the penalty
terms, as well as the choice of coarse mesh spaces, on the condition number
of the matrix of the system of linear equations preconditioned with additive
Schwarz methods were investigated.

The goal of this article is to design and analyze a class of two-level non-
overlapping additive Schwarz preconditioners for hp-version DG discretizations
of second-order elliptic problems on general polytopic grids. Given the DG
discrete problem defined on a fine mesh of granularity h, the preconditioner
is designed by introducing two additional partitions employed to define the
local solver operators and the coarse space correction. On the one hand, the
partition employed to build the local solvers is related to a suitable splitting
of the DG space and hence it is assumed to be nested with respect to the fine
polytopic mesh. On the other hand no conditions are imposed on the coarse
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partition, which can be non-nested with respect to the fine grid. In particular,
we consider the massively parallel setting, whereby the partition employed for
the local solvers are finer than the grid employed within the coarse solver. Here,
we investigate the dependence of the condition number with respect to both
the diffusion coefficient and the discretization parameters of the fine and coarse
spaces, as well as the granularity of the partition for the local solver. We stress
that our analysis is carried out in a very general setting, and, in particular, for
nested meshes, it allows the computational domain where the model problem is
posed to be non-convex; cf. Section 2 below.

The rest of the paper is organized as follows. In Section 2 we introduce the
DG method on polytopic grids for the numerical approximation of second-order
elliptic problems. In Section 3 we formulate the additive Schwarz preconditioner
analyzed in this article. In Section 4 we then outline some key analytical results
that are required for the analysis that follows. Section 5 is devoted to deriving
some preliminary results required to obtain the desired bound on the condition
number of the matrix of the preconditioned system stated in Section 6. Numer-
ical experiments are presented in Section 7 to confirm the theoretical bounds
derived in this article.

2 DG method on polytopic grids

In this article we consider the following second-order elliptic problem. Let Ω ⊂
Rd, d = 2, 3, be a polygonal/polyhedral domain with boundary ∂Ω and let
f ∈ L2(Ω) be a given function. We consider the following weak formulation:
find u ∈ V = H1

0 (Ω) such that

A(u, v) :=



Ω

ρ∇u ·∇v dx =



Ω

fv dx ∀ v ∈ V. (1)

Here, ρ ∈ L∞(Ω) denotes the diffusion coefficient, which we assume to be such
that 0 < ρ0 ≤ ρ; here, we can assume that ρ0 = 1, since (1) can always be scaled
by 1/ρ0. Throughout this article, we use the notation x ≲ y to signify that there
exists a positive constant C, independent of the diffusion coefficient ρ and the
discretization parameters, such that x ≤ Cy. Similarly we write x ≳ y in lieu
of x ≥ Cy, while x ≂ y is used if both x ≲ y and x ≳ y hold.

Let Th be a tessellation of Ω consisting of disjoint polytopic elements κ of
diameter hκ such that Ω = ∪κ. Here, we denote by Fh the set of faces F ,
which are defined as the (d − 1)-dimensional planar facets of the elements κ
present in the mesh Th. For d = 3, we assume that each planar face of an
element κ ∈ Th can be subdivided into a set of co-planar (d − 1)-dimensional
simplices and we refer to this set as the set of faces, cf. [30]. Moreover, we
write FB

h := {F ∈ Fh: F ⊂ ∂Ω} to denote the set of boundary faces and
FI

h := Fh \ FB
h the set of interior faces. We set h := maxκ∈Th

hκ and, to ease
the presentation, we assume that h ≂ hκ for all κ ∈ Th.

Remark 2.1. We adopt the hypothesis that the diffusion coefficient ρ is piece-
wise constant on each polytopic element κ ∈ Th and write ρκ = ρ|κ to denote
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its restriction to κ; we refer to [46] for the more general case when ρ violates
this assumption.

We assume that Th satisfies the following assumptions; cf. [31, 29, 30] for
details.

Assumption 2.2. For any κ ∈ Th there exists a set of non-overlapping d-di-
mensional simplices κF

 ⊂ κ, for F ⊂ ∂κ, such that for any face F ⊂ ∂κ,

we have that F = ∂κ ∩ ∂κF
 ,


F⊂∂κ κ

F
 ⊂ κ, and the diameter hκ of κ can

be bounded by hκ ≲ d|κF
 |/|F | for all F ⊂ ∂κ, where |F | and |κF

 | denote the
Hausdorff measure of F and κF

 , respectively.

Assumption 2.3. We assume that there exists a covering T #
h := {Sκ}κ of

Th consisting of shape-regular d-dimensional simplices Sκ, such that, for any
κ ∈ Th, there is an Sκ ∈ T #

h satisfying κ ⊂ Sκ and diam(Sκ) ≲ hκ. We also
assume that

max
κ∈Th

card

κ′ ∈ Th : κ′ ∩ Sκ ∕= ∅,Sκ ∈ T #

h such that κ ⊂ Sκ


≲ 1.

We write 〈·〉 to denote the harmonic average operator defined as follows: let
η be a sufficiently smooth function; then, for any F ⊂ ∂κ, F ∈ Fh, we define

〈η〉|F :=






2 ηκ+ ηκ−

ηκ+ + ηκ−
, F ∈ FI

h , F ⊂ ∂κ+ ∩ ∂κ−,

ηκ, F ∈ FB
h , F ⊂ ∂κ ∩ ∂Ω,

where ηκ, κ ∈ Th, denotes the trace of η on ∂κ. Moreover, for sufficiently smooth
vector- and scalar-valued functions τ and v, respectively, we define the following
jump and weighted average operators across F ∈ Fh: for F ⊂ ∂κ+ ∩ ∂κ−,
F ∈ FI

h , we write

τ  := τκ+ · nκ+ + τκ− · nκ− , {{τ}}ω := ωτκ+ + (1− ω)τκ− ,

v := vκ+nκ+ + vκ−nκ− , {{v}}ω := ωvκ+ + (1− ω)vκ− ,

where nκ± denotes the unit outward normal vector to κ±, respectively. For
F ⊂ ∂κ, F ∈ FB

h , we set {{τ}}ω := τκ, v := vκn, cf. [18]. Here, ω ∈ [0, 1]
represents the weight employed for the definition of {{·}}ω. Given T s

h ⊆ Th and
Fs

h ⊆ Fh, we write

T s
h
dx :=


κ∈T s

h


κ
dx, |v|2H1(T s

h ) :=


κ∈T s
h
∇v2L2(κ),

Fs
h
ds :=


F∈Fs

h


F
ds, and v2L2(Fs

h)
:=


F∈Fs

h
v2L2(F ). Finally, writing

Pp(κ) to denote the space of polynomials of total degree p ≥ 1 on κ, κ ∈ Th,
the DG space is given by

Vh := {vh ∈ L2(Ω) : vh|κ ∈ Pp(κ) ∀κ ∈ Th}.

With this notation, we introduce the Symmetric Interior Penalty DG (SIPDG)
discretization of (1), cf. [63, 17, 43]: find uh ∈ Vh such that

Ah(uh, vh) =



Ω

fvhdx ∀ vh ∈ Vh, (2)
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where Ah : Vh × Vh → R is the bilinear form of the DG method defined as

Ah(uh, vh) :=



Ω

ρ

∇huh ·∇hvh +∇huh · Rρ(vh) +∇hvh · Rρ(uh)


dx

+



Fh

σh,ρuh · vh ds,

(3)

and ∇h denotes the piecewise gradient operator on Th. Here, Rρ : [L1(Fh)]
d →

[Vh]
d denotes the lifting operator defined by



Ω

Rρ(q) · η dx := −


Fh

q · {{η}}ω ds ∀η ∈ [Vh]
d, (4)

where, we take ω|F :=
ρκ−

ρκ+ + ρκ−
on each internal face F ∈ FI

h shared by

κ±. In (3), according to [40, 30], σh,ρ ∈ L∞(Fh) denotes the interior penalty
stabilization function, which is defined by

σh,ρ|F := Cσ〈ρκ〉p2
/〈hκ 〉 ∀F ∈ Fh, (5)

with Cσ > 0 independent of ρ, p, |F |, |κ| and hκ. It is well known that the
condition number of the operator Ah is potentially prohibitively large and de-
pends on the size of the partition Th and the polynomial degree p employed
for the discretization; cf. [10] for standard triangular/tetrahedral/hexahedral
grids and [16] for polytopic grids. Our goal is to introduce a massively paral-
lel non-overlapping additive Schwarz preconditioner, which can be employed as
a preconditioner to accelerate the convergence of iterative solvers such as the
Conjugate Gradient method.

3 Non-overlapping additive Schwarz precondi-
tioner

The definition of the additive Schwarz preconditioner requires the introduction
of two additional partitions (besides Th): a partition TH composed of disjoint
polytopic subdomains where local solvers are applied in parallel and a non-
overlapping partition TH employed for the coarse space correction. To this end,
we introduce the following notation:

• TH := {Ω1, . . . ,ΩNH} of size H := max1≤i≤NH{diam(Ωi)} such that each
subdomain Ωi is the union of some elements κ ∈ Th; we assume that
H ≂ diam(Ωi) for all i = 1, . . . , NH. We also assume that a colouring
property holds, i.e., there exists a positive integer NS such that

max
i=1,...,NH

card{Ωj : ∂Ωi ∩ ∂Ωj ∕= ∅} ≤ NS, (6)

i.e., NS represents the maximum number of neighbours that any subdo-
main Ωi ∈ TH may possess.
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Figure 1: Example of polygonal Th (black), TH (blue) and TH (red), when
the coarse and fine grids are nested, i.e., Th ⊆ TH , (left) and non-nested, i.e.,
Th ⊈ TH (right).

• TH := {D1, . . . ,DNH
} of size H := max1≤j≤NH

{diam(Dj)} such that
H ≂ diam(Dj) for all j = 1, . . . , NH .

We remark that the grids TH and Th are possibly non-nested, cf. Figure 1.

