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Abstract

In this paper, we carry out a numerical dispersion analysis for the
linear elastodynamics equations approximated by means of NURBS–
based