Remark 3.1. Given that TH is defined by agglomeration of fine-grid-elements
κ ∈ Th, we write Th ⊆ TH, since, for all κ ∈ Th, there exists a K ∈ TH such
that κ ⊆ K. However, we point out that no further assumptions are needed on
the relationship between TH and TH for the definition of our method. Classical
additive Schwarz methods have typically been defined based on the assumption
that Th ⊆ TH ⊆ TH. In this article we take a different approach: firstly, we
assume that the granularity of TH is finer than that of TH ; indeed, we are
particularly interested in the massively parallel case whereby TH = Th, cf. [41].
Secondly, we also permit the use of non-nested coarse and fine partitions, i.e.,
when Th ⊈ TH .

The main ingredients of the additive Schwarz method are defined as follows.

Local Solvers. Consider the subdomain partition TH with cardinality NH.
Then, for each subdomain Ωi ∈ TH we define a local space Vi as the restriction
of the DG finite element space Vh to Ωi, i.e., for i = 1, . . . , NH,

Vi := {vi ∈ L2(Ωi) : vi|κ ∈ Pp(κ) ∀κ ∈ Th, κ ⊆ Ωi} ≡ Vh|Ωi
.

The associated local bilinear form on Vi × Vi is defined by

Ai : Vi × Vi → R, Ai(ui, vi) := Ah(R
⊤
i ui, R

⊤
i vi) ∀ui, vi ∈ Vi,

where R⊤
i : Vi → Vh denotes the classical extension-by-zero operator from the

local space Vi to the global space Vh. The restriction operator Ri : Vh → Vi,
i = 1, . . . , NH, is defined as the transpose of R⊤

i with respect to the L2(Ωi) inner
product.

Coarse Solver. For 1 ≤ q ≤ p, the coarse solver is defined on the partition
TH . To this end, let V0 be the DG finite element space defined on TH given by

V0 ≡ VH := {vH ∈ L2(Ω) : vH |Dj
∈ Pq(Dj), j = 1, . . . , NH}.
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Further, let R⊤
0 be the L2-prolongation operator from V0 to Vh, defined as:

R⊤
0 : v0 ∈ V0 −→ R⊤

0 v0 ∈ Vh :



Ω

R⊤
0 v0whdx :=



Ω

v0whdx ∀wh ∈ Vh.

In this way R⊤
0 is well defined also when TH and Th are non-nested. Then, the

bilinear form associated to V0 is defined by

A0 : V0 × V0 → R, A0(u0, v0) := Ah(R
⊤
0 u0, R

⊤
0 v0) ∀u0, v0 ∈ V0. (7)

Remark 3.2 (Nested spaces). When V0 ≡ VH ⊆ Vh, i.e., when the coarse and
fine grids TH and Th, respectively, are nested, then the action of R⊤

0 on a coarse
function coincides with the action of the natural injection operator. Indeed, by
contradiction, if there exists a v0 ∈ V0 such that R⊤

0 v0 ∕= v0, then, by employing
the definition of R⊤

0 , we have

0 < R⊤
0 v0 − v0L2(Ω) = min

wh∈Vh

wh − v0L2(Ω) ≤ v0 − v0L2(Ω) = 0,

which is a contradiction and hence R⊤
0 v0 = v0 for all v0 ∈ V0 when V0 ⊆ Vh.

Introducing the projection operators Pi := R⊤
i
Pi : Vh → Vh, i = 0, 1, . . . , NH,

where

Pi : Vh → Vi, Ai( Pivh, wi) := Ah(vh, R
⊤
i wi) ∀wi ∈ Vi, i = 1, . . . , NH,

P0 : Vh → V0, A0( P0vh, w0) := Ah(vh, R
⊤
0 w0) ∀w0 ∈ V0,

the additive Schwarz operator is defined by Pad :=
NH

i=0 Pi. For an upper
bound on the condition number of Pas, we refer to Section 6 below.

4 Analytical background

Before we embark on developing the preliminary results needed to analyze the
condition number of the additive Schwarz operator introduced in the previous
section, we first state two key theorems, which are essential in the forthcoming
analysis, and which may be of relevance in other more general settings. To this
end, we write D ⊂ Rd, d ≥ 2, to denote a bounded, open, simply connected
domain, with boundary ∂D; in the proceeding analysis, D will be selected to
be an element Dj , j = 1, . . . , NH , from the coarse mesh TH . Following [59], cf.
also [56, 57], we introduce the definition of a special Lipschitz domain, and the
notion of a domain with a minimally smooth boundary.

Definition 4.1. ([59, Section 3.2],[56, Definition 1]) Let φ : Rd−1 → R be a
function that satisfies the Lipschitz condition

|φ(x)− φ(y)| ≤ M |x− y| ∀x,y ∈ Rd−1. (8)
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The smallest M for which (8) holds is denoted by Cφ. Based on this function,
we define the special Lipschitz domain it determines to be the set of points lying
above the hypersurface y = φ(x) in Rd, i.e.,

ω =

x ∈ Rd : xd > φ(x1, x2, . . . , xd−1)


.

The Lipschitz constant of the domain ω is defined by Cω := Cφ.

Equipped with this definition, we now introduce the concept of a minimally
smooth boundary.

Definition 4.2. ([59, Section 3.3],[56, Definition 2]) The boundary ∂D of D
is said to be minimally smooth if there exists an  > 0, a positive integer N , an
M > 0, and a sequence U1, U2, . . . of open sets such that:

1. If x ∈ ∂D, then B(x, ) ⊂ Ui for some i, where B(x, ) denotes the ball
with centre x and radius ;

2. No point x ∈ Rd is contained in more than N of the Ui’s;

3. For each i there exists a special Lipschitz domain ωi with Cωi ≤ M such
that

Ui ∩D = Ui ∩ ωi.

Based on the previous definition, we now introduce the following classical
extension operator.

Theorem 4.3. ([59, Theorem 5], [56, Theorem 3]) Let D be a domain with
minimally smooth boundary. Then, there exists a linear extension operator E :
Hs(D) → Hs(Rd), s ∈ N0, such that Ev|D = v and

EvHs(Rd) ≤ CEvHs(D),

where CE is a positive constant depending only on s and the constants , N ,
and M defined in Definition 4.2, which characterize the boundary ∂D.

Remark 4.4. We highlight that, crucially, the constant CE appearing in The-
orem 4.3 is independent of the measure of the underlying domain D.

Secondly, we now study the regularity of the following Neumann boundary-
value problem: find z such that

−∆z = f in D, ∇z · n = 0 on ∂D, (9)

with f ∈ L2
0(D) := {v ∈ L2(D) :


D
v dx = 0}.

Theorem 4.5. Let D be a bounded, open, convex (and therefore Lipschitz)
domain. Then, there exists a unique solution z ∈ H2(D) ∩ L2

0(D) to the homo-
geneous Neumann problem (9). Moreover, the following stability bound holds:

zH2(D) ≤
√
6

fL2(D) +

1

π
diam(D)∇zL2(D)


. (10)
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Proof. We defer the proof to Appendix A.

Remark 4.6. An analogous bound to (10), with constant equal to unity, has
been derived in [48, Theorem 4.3.1.4] for convex polygonal domains in R2; there
the term 1

πdiam(D)∇zL2(Ω) on the right-hand side of (10) is replaced by
zH1(D).

5 Preliminary results

We first present some preliminary results, which will be employed within the
analysis contained in Section 6. For the sake of simplicity of the presentation,
we assume that the grids Th and TH are nested; the extension of the theoretical
analysis to the general case Th ⊈ TH is deferred to Appendix B. Here, we
introduce the following energy norm:

w2h,ρ :=



Th

ρ|∇hw|2 dx+



Fh

σh,ρ|w|2 ds. (11)

The well-posedness of problem (2) with respect to the norm (11) is then estab-
lished in the following lemma, cf. [30].

Lemma 5.1. Suppose that Th satisfies Assumption 2.2; then,

Ah(uh, vh) ≲ uhh,ρvhh,ρ ∀uh, vh ∈ Vh,

Ah(uh, uh) ≳ uh2h,ρ ∀uh ∈ Vh.

The second bound holds provided that Cσ appearing in (5) is sufficiently large.

We also recall the following trace inequality on polytopic domains, intro-
duced in [29].

Lemma 5.2. Suppose that Th satisfies Assumption 2.2; then, the following
inequality holds:

v2L2(∂κ) ≲ p2
/hκ v2L2(κ) ∀ v ∈ Pp(κ) ∀κ ∈ Th.

Next we also recall a result regarding the approximation operator presented
in [31, Theorem 5.2] and [29, Lemma 5.5], to which we refer for details. However,
for the purposes of this article, we consider a slight generalization: given a
connected subdomain D ⊆ Ω, we assume that D is formed from the union
of a subset of elements κ ∈ Th; we denote the collection of such elements by
Th,D, i.e., D̄ := ∪κ∈Th,D

κ̄. With this definition, the approximant relies on the

properties of the extension operator E : Hs(D) → Hs(Rd), s ∈ N0, introduced
in Theorem 4.3. Hence, following [31, Theorem 5.2] and [29, Lemma 5.5], we
deduce the following lemma.
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Lemma 5.3. Suppose that Assumption 2.3 is satisfied, and let v ∈ L2(D) be
such that, for some k ≥ 0, v|κ ∈ Hk(κ) and Ev|Sκ

∈ Hk(Sκ) for κ ∈ Th,D, with

Sκ ∈ T #
h as defined in Assumption 2.3. Then, there exists a projection operator

Πh,κ : L2(D) → Pp(κ) such that

v −Πh,κvHl(κ) ≲
hs−l

pk−l
EvHk(Sκ), 0 ≤ l ≤ k.

v −Πh,κvL2(∂κ) ≲
hs−1/2

pk−1/2
EvHk(Sκ), k ≥ 1,

where s := min{p+ 1, k} and p ≥ 1.

Remark 5.4 (Global approximant). Given that Lemma 5.3 holds for all κ ∈
Th,D we can define the global approximation operator Πh : L2(D) → Vh|D such
that Πh|κ = Πh,κ. If v ∈ Hk(D), k ≥ 0, then, by noting Assumption 2.3,
together with Theorem 4.3, the following bound holds:

v −ΠhvHl(Th,D) ≲
hs−l

pk−l
vHk(D), 0 ≤ l ≤ k.

A key ingredient in our analysis is the conforming approximant defined
in [12]. In particular, to ensure that the preconditioner is scalable in the presence
of jumps in the diffusion coefficient, here we define the conforming approximant
in a slightly different manner, in order to obtain an approximation of discontin-
uous discrete functions vh ∈ Vh on each local domain Dj ∈ TH , j = 1, . . . , NH .
To this end, we adopt the following assumption on the coarse mesh TH .

Assumption 5.5. We assume that Dj ∈ TH is a convex polytope with Lipschitz
boundary ∂Dj, for any j = 1, . . . , NH , and that |Dj | ≂ Hd, j = 1, . . . , NH ,
where |Dj | represents the Hausdorff measure of Dj.

For the sake of the analysis, we define the following local grids generated
from Th and TH :

Th,j := {κ ∈ Th : κ ⊂ Dj , Dj ∈ TH}, FI
h,j := {F ∈ Fh : F ⊂ Dj , Dj ∈ TH},

FB
h,j := {F ∈ Fh : F ⊂ ∂Dj , Dj ∈ TH}, Fh,j := FI

h,j ∪ FB
h,j ,

(12)

for j = 1, . . . , NH .

Remark 5.6. Note that since the grids Th and TH are nested, i.e., Th,j ⊆ Th,
j = 1, . . . , NH , Th,j also satisfies Assumptions 2.2 and 2.3, for all j = 1, . . . , NH .

The local conforming approximant is then defined as follows.

Definition 5.7. Let Dj ∈ TH satisfy Assumption 5.5, j = 1, . . . , NH , and let
the discrete gradient operator of vh ∈ Vh inside Dj be defined by the equal-
ity Gh,j(vh) = (∇hvh + R1(Jj(vh))) {Dj}, j = 1, . . . , NH , where {Dj} is the

characteristic function on Dj, while Jj : Vh → [L1(Fh)]
d is defined by

Jj(vh)|F := vh|F if F ∈ FI
h,j , Jj(vh)|F := 0 otherwise, (13)

11



where FI
h,j is the set defined in (12). Here, R1 : [L1(Fh)]

d → [Vh]
d is the lifting

operator with ρ = 1 and ω = 1/2 in its definition given in (4). Then, vh,j is

defined as the solution of the following problem: find vh,j ∈ Vj = H1(Dj) ∩
L2
0(Dj) such that



Dj

∇vh,j ·∇w dx =



Dj

Gh,j(vh) ·∇w dx ∀w ∈ Vj . (14)

Remark 5.8 (Poincaré’s inequality). Since vh,j ∈ Vj and Dj satisfies Assump-
tion 5.5, we note that, cf. [64, Corollary 3.4], vh,jL2(Dj) ≤ Cp∇vh,jL2(Dj),

with Cp ≲ diam(Dj)
1+d/2|Dj |−1/2. Thereby, invoking Assumption 5.5 gives

vh,j2H1(Dj)
≤ (1 + C2

p)∇vh,j2L2(Dj)
≲ ∇vh,j2L2(Dj)

,

where we also made use of the fact that diam(Dj) ≂ H ≲ 1.

By proceeding as in [12] we prove the following approximation result.

Theorem 5.9. Let Dj ∈ TH satisfy Assumption 5.5, j = 1, . . . , NH . Given

vh ∈ Vh, we take vh,j ∈ Vj, j = 1, . . . , NH , to be the conforming approximant
given in Definition 5.7 and we define

vh,j := vh,j +
1

|Dj |



Dj

vhdx.

Then, the following approximation and stability bounds hold:

vh − vh,jL2(Dj) ≲
h

p
σ1/2

h,1vhL2(FI
h,j)

, (15)

|vh,j |2H1(Ω) ≲ ∇hvh2L2(Dj)
+ σ1/2

h,1vh2L2(FI
h,j)

, (16)

for j = 1, . . . , NH .

Proof. Given Dj ∈ TH , j = 1, . . . , NH , let z ∈ H2(Dj)∩L2
0(Dj) be the solution

of problem (9) posed on the domain Dj , i.e., D = Dj , with f = vh−vh,j . Then,
by employing integration by parts we obtain

vh − vh,j2L2(Dj)
= −



Dj

(vh − vh,j) ∆z dx

=



Dj

(∇hvh −∇vh,j) ·∇z dx −


FI
h,j

∇z · vh ds

= −


Dj

R1(Jj(vh)) ·∇z dx −


FI
h,j

∇z · vh ds,

where we have also used the facts that ∇vh,j = ∇vh,j , ∇z · n|F = 0 if F ⊂
∂Dj , vh,j|F = 0 for all F ∈ FI

h,j , since vh,j ∈ H1(Dj), and that Gh,j(vh) =
(∇hvh + R1(Jj(vh)) {Dj} together with the definition of vh,j , cf. (14). Using

12



the definition of R1 and Jj , cf. (4) and (13), respectively, for any zh ∈ Vh|Dj
,

we have

vh − vh,j2L2(Dj)
= −



FI
h,j

∇z · vh ds −


Dj

R1(Jj(vh)) ·∇z dx

= −


FI
h,j

∇z · vh ds +



FI
h,j

vh · {{∇hzh}}1/2 ds

−


Dj

R1(Jj(vh)) · (∇z −∇hzh) dx

=



FI
h,j

vh · {{∇hzh −∇z}}1/2 ds

−


Dj

R1(Jj(vh)) · (∇z −∇hzh) dx;

here we have used that, since z ∈ H2(Dj), {{∇z}}1/2|F = ∇z|F , F ∈ FI
h,j . Hence,

we get

vh − vh,j2L2(Dj)
≲ R1(Jj(vh))L2(Dj)∇z −∇hzhL2(Dj)

+ σ1/2
h,1vhL2(FI

h,j)
σ−1/2

h,1 {{∇z −∇hzh}}1/2 L2(FI
h,j)

.

(17)

The first term on the right-hand side of (17) can be written as follows:

R1(Jj(vh))2L2(Dj)
≤



Ω

R1(Jj(vh)) · R1(Jj(vh)) dx

= −


Fh

(Jj(vh)) · {{R1(Jj(vh))}}1/2 ds

= −


FI
h,j

vh · {{R1(Jj(vh))}}1/2 ds,

(18)

where we have also used the definitions of R1 and Jj , cf. (4) and (13), re-
spectively. Then, from (18) and the Cauchy–Schwarz inequality we obtain the
following bound:

R1(Jj(vh))2L2(Dj)
≤ σ1/2

h,1vhL2(FI
h,j)

σ−1/2
h,1 {{R1(Jj(vh))}}1/2L2(FI

h,j)
.

(19)

The second term on the right-hand side of (19) can be bounded by invoking
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Lemma 5.2 as follows:

σ−1/2
h,1 {{R1(Jj(vh))}}1/22L2(FI

h,j)
≤



κ∈Th,j

σ−1/2
h,1 R1(Jj(vh))2L2(∂κ)

= C−1
σ



κ∈Th,j

〈hκ〉
p2

R1(Jj(vh))2L2(∂κ)

≲


κ∈Th,j

R1(Jj(vh))2L2(κ), (20)

where we have used that 〈hκ〉 ≤ 2hκ for any κ ∈ Th. By inserting (20) into (19)
we obtain

R1(Jj(vh))L2(Dj) ≲ σ1/2
h,1vhL2(FI

h,j)
. (21)

Hence, by selecting zh = Πhz in (17) and employing (21), Lemma 5.3, cf., also,
Remark 5.4, and Theorem 4.5, we obtain

vh − vh,j2L2(Dj)
≲ h/p σ1/2

h,1vhL2(FI
h,j)

zH2(Dj)

≲ h/p σ1/2
h,1vhL2(FI

h,j)
(vh − vh,jL2(Dj) + ∇zL2(Dj)).

(22)

Here, we note that z also solves



Dj

∇z ·∇w dx =



Dj

(vh − vh,j)w dx ∀w ∈ Vj ,

from which, by choosing w = z, upon application of the Cauchy–Schwarz in-
equality and Poincaré’s inequality, cf. Remark 5.8, we get that ∇zL2(Dj) ≲
vh − vh,jL2(Dj). By inserting this bound into (22) we obtain (15). In order to

show (16) we first select w = vh,j ∈ Vj in (14); then, using the Cauchy–Schwarz
inequality we obtain:

|vh,j |H1(Dj) ≲ Gh,j(vh)L2(Dj).

Then, from the definition of Gh,j given in Definition 5.7 we have:

Gh,j(vh)2L2(Dj)
≲ ∇hvh2L2(Th,j)

+ R1(Jj(vh))2L2(Dj)
. (23)

The bound (16) is then obtained by inserting (21) into (23).

We are now ready to investigate the relationship between the spaces Vh, VH ,
and VH introduced above. The following result concerns the approximation of a
function vh ∈ Vh with a coarse function vH ∈ VH ; this represents an extension
of the analogous result presented in [12, Lemma 5.1].
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Lemma 5.10. For any vh ∈ Vh there exists a coarse function vH ∈ VH such
that

vh −R⊤
0 vHL2(Dj) ≲ H/q (∇hvh2L2(Th,j)

+ σ1/2
h,1vh2L2(FI

h,j)
)
1/2, (24)

|vh −R⊤
0 vH |H1(Th,j) ≲ (∇hvh2L2(Th,j)

+ σ1/2
h,1vh2L2(FI

h,j)
)
1/2, (25)

for j = 1, . . . , NH , where Th,j and FI
h,j are as defined in (12).

Proof. Let vh ∈ Vh and define vH by vH |Dj := (1/|Dj |

Dj

vhdx)+(ΠH(vh,j))|Dj ,

j = 1, . . . , NH , where vh,j is as defined in Definition 5.7 and ΠH denotes the
global variant of the hp-approximant introduced in Lemma 5.3, cf. also Re-
mark 5.4, defined on the coarse space VH . Then, by noting Remark 3.2, the
application of the triangle inequality gives

vh −R⊤
0 vHL2(Dj) = vh − vHL2(Dj)

≲ vh − vh,jL2(Dj)+ vh,j − vHL2(Dj)

≲ vh − vh,jL2(Dj)+ vh,j −ΠH(vh,j)L2(Dj),

with vh,j as defined in Theorem 5.9. Employing Lemma 5.3 together with As-
sumption 2.3, cf. Remark 5.4, gives

vh −R⊤
0 vHL2(Dj) ≲ vh − vh,jL2(Dj) + H/q vh,jH1(Dj).

By applying Poincaré’s inequality to vh,j ∈ Vj , see also Remark 5.8, and noting
the bounds given in Theorem 5.9, we immediately deduce inequality (24) by
observing that h ≤ H and q ≤ p. In order to obtain (25) we proceed as follows:

|vh −R⊤
0 vH |H1(Th,j) ≲ |vh|H1(Th,j) + |R⊤

0 vH |H1(Th,j)

= |vh|H1(Th,j) + |vH |H1(Th,j). (26)

Thanks to the triangle inequality and observing that vH |Dj
∈ Pq(Dj) ⊂ H1(Dj)

we have that

|vH |H1(Th,j) ≲ |ΠH(vh,j)− vh,j |H1(Dj) + |vh,j |H1(Dj)

≲ |ΠH(vh,j)− vh,j |H1(TH) + |vh,j |H1(Ω) ≲ |vh,j |H1(Ω),
(27)

where we have used the bound stated in Remark 5.4 and Poincaré’s inequality, cf.
also Remark 5.8. Inserting (27) into (26) and noting Theorem 5.9 gives (25).

Remark 5.11. By summing over all Dj ∈ TH , j = 1, . . . , NH , the local bounds
of Lemma 5.10 give rise to the following global estimates:

vh −R⊤
0 vHL2(Ω) ≲ H/q vhh,1, |vh −R⊤

0 vH |H1(Th) ≲ vhh,1,

which are in agreement with the analogous results developed in [12].
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Before proceeding with the analysis of Pad we also need the following result
regarding the properties of the subdomain decomposition introduced in Sec-
tion 3.

Lemma 5.12. Given vh ∈ Vh, there exists a unique decomposition, i.e., vh =NH
i=1 R

⊤
i vi, with vi ∈ Vi i = 1, . . . , NH, such that

Ah(vh, vh) =

NH

i=1

Ai(vi, vi) +

NH

i,j=1,i ∕=j

Ah(R
⊤
i vi, R

⊤
j vj),

and


NH

i,j=1,i ∕=j

Ah(R
⊤
i vi, R

⊤
j vj)

 ≲ √ρ ∇hvh2L2(Th)
+

NH

i=1

σ1/2
h,ρvh

2
L2(∂Ωi)

.

Proof. Given vh ∈ Vh set vi := Rivh, i = 1, . . . , NH; then, Ah(R
⊤
i vi, R

⊤
j vj) = 0

if ∂Ωi ∩ ∂Ωj = ∅. For i, j = 1, . . . , NH, we have


NH

i,j=1,i ∕=j

Ai(R
⊤
i vi, R

⊤
j vj)

 ≲
NH

i,j=1,i ∕=j

|Ai(R
⊤
i vi, R

⊤
j vj)| ∀ vi ∈ Vi, vj ∈ Vj .

Now let i ∕= j be such that ∂Ωi ∩ ∂Ωj ∕= ∅ and write v̌i = R⊤
i vi and v̌j = R⊤

j vj ;
then,

Ah(v̌i, v̌j) =



Ω


ρ∇v̌i·Rρ(v̌j)+ρ∇v̌j ·Rρ(v̌i)


dx+



Fh

σh,ρv̌i·v̌jds. (28)

By recalling the definition of Rρ given in (4), the first term on the right-hand
side of (28) can be written as



Ω

ρ∇hv̌i · Rρ(v̌j)dx = −


Fh

{{ρ∇hv̌i}}ω · v̌jds,

since ρ is piecewise constant and v̌j ∈ R⊤
i Vi ⊆ Vh. By observing that v̌j|F = 0

for all F ∈ Fh such that F∩Ωj = ∅, and that {{ρ∇hv̌i}}ω|F = 0 when F∩Ωi = ∅,
we have


Ω

ρ∇hv̌i · Rρ(v̌j)dx = −


∂Ωi∩∂Ωj

v̌j · {{ρ∇hv̌i}}ωds

≤ σ1/2
h,ρv̌j

2
L2(∂Ωi∩∂Ωj)

+ σ−1/2
h,ρ {{ρ∇hv̌i}}ω2L2(∂Ωi∩∂Ωj)

≤ σ1/2
h,ρv̌j

2
L2(∂Ωj)

+ σ−1/2
h,ρ {{ρ∇hv̌i}}ω2L2(∂Ωi)

. (29)

Here, the second term on the right-hand side of (29) can be bounded by apply-
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ing Lemma 5.2 and noting that 〈ρκ〉 ≤ 2ρκ and 〈hκ〉 ≤ 2hκ, as follows:

σ−1/2
h,ρ {{ρ∇hv̌i}}ω2L2(∂Ωi)

≤


κ⊂Ωi

σ−1/2
h,ρ 〈ρκ〉∇hv̌i2L2(∂κ)

= C−1
σ



κ⊂Ωi

〈hκ〉
〈ρκ〉p2

〈ρκ〉2∇hv̌i2L2(∂κ)

≲


κ⊂Ωi

√ρκ∇hv̌i)2L2(κ) = √ρ∇hv̌i2L2(Ωi)
.

(30)

Inserting (30) into (29) gives



Ω

ρ∇v̌i · Rρ(v̌j)dx ≲ √ρ ∇hv̌i2L2(Ωi)
+ σ1/2

h,ρv̌j
2
L2(∂Ωj)

. (31)

Similarly, we have that



Ω

ρ∇v̌j · Rρ(v̌i)dx ≲ √ρ ∇hv̌j2L2(Ωj)
+ σ1/2

h,ρv̌i
2
L2(∂Ωi)

(32)

and 

Fh

σh,ρv̌i · v̌jds ≲ σ1/2
h,ρv̌i

2
L2(∂Ωi)

+ σ1/2
h,ρv̌j

2
L2(∂Ωj)

. (33)

Substituting (31), (32) and (33) into (28) we obtain

Ah(v̌i, v̌j) ≲ √ρ ∇hv̌i2L2(Ωi)
+ √ρ ∇hv̌j2L2(Ωj)

+ σ1/2
h,ρv̌i

2
L2(∂Ωi)

+ σ1/2
h,ρv̌j

2
L2(∂Ωj)

.

The result follows by summing over i, j = 1, . . . , NH, i ∕= j, and exploiting (6).

For the forthcoming analysis we also require an extension of the trace-inverse
inequality introduced by Feng and Karakashian in [44]; cf. also Smears [58,
Lemma 5], to which we refer for the proof.

Lemma 5.13 (Trace inverse inequality). Let Th and TH be a pair of nested
polytopic grids. We assume that TH is obtained by agglomeration of elements
of Th and that both Th and TH satisfy Assumption 2.2. Moreover, we assume
that for each Ωi ∈ TH, i = 1, . . . , NH, there exists an x0,i ∈ Ωi such that
(x− x0,i) · ni ≳ H for all x ∈ ∂Ωi, where ni is the unit outward normal vector
to ∂Ωi. Then, for any vh ∈ Vh, writing Fh(Ωi) := {F ∈ Fh such that F ⊂
Ωi, F ∕⊂ ∂Ωi}, the following bound holds:

vh2L2(∂Ωi)
≲ ∇hvhL2(Ωi)vhL2(Ωi) + 1/Hvh2L2(Ωi)

+ σ1/2
h,1vhL2(Fh(Ωi))vhL2(Ωi).
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6 Condition number estimates

In this section we derive an upper bound on the condition number of Pad by
following the analysis presented in [62]; see also [54]. To this end, we show that
the following three assumptions are satisfied.

Assumption 6.1 (Local stability). There exists an α ∈ (0, 2) such that

Ah(R
⊤
i vi, R

⊤
i vi) ≤ αAi(vi, vi) ∀ vi ∈ Vi, i = 0, 1, . . . , NH .

We point out that in our setting Assumption 6.1 immediately follows with
α = 1 from the definition of Ai(·, ·) given in Section 3, cf. [10].

Assumption 6.2 (Strengthened Cauchy–Schwarz inequality). There exist con-
stants ij ∈ [0, 1], for 1 ≤ i, j ≤ NH, such that

|Ah(R
⊤
i vi, R

⊤
j vj)| ≤ ijAh(R

⊤
i vi, R

⊤
i vi)

1/2Ah(R
⊤
j vj , R

⊤
j vj)

1/2

for all vi ∈ Vi, vj ∈ Vj. Define Θ(E) to be the spectral radius of (E)ij =
{ij}i,j=1,...,NH .

Assumption 6.2 immediately follows since each subdomain Ωi ∈ TH, i =
1, . . . , NH, can possess only a finite number of neighbours, cf. (6). In particular,
by observing that if ∂Ωi ∩ ∂Ωj = ∅, then Ah(R

⊤
i vi, R

⊤
j vj) = 0 for all vi ∈ Vi,

vj ∈ Vj , we deduce that ij = 0 if ∂Ωi ∩ ∂Ωj = ∅, ij = 1, otherwise. Then
Θ(E) is uniformly bounded by (NS + 1), where NS is the maximum number of
neighbours that each subdomain may possess, cf. (6). This result ensures that
a stable (in the sense of the energy norm) decomposition can be found for the
local spaces and the coarse one.

Assumption 6.3 (Stable decomposition). Each vh ∈ Vh admits a decomposi-

tion of the form vh =
NH

i=0 R
⊤
i vi, vi ∈ Vi, i = 1, . . . , NH, and v0 ∈ V0, such

that
NH

i=0

Ai(ui, ui) ≤ C2
Ah(uh, uh).

Following [62, Theorem 2.7] the upper bound on the condition number of
Pad is stated in the following theorem.

Theorem 6.4. Supposing that Assumption 6.1–Assumption 6.3 hold, the condi-
tion number K(Pad) of the additive Schwarz operator Pad is bounded as follows:

K(Pad) ≲ C2
 α(Θ(E) + 1),

where α, E, and C are as defined in Assumptions 6.1, 6.2 and 6.3, respectively.

Next we prove that Assumption 6.3 holds.
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Theorem 6.5. Let vh ∈ Vh, and assume that the grid Th satisfies Assump-
tions 2.2 and 2.3. We also assume that TH is obtained by agglomeration of
elements of Th, TH is obtained by agglomeration of elements of TH, and that
both TH and TH satisfy Assumptions 2.2 and 2.3. Then, Assumption 6.3 holds
with

C2
 ≂


max

j=1,...,NH

ρj
ρ
j

p2

q

H

h
+

p2

q2
H2

hH


,

where ρ
j
= minx∈Dj

(ρ(x)) and ρj = maxx∈Dj
(ρ(x)).

Proof. Given vh ∈ Vh, we select v0 = vH , where vH ∈ VH is defined as in the
proof of Lemma 5.10. Then, by employing Lemma 5.12, vh − R⊤

0 v0 can be

uniquely decomposed as vh − R⊤
0 v0 =

NH
i=1 R

⊤
i vi, where vi = Ri(vh − R⊤

0 v0),
i = 1, . . . , NH, and

Ah(vh −R⊤
0 v0, vh −R⊤

0 v0) =

NH

i=1

Ai(vi, vi) +

NH

i,j=1,i ∕=j

Ah(R
⊤
i vi, R

⊤
j vj). (34)

Adding A0(v0, v0) to both sides of (34) we obtain the following inequality:


NH

i=0

Ai(vi, vi)
 ≤

Ah(vh −R⊤
0 v0, vh −R⊤

0 v0)
+

A0(v0, v0)


+


NH

i,j=1,i ∕=j

Ah(R
⊤
i vi, R

⊤
j vj)



≡ I + II + III.

(35)

From the definition of A0(·, ·), cf. (7), we have that

II ≤ |Ah(R
⊤
0 v0 − vh, R

⊤
0 v0)|+ |Ah(vh, R

⊤
0 v0)|

≤ |Ah(R
⊤
0 v0 − vh, R

⊤
0 v0 − vh)|+ 2|Ah(R

⊤
0 v0 − vh, vh)|+ |Ah(vh, vh)|.

(36)

Recalling the continuity of Ah, cf. Lemma 5.1, and applying the triangle in-
equality and Young’s inequality gives

|Ah(R
⊤
0 v0 − vh, vh)| ≲ vh −R⊤

0 v0h,ρvhh,ρ ≲ vh −R⊤
0 v02h,ρ + vh2h,ρ.

Then, by inserting the above bound into (36) and using the continuity and
coercivity of Ah, cf. Lemma 5.1, we deduce that

I + II ≲ vh −R⊤
0 v02h,ρ +Ah(vh, vh). (37)

In particular, we observe that from the definition of  · h,ρ we have

vh −R⊤
0 v02h,ρ = √ρ∇h(vh −R⊤

0 v0)2L2(Th)
+ σ1/2

h,ρvh −R⊤
0 v02L2(Fh)

.

(38)
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Writing FH to denote the set of faces of TH , and observing that FH ⊆ Fh since
TH ⊆ Th, the second term on the right-hand side of (38) can be bounded as
follows:

σ1/2
h,ρvh−R⊤

0 v02L2(Fh)
= σ1/2

h,ρvh −R⊤
0 v02L2(Fh\FH)+ σ1/2

h,ρvh −R⊤
0 v02L2(FH)

= σ1/2
h,ρvh2L2(Fh\FH) + σ1/2

h,ρvh −R⊤
0 v02L2(FH)

≤ vh2h,ρ +

NH

j=1

σ1/2
h,ρ(vh −R⊤

0 v0)2L2(∂Dj)

≤ vh2h,ρ +

NH

i=1

σ1/2
h,ρ(vh −R⊤

0 v0)2L2(∂Ωi)
, (39)

where we have used that R⊤
0 v0 = 0 on each face F ∈ Fh \FH and, in the last

step, the fact that TH ⊆ TH ; cf. Remark 3.1. Hence, inserting (39) into (38)
and employing Lemma 5.1, inequality (37) becomes

I+II ≲ √ρ∇h(vh−R⊤
0 v0)2L2(Th)

+

NH

i=1

σ1/2
h,ρ(vh−R⊤

0 v0)2L2(∂Ωi)
+
Ah(vh, vh)

.

From Lemma 5.12 we get

III ≲ √ρ ∇h(vh −R⊤
0 v0)2L2(Th)

+

NH

i=1

σ1/2
h,ρ(vh −R⊤

0 v0)2L2(∂Ωi)
. (40)

Thereby, (35) can be bounded as follows


NH

i=0

Ai(vi, vi)
 ≲

Ah(vh, vh)
+ √ρ ∇h(vh −R⊤

0 v0)2L2(Th)

+

NH

i=1

σ1/2
h,ρ(vh −R⊤

0 v0)2L2(∂Ωi)

≡ IV + V + V I.

(41)

Thanks to Lemma 5.10 we have that

V =

NH

j=1

√ρ∇h(vh −R⊤
0 v0)2L2(Dj)

≲
NH

j=1

ρj∇h(vh −R⊤
0 v0)2L2(Dj)

≲
NH

j=1

ρj


∇hvh2L2(Th,j)

+ σ1/2
h,1vh2L2(FI

h,j)



≲
NH

j=1

ρj/ρ
j


√ρ ∇hvh2L2(Th,j)

+ σ1/2
h,ρvh2L2(FI

h,j)



≲ max
j=1,...,NH


ρj/ρ

j


vh2h,ρ ≲ max

j=1,...,NH


ρj/ρ

j


Ah(vh, vh),

(42)
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where we have used the coercivity bound from Lemma 5.1 in the last inequality.
The bound on term V I can be deduced by using the inverse trace inequality
of Lemma 5.13. To this end, we first observe that

V I ≲
NH

i=1

p2 max{κ⊂Ωi} ρκ/hvh −R⊤
0 v02L2(∂Ωi)

, (43)

where we have also employed the definition of σh,ρ and the fact that 〈ρκ〉|F ≤
2ρκ± for any F ⊂ ∂Ωi, F ⊂ ∂κ±, for some κ± ∈ Th, which implies that
〈ρκ 〉|F ≤ 2max{κ⊂Ωi} ρκ for all F ∈ Fh such that F ⊂ ∂Ωi. Then, by ap-
plying Lemma 5.13 to each Ωi ∈ TH, i = 1, . . . , NH, from (43) we obtain the
following bound:

V I ≲
NH

i=1

p2 max{κ⊂Ωi} ρκ/h

∇h(vh −R⊤

0 v0)L2(Ωi)vh −R⊤
0 v0L2(Ωi)

+ 1/H vh −R⊤
0 v02L2(Ωi)

+
 

F∈Fh(Ωi)

σ1/2
h,1vh −R⊤

0 v02L2(F )

1/2

vh −R⊤
0 v0L2(Ωi)


.

Since TH ⊆ TH , we denote by Ij := {k : 1 ≤ k ≤ NH, Ωk ∈ TH and Ωk ⊂ Dj}
the set of indices that correspond to the subdomains inside Dj ∈ TH , for all
j = 1, . . . , NH . Hence, Ij ∩ Ik = ∅ for any j ∕= k, 1 ≤ j, k ≤ NH , and

∪NH
j=1Ij = {1, . . . , NH}. Then,

V I ≲
NH

j=1



i∈Ij

p2 max{κ⊂Ωi} ρκ/h

∇h(vh −R⊤

0 v0)L2(Ωi)vh −R⊤
0 v0L2(Ωi)

+ 1/H vh −R⊤
0 v02L2(Ωi)

+
 

F∈Fh(Ωi)

σ1/2
h,1vh −R⊤

0 v02L2(F )

1/2

vh −R⊤
0 v0L2(Ωi)



≲
NH

j=1

p2ρj/h


i∈Ij

∇h(vh −R⊤
0 v0)L2(Ωi)vh −R⊤

0 v0L2(Ωi)

+ 1/H


i∈Ij

vh −R⊤
0 v02L2(Ωi)

+


i∈Ij

 

F∈Fh(Ωi)

σ1/2
h,1vh −R⊤

0 v02L2(F )

1/2

vh −R⊤
0 v0L2(Ωi)


.

(44)

We now proceed by bounding each term present in the bracket in (44); to this
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end, using the Cauchy–Schwarz inequality for sums, we get



i∈Ij

∇h(vh−R⊤
0 v0)L2(Ωi)vh −R⊤

0 v0L2(Ωi)

≤


i∈Ij

∇h(vh −R⊤
0 v0)2L2(Ωi)

1/2

i∈Ij

vh −R⊤
0 v02L2(Ωi)

1/2

= |vh −R⊤
0 v0|H1(Th,j)vh −R⊤

0 v0L2(Dj).

Similarly, by noting that Fh(Ωi) is the set of faces F ∈ Fh strictly contained in
Ωi, and therefore ∪i∈IjFh(Ωi) ⊂ FI

h,j , we deduce that



i∈Ij

 

F∈Fh(Ωi)

σ1/2
h,1vh −R⊤

0 v02L2(F )

1/2

vh −R⊤
0 v0L2(Ωi)

≤


i∈Ij

σ1/2
h,1vh −R⊤

0 v02L2(Fh(Ωi))

1/2

i∈Ij

vh −R⊤
0 v02L2(Ωi)

1/2

≤
 

F∈FI
h,j

σ1/2
h,1vh −R⊤

0 v02L2(F )

1/2

vh −R⊤
0 v0L2(Dj).

Noting that


i∈Ij
vh −R⊤

0 v02L2(Ωi)
= vh −R⊤

0 v02L2(Dj)
gives

V I ≲
NH

j=1

p2ρj/h

|vh −R⊤

0 v0|H1(Th,j)vh −R⊤
0 v0L2(Dj) + 1/H vh −R⊤

0 v02L2(Dj)

+
 

F∈FI
h,j

σ1/2
h,1vh −R⊤

0 v02L2(F )

1/2

vh −R⊤
0 v0L2(Dj)


. (45)

The last term on the right-hand side of (45) can rewritten as

 

F∈FI
h,j

σ1/2
h,1vh −R⊤

0 v02L2(F )

1/2

vh −R⊤
0 v0L2(Dj)

=
 

F∈FI
h,j

σ1/2
h,1vh2L2(F )

1/2

vh −R⊤
0 v0L2(Dj)

= σ1/2
h,1vhL2(FI

h,j)
vh −R⊤

0 v0L2(Dj);

here we observe that R⊤
0 v0|F = 0 on each F ∈ FI

h,j , since Th and TH are
nested. Then, by employing the above estimate together with Lemma 5.10, we

22



deduce that

V I ≲
NH

j=1

p2ρj
h

H
q

+
1

q2
H2

H


∇hvh2L2(Th,j)

+ σ1/2
h,1vh2L2(FI

h,j)



≲
NH

j=1

ρj
ρ
j

p2

q

H

h
+

p2

q2
H2

hH


√ρ ∇hvh2L2(Th,j)

+ σ1/2
h,ρvh2L2(FI

h,j)



≲ max
j=1,...,NH

ρj
ρ
j

p2

q

H

h
+

p2

q2
H2

hH


Ah(vh, vh),

(46)

where we have also made use of the coercivity bound of Lemma 5.1 in the last
inequality. Inserting the estimates (42) and (46) into (41) we obtain the desired
result.

Remark 6.6. According to the statement of Theorem 6.5, given that Assump-
tions 6.1 and 6.2 hold, using Theorem 6.4 we deduce that

K(Pad) ≲ max
1≤j≤NH

ρj
ρ
j

p2

q

H

h
+

p2

q2
H2

hH


(NS + 1). (47)

In particular, in the lowest order case, i.e., when p = q = 1, we have Kh(Pad) ≲
H2
/hH, which is in agreement with the corresponding bound derived in [41].

On the other hand if the size of the coarse subdomain and fine meshes are
fixed, we deduce that Kp(Pad) ≲ p2

/q. Moreover, we also observe that if the
diffusion coefficient ρ is constant on each subdomain Dj , j = 1, . . . , NH , then
the condition number is independent of the jump in ρ.

Remark 6.7. We remark that Assumption 5.5 is needed in order to obtain the
local estimates of Lemma 5.10, which allow to boundK(Pad) with max1≤j≤NH

(ρj/ρ
j
),

cf. (47). However, if the diffusion coefficient ρ is constant on Ω, we point out that
the analysis can be simplified by employing the global estimates of Remark 5.11
without making Assumption 5.5. We refer to [12] for further details.

7 Numerical results

In this section, we present a series of numerical experiments to demonstrate
the sharpness of the condition number bounds stated in Remarks 6.6 and 6.7.
Throughout this section we solve (2) by using the additive Schwarz Precon-
ditioned Conjugate Gradient (ASPCG) method; here, we report the number
of iterations needed to reduce the Euclidean norm of the relative residual vec-
tor below a tolerance of 10−8, based on starting from the trivial initial guess.
Furthermore, we estimate the condition number K(Pad) by using the extreme-
eigenvalue-estimate based on the ASPCG iterations. For the sake of simplicity
of the presentation, we only consider the massively parallel case, i.e., when
TH = Th. Furthermore, here we select the penalty parameter Cσ = 10.
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Figure 2: Example 1. Nested polygonal grids Th (thin) and TH (thick) on an
L-shaped domain, when the elements of TH are convex (left) and non-convex
(right).

7.1 Example 1

In this first example we investigate the dependence of the condition number of
Pad on the diffusion coefficient ρ. Based on Remark 6.6, we expect the condition
number of the preconditioned system to be dependent on the choice of the coarse
grid TH . More precisely, if TH is chosen to be aligned with the discontinuities of
ρ, then K(Pad) should be independent of the jump in the coefficient ρ; otherwise
it will depend on the maximum ratio between the maximum and the minimum
value of ρ present inside the subdomains Dj ∈ TH . To verify this behavior,
we consider two experiments based on fine/coarse grids Th/TH , respectively,
where TH is a Voronoi polygonal grid on the L-shaped domain Ω depicted in
Figure 2 with 16 polygonal elements and Th is obtained by successive refinement
of elements of TH . Here, we observe that the elements of TH are convex and
satisfy Assumption 5.5, cf. Figure 2 (left). Moreover, we choose the polynomial
degrees to be either p = q = 1 or p = q = 2. In the first experiment we fix
ρ|Dj = ρo = 1 on the elements Dj ∈ TH with odd index j and set ρ|Dj =
ρe ∈ {101, 102, . . . , 106}, in each test case, on the polygonal subdomains with
even index j. The results shown in the first two lines of Table 1 confirm the
independence with respect to the jumps of ρ when those jumps are aligned with
the subdomains of TH . In the second experiment we proceed similarly, but here
we take different values of ρ on odd and even polygonal elements κ ∈ Th: in this
way TH is not aligned with the discontinuities of ρ, and hence the ratio between
the maximum and the minimum value of ρ inside the polygonal subdomains
Dj ∈ TH is given by ρe. As expected from the theory, the results presented
in the last two lines of Table 1 show that the condition number of Pad grows
linearly with ρe. Finally, we repeat the same set of experiments by first selecting
Th as a Voronoi polygonal grid consisting of 2000 elements and, subsequently,
define the coarse grid TH by successive agglomerations of elements of Th. The
agglomeration is undertaken based on employing Metis, cf. [52]. As shown
in Figure 2 (right), the elements of TH are clearly non-convex in this example.
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ρe →
10 102 103 104 105 106

Aligned p = 1 2.31 · 102 2.33 · 102 2.34 · 102 2.34 · 102 2.34 · 102 2.34 · 102
p = 2 6.12 · 102 6.14 · 102 6.14 · 102 6.12 · 102 6.11 · 102 6.10 · 102

Not Aligned p = 1 2.92 · 102 1.04 · 103 7.73 · 103 7.42 · 104 7.39 · 105 7.38 · 106
p = 2 6.54 · 102 2.26 · 103 1.71 · 104 1.65 · 105 1.64 · 106 1.64 · 107

Table 1: Example 1. Condition number K(Pad) as a function of the maximum
jump in ρ when the polygonal elements of TH are convex and TH is aligned (top)
and not aligned (bottom) with the discontinuities of ρ.

ρe →
10 102 103 104 105 106

Aligned p = 1 9.65 · 102 1.15 · 103 1.20 · 103 1.21 · 103 1.21 · 103 1.21 · 103
p = 2 2.47 · 103 2.86 · 103 3.18 · 103 3.25 · 103 3.26 · 103 3.26 · 103

Not Aligned p = 1 8.02 · 102 2.09 · 103 1.68 · 104 1.65 · 105 1.64 · 106 1.64 · 107
p = 2 2.36 · 103 6.10 · 103 4.74 · 104 4.62 · 105 4.61 · 106 4.61 · 107

Table 2: Example 1. Condition number K(Pad) as a function of the maximum
jump in ρ when the polygonal elements of TH are non-convex and TH is aligned
(top) and not aligned (bottom) with the discontinuities of ρ.

Th H = 2h H = 4h H = 8h

Figure 3: Example 2. Example of a sequence of nested polygonal grids.

Although Assumption 5.5 is not satisfied in this case, the results of Table 2
illustrate analogous behavior to that observed in the previous setting when the
coarse elements were convex.

7.2 Example 2

In this example, we investigate the performance of the proposed ASPCG algo-
rithm on a set of Voronoi polygonal fine grids Th, where Ω = (0, 1)2 and ρ = 1.
For each grid Th we construct a sequence of nested polygonal grids TH obtained
by successive levels of agglomeration, cf. [11]. For each fine Voronoi grid of size
h the agglomeration process has been performed in order to ensure that the
size of the coarser partitions is approximately H = 2h, 4h, . . . , cf. Figure 3,
for example. In Tables 3 and 4 we report the condition number and the itera-
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Th →

↓ TH h = 8h h = 4h h = 2h h = h

H = 16h 20.70 (45) 72.31 (86) 269.70 (163) 818.09 (289)

H = 8h - 21.89 (46) 73.42 (86) 261.36 (163)

H = 4h - - 20.91 (46) 83.77 (91)

H = 2h - - - 23.08 (48)

Table 3: Example 2. Condition number (and iteration counts): nested polygonal
grids, with p = q = 1. Here, h is the diameter of a grid withNh = 4096 elements.

Th →

↓ TH h = 8h h = 4h h = 2h h = h

H = 16h 88.63 (80) 291.77 (145) 1137.55 (276) 3241.64 (513)

H = 8h - 102.96 (82) 278.15 (140) 949.21 (271)

H = 4h - - 90.30 (79) 343.19 (148)

H = 2h - - - 104.24 (82)

Table 4: Example 2. Condition number (and iteration counts): nested polygonal
grids with, p = q = 3. Here, h is the diameter of a grid withNh = 4096 elements.

tion counts for the proposed ASPCG algorithm for p = q = 1 and p = q = 3,
respectively. Here, we clearly observe that the condition number and the itera-
tion counts grow quadratically and linearly, respectively, as h tends to zero for
fixed H. Moreover, if the ratio of h and H is kept fixed, then we observe that
the condition number and iteration counts are approximately constant; cf. the
diagonals and subdiagonals of Tables 3 and 4. This behavior is in agreement
with the theoretical bound stated in Remark 6.6, where K(Pad) = O(H

2
/h2).

7.3 Example 3

We now consider the performance of the ASPCG algorithm on tetrahedral
meshes in three dimensions. To this end, we set Ω = (0, 1)3 and ρ = 1; further-
more, the elements of the coarse mesh are general-shaped polyhedra obtained by
successive agglomeration, cf. the previous example. The results for p = q = 1
and p = q = 3 are reported in Tables 5 and 6, respectively. Here, we have
also added a line with the condition number of the operator Ah : Vh × Vh → Vh

defined by (Ahuh, vh)L2(Ω) = Ah(uh, vh) for all uh, vh ∈ Vh, and, in parentheses,
the iteration counts of the Conjugate Gradient method for solving (2) without
preconditioning. Analogous behaviour of the condition number and iteration
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Nh →

↓ NH 384 3072 24576 196608 1572864 12582912

48 107 (85) 411 (156) 1497 (294) 6216 (580) 25791 (1089) 94276 (2012)

384 - 136 (95) 499 (169) 1878 (311) 7407 (584) 28762 (1106)

3072 - - 146 (96) 480 (165) 1904 (306) 7861 (578)

24576 - - - 144 (94) 491 (164) 1973 (306)

196608 - - - - 144 (94) 496 (164)

1572864 - - - - - 145 (94)

K(Ah) 734 (166) 2859 (289) 11407 (507) 45618 (933) 182199 (1649) 708509 (3012)

Table 5: Example 3. Condition number (and iteration counts): tetrahedral fine
meshes and agglomerated polyhedral coarse grids, with p = q = 1.

Nh →

↓ NH 384 3072 24576 196608

48 607 (174) 2120 (309) 6760 (515) 26674 (924)

384 - 655 (179) 2334 (314) 7507 (536)

3072 - - 693 (182) 2295 (316)

24576 - - - 697 (182)

K(Ah) 12247 (679) 40675 (1056) 154934 (1722) 602050 (2991)

Table 6: Example 3. Condition number (and iteration counts): tetrahedral fine
meshes and agglomerated polyhedral coarse grids, with p = q = 3.

counts to those presented in the previous example are observed. In particular,
we observe that the condition number is roughly constant on the diagonals and
subdiagonals of the two tables, while, along each row, i.e., when TH is fixed, the
expected quadratic growth in K(Pad) is observed. Similar considerations are
also noted for the iteration counts.

7.4 Example 4

Given the definition of R⊤
0 , the proposed ASPCG algorithm naturally admits

the use of non-nested coarse spaces, i.e., when VH ⊈ Vh. In order to confirm
the condition number bound stated in Remark B.7 when VH ⊈ Vh, we consider
a set of independently generated Voronoi polygonal tessellations of (0, 1)2 of
size h and H > h, respectively; in this way, Th and TH are non-nested, cf.
Figure 4. The results (for ρ = 1) shown in Tables 7 and 8 for p = q = 1
and p = q = 3, respectively, illustrate analogous behavior to the results for the
nested case presented in the previous examples; this is in agreement with the
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Th H = 2h H = 4h H = 8h

Figure 4: Example 4. Sequence of non-nested Voronoi polygonal grids employed.

Nh →

↓ NH 64 256 1024 4096 16384

16 23.29 (38) 92.13 (77) 387.61 (159) 1624.26 (324) 6370.86 (657)

64 - 25.91 (39) 106.42 (84) 411.02 (167) 1774.19 (342)

256 - - 26.73 (41) 100.89 (82) 425.97 (169)

1024 - - - 31.81 (44) 118.61 (86)

4096 - - - - 30.56 (43)

Table 7: Example 4. Condition number (and iteration counts): non-nested
polygonal grids, with p = q = 1.

Nh →

↓ NH 64 256 1024 4096 16384

16 148.36 (83) 429.84 (143) 1602.53 (275) 5405.40 (529) 21263.66 (1058)

64 - 142.42 (76) 405.44 (135) 1525.94 (263) 5170.13 (498)

256 - - 157.47 (80) 452.41 (137) 1469.08 (249)

1024 - - - 147.97 (77) 402.98 (124)

4096 - - - - 135.77 (70)

Table 8: Example 4. Condition number (and iteration counts): non-nested
polygonal grids, with p = q = 3.

condition number bound stated in Remark B.7.

7.5 Example 5

In this final example we investigate the dependence of the condition number on
the polynomial degree p in both the nested and non-nested cases with ρ = 1. For
the nested case, we consider a total of four tests: two of them are characterized
by quadrilateral fine grids with Nh = 256 and Nh = 1024 elements, while
the two other tests are based on employing the polygonal fine grids depicted
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Figure 5: Example 5. Pairs of non-nested grids Th (solid) and TH (dashed),
respectively.
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Non-nested poly. Nh = 516

Nested poly. Nh = 262

Nested poly. Nh = 516
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Nested quad. Nh = 1024

O(p)

O(p2)

Figure 6: Example 5. Condition number K(Pad) as function of p.

in Figure 3, where the fine meshes have Nh = 262 and Nh = 516 polygonal
elements. For each test the coarse mesh TH is obtained by agglomeration of Th
in order to guarantee H ≂ h/4. Analogous fine meshes are also considered in
the non-nested setting; however, here the coarse mesh TH is selected to be a
Voronoi grid generated independently of Th, cf. Figure 5. In Figure 6 we plot
the condition number K(Pad) on each set of grids as the polynomial degree p
is increased. Here, we observe that, in the nested setting, i.e., when VH ⊆ Vh,
for a fixed mesh size K(Pad) = O(p) as p increases; however, when VH ⊈ Vh,
then K(Pad) = O(p2) as p increases. This behaviour is in agreement with the
condition number bounds stated in Remarks B.7 and 6.6, respectively.
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A Proof of Theorem 4.5

In this section we present the proof of Theorem 4.5. To this end, suppose
that Ω ⊂ Rn is a bounded, open, convex domain with boundary ∂Ω. Given
f ∈ L2

0(Ω), consider the homogeneous Neumann problem

−∆u = f in Ω, ∇u · n = 0 on ∂Ω. (48)

The weak formulation of (48) is: find u ∈ H1(Ω)/R := H1(Ω) ∩ L2
0(Ω), such

that

a(u, v) :=



Ω

∇u ·∇v dx = ℓ(v) :=



Ω

fv dx ∀ v ∈ H1(Ω)/R,

with H1(Ω)/R equipped with the norm vH1(Ω)/R := ∇vL2(Ω). From [48,
Theorem 3.2.1.3] it follows that u ∈ H2(Ω); the proof of (10) now proceeds with
the following steps.

Step 1. [H1(Ω) bound] The existence of a unique weak solution to (48)
follows by the Lax–Milgram lemma applied to the bilinear form a(·, ·), which is
bounded and coercive on H1(Ω)/R, and noting that the linear functional ℓ(·) is
bounded on H1(Ω)/R. Indeed,

ℓ(v) =



Ω

fv dx =



Ω

f

v − vΩ


dx ≤ fL2(Ω)v − vΩL2(Ω),

where vΩ := 1/|Ω|

Ω
v dx. By Poincaré’s inequality,

v − vΩL2(Ω) ≤ C(Ω)∇vL2(Ω),

where C(Ω) is a positive constant. Recalling that Ω is a bounded, open, convex
domain, it can be shown that C(Ω) ≤ 1/π diam(Ω), cf. [55]. Setting v = u in the
weak formulation above, we then deduce that

∇u2L2(Ω) = ℓ(u) ≤ C(Ω)fL2(Ω)∇uL2(Ω) ≤
1

π
diam(Ω)fL2(Ω)∇uL2(Ω).

Hence,

∇uL2(Ω) ≤
1

π
diam(Ω)fL2(Ω).

Step 2. Suppose that Ω ⊂ Ωm, where Ωm, m = 1, 2, . . . , is a sequence of
bounded, open, convex C2 domains, such that dist(Ω,Ωm) ≤ 1/m. The existence
of such a sequence {Ωm}∞m=1 follows from Eggleston’s lemma, cf. [48, Lemma
3.2.1.1]. Hence, in particular 0 ≤ diam(Ωm)− diam(Ω) → 0 as m → ∞.

Step 3. With Ωm, m = 1, 2, . . . , as in Step 2, we extend f by 0 from Ω to
Ωm for each m = 1, 2, . . . , and define

fm(x) :=


f(x) for x ∈ Ω,
0 for x ∈ Ωm \ Ω.
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Clearly, fm ∈ L2
0(Ωm). We consider the following Neumann problem on Ωm:

−∆um = fm in Ωm, ∇um · nm = 0 on ∂Ωm,

where nm is the unit outward normal vector to ∂Ωm. We have that the unique
weak solution um ∈ H1(Ωm)/R of the above Neumann problem satisfies the
following elliptic regularity result: um ∈ H2(Ωm), cf. [48, Theorem 3.2.1.3],
and

umH2(Ωm) ≤
√
6

fmL2(Ωm) + umL2(Ωm)


, m = 1, 2, . . . ,

cf. [48, Theorem 3.1.2.3], with λ = 1. Thereby, we deduce that

umH2(Ωm) ≤
√
6

fL2(Ω) + umL2(Ωm)


, m = 1, 2, . . . . (49)

Since Ω ⊂ Ωm, upon application of Poincaré’s inequality on the right-hand side
of (49), followed by recalling the H1(Ω) bound derived in Step 1, we get

umH2(Ω) ≤ umH2(Ωm) ≤
√
6

fL2(Ω) +

1

π
diam(Ωm)∇umL2(Ωm)



≤
√
6

fL2(Ω) +

1

π2
[diam(Ωm)]2fmL2(Ωm)



=
√
6


1 +

1

π2
[diam(Ωm)]2


fL2(Ω), m = 1, 2, . . . .(50)

Thanks to Step 2, limm→∞ diam(Ωm) = diam(Ω). As (diam(Ωm))∞m=1 is a
convergent sequence in R it is automatically a bounded sequence, and therefore,
because of (50), there exists a positive constant C0, independent of m, such that

umH2(Ω) ≤ umH2(Ωm) ≤ C0 for all m = 1, 2, . . . . (51)

Thus, (um)∞m=1 is a bounded sequence in H2(Ω). Hence, there exists an element
u∞ ∈ H2(Ω) and a weakly convergent subsequence umk

⇀ u∞ in H2(Ω). By
weak lower semicontinuity of the norm function  · H2(Ω), we have that

u∞H2(Ω) ≤ lim inf
k→∞

umk
H2(Ω). (52)

Further, thanks to the compact Sobolev embedding H2(Ω) ⋐ H1(Ω) guaranteed
by the Rellich–Kondrashov theorem, by extracting a further subsequence (not
indicated), we have that umk

→ u∞ strongly in H1(Ω). Now,

∇umk
2L2(Ωmk

) = ∇umk
2L2(Ω) + ∇umk

2L2(Ωmk
\Ω). (53)

Focusing on the second term on the right-hand side of (53), by Hölder’s in-
equality with conjugate exponents α = p/2 and α′ = α

α−1 = p/(p− 2), 2 < p <
2n/(n − 2) (where 2n/(n − 2) is the critical Sobolev index), and (51), we have
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that

∇umk
L2(Ωmk

\Ω) ≤ ∇umk
Lp(Ωmk

\Ω) |Ωmk
\ Ω|

p−2
2p

≤ ∇umk
Lp(Ωmk

) |Ωmk
\ Ω|

p−2
2p

≤ C

|Ωmk

|, diam(Ωmk
), n, p


umk

H2(Ωmk
) |Ωmk

\ Ω|
p−2
2p

≤ C

n, p) umk

H2(Ωmk
) |Ωmk

\ Ω|
p−2
2p

≤ C

n, p)C0 |Ωmk

\ Ω|
p−2
2p → 0 as k → ∞. (54)

Passing to the limit k → ∞ in (53) we therefore have that

lim
k→∞

∇umk
2L2(Ωmk

) = lim
k→∞

∇umk
2L2(Ω) = ∇u∞2L2(Ω),

where the last equality follows from the strong convergence umk
→ u∞ inH1(Ω).

Recalling from (50) that

umk
H2(Ω) ≤

√
6

fL2(Ω) +

1

π
diam(Ωmk

)∇umk
L2(Ωmk

)


, (55)

passage to the limit k → ∞ in inequality (55) using (52), (54), together with
limm→∞ diam(Ωm) = diam(Ω), yields that

u∞H2(Ω) ≤
√
6

fL2(Ω) +

1

π
diam(Ω)∇u∞L2(Ω)


. (56)

Step 4. [Identification of u∞] It remains to show that u∞ = u, the weak
solution of the original Neumann problem on Ω. To this end, we consider the
weak formulation of the Neumann problem satisfied by um:



Ωm

∇um ·∇v dx =



Ωm

fmv dx ∀ v ∈ H1(Ωm)/R.

Thanks to the definition of fm, this weak formulation is equivalent to


Ωm

∇um ·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ωm)/R,

and therefore


Ω

∇um ·∇v dx+



Ωm\Ω
∇um ·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ωm)/R,

whereby


Ω

∇umk
·∇v dx+



Ωmk
\Ω

∇umk
·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ωmk
)/R.

Equivalently, because

Ω
f(x) dx = 0,



Ω

∇umk
·∇v dx+



Ωmk
\Ω

∇umk
·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ωmk
).
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Consider a fixed bounded domain Ω0 ⊂ Rn such that Ω0 ⋑ Ωm ⊃ Ω for all
m = 1, 2, . . . . Then,



Ω

∇umk
·∇v dx+



Ωmk
\Ω

∇umk
·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ω0).

By noting (54), the strong convergence umk
→ u∞ in H1(Ω) as k → ∞, we

have that 

Ω

∇u∞ ·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ω0),

hence also 

Ω

∇u∞ ·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ω),

since any element of v ∈ H1(Ω0) can be viewed as the extension of a v ∈ H1(Ω)
to the superset Ω0. Therefore, again since


Ω
f(x) dx = 0, also



Ω

∇u∞ ·∇v dx =



Ω

fv dx ∀ v ∈ H1(Ω)/R.

Thus we have shown that u∞ coincides with the unique weak solution u of the
homogeneous Neumann problem posed on Ω. Returning with this information
to (56), we have that the weak solution of the homogeneous Neumann problem
on the bounded, open, convex (and therefore Lipschitz) domain Ω satisfies

uH2(Ω) ≤
√
6

fL2(Ω) +

1

π
diam(Ω)∇uL2(Ω)


,

as required.

B Condition number estimates for non-nested
grids

In this Appendix we provide a bound on the condition number of the additive
Schwarz operator Pad introduced in Section 3 when the fine and coarse grids Th
and TH , respectively, are non-nested. For the sake of simplicity, here we assume
that ρ = 1 on Ω and consider the massively parallel case, i.e., when TH = Th.
For the purposes of the proceeding analysis, we also assume that Ω is convex;
moreover, we make the following additional assumption on Th.

Assumption B.1. (Coverability) For every polytopic element κ ∈ Th, there
exists a set of mκ overlapping shape-regular simplices Ki, i = 1, . . . ,mκ, such
that

dist(κ, ∂Ki) ≲ diam(Ki)/p2, and |Ki| ≳ |κ|,
for all i = 1, . . . ,mκ, see [30, Chapter 3].

Given that Assumption B.1 holds, we state the following inverse inequality,
cf. [11].
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Lemma B.2. Suppose that vh ∈ Vh; then, the following bound holds:

∇vh2L2(κ) ≲ p4h−2
κ vh2L2(κ) ∀κ ∈ Th.

Proof. We refer to [30] for the proof of this result.

We first provide a counterpart of Lemma 5.10, which holds in the non-nested
case and allows us to prove the validity of Assumption 6.3 also for non-nested
spaces Vh and VH . The key aspect of our analysis is the construction of the
conforming approximant introduced in Theorem 5.9. In particular, we recall
the following result.

Theorem B.3. Let Gh(vh) := ∇hvh+R1(vh) be the discrete gradient operator
of vh ∈ Vh defined as in Definition 5.7 and let vh ∈ H1

0 (Ω) be such that


Ω

∇vh ·∇w dx =



Ω

Gh(vh) ·∇w dx ∀w ∈ H1
0 (Ω).

Then, the following approximation and stability results hold:

vh − vhL2(Ω) ≲
h

p
σ1/2

h,1vhL2(Fh), |vh|H1(Ω) ≲ vhh,1.

Remark B.4. Theorem B.3 provides global bounds for vh ∈ Vh in the L2-norm.
This result is a particular case of Theorem 5.9, where local bounds on each coarse
element Dj ∈ TH are provided. We refer to [12] for the proof of Theorem B.3.

On the basis of the previous result, Lemma 5.10 can be generalized to non-
nested spaces as follows.

Lemma B.5. For any vh ∈ Vh there exists a coarse function vH ∈ VH such
that

vh −R⊤
0 vHL2(Ω) ≲

H

q
vhh,1, (57)

vh −R⊤
0 vHh,1 ≲ p2

q

H

h
vhh,1. (58)

Proof. Let vh ∈ Vh and let vH ∈ VH be defined as vH = ΠHvh, with vh as defined
in Theorem B.3 and where ΠH is the hp-approximant introduced in Lemma 5.3.
Then, by employing the triangle inequality we have

vh−R⊤
0 vHL2(Ω) ≲ vh−vhL2(Ω)+vh−Π0vhL2(Ω)+Π0vh−R⊤

0 (ΠHvh)L2(Ω),

where Π0 : L2(Ω) → Vh is the L2-projection operator onto Vh. From the
definition of R⊤

0 , we note that Π0vH = R⊤
0 vH for all vH ∈ VH . Hence, exploit-

ing Lemma 5.3 together with Assumption 2.3, cf. Remark 5.4, gives

vh −R⊤
0 vHL2(Ω) ≲ vh − vhL2(Ω) + vh −Π0vhL2(Ω) + Π0(vh −ΠHvh)L2(Ω)

≤ vh − vhL2(Ω) + vh −ΠhvhL2(Ω) + vh −ΠHvhL2(Ω)

≲ vh − vhL2(Ω) + h/p vhH1(Ω) + H/q vhH1(Ω);
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here we have used that Π0vL2(Ω) ≤ vL2(Ω) for all v ∈ L2(Ω) and v −
Π0vL2(Ω) ≤ v−wL2(Ω) for all w ∈ L2(Ω). By applying Poincaré’s inequality
to vh ∈ H1

0 (Ω) and noting Theorem B.3, inequality (57) immediately follows by
observing that h ≤ H and q ≤ p. In order to obtain (58) we proceed as follows:

vh −R⊤
0 vH2h,1 = ∇h(vh −R⊤

0 vH)2L2(Th)
+ σ1/2

h,1vh −R⊤
0 vH2L2(Fh)

. (59)

We bound the first term on the right-hand side of (59) by means of Lemma B.2
and (57) as follows:

∇h(vh −R⊤
0 vH)2L2(Th)

=


κ∈Th

∇h(vh −R⊤
0 vH)2L2(κ)

≲ p4

h2
vh −R⊤

0 vH2L2(Ω) ≲
p4

q2
H2

h2
vh2h,1. (60)

The second term on the right-hand side of (59) can be bounded by recalling the
definition of σh,1, Lemma 5.2 and (57) as follows:

σ1/2
h,1vh −R⊤

0 vH2L2(Fh)
≲ p2

h



κ∈Th

vh −R⊤
0 vH2L2(∂κ)

≲ p2

h

p2

h
vh −R⊤

0 vH2L2(Ω) ≲
p4

q2
H2

h2
vh2h,1.

(61)

Inserting (60) and (61) into (59) we obtain (58).

With Lemma B.5 in hand, we can prove the following result.

Theorem B.6. Assumption 6.3 holds with

C2
 ≂

p4

q2
H2

h2


.

Proof. Let vh ∈ Vh. Proceeding as in the proof of Theorem 6.5, by selecting
v0 = vH as in Lemma B.5, vh can be decomposed as vh =

Nh

i=0 R
⊤
i vi, with

vi = Ri(vh −R⊤
0 v0) ∈ Vi, i = 1, . . . , Nh, so that


Nh

i=0

Ai(vi, vi)
 ≲ vh −R⊤

0 v02h,1 +Ah(vh, vh),

where we have used (35), (37) and (40) with the hypothesis TH = Th. The
result then immediately follows by noting (58) together with the coercivity of
Ah, cf. Lemma 5.1.

Remark B.7. Based on Theorem B.6, for non-nested coarse and fine spaces
VH and Vh, respectively, the condition number K(Pad) of the additive Schwarz
operator Pad can be bounded as follows:

K(Pad) ≲
p4

q2
H2

h2


(NS + 1).
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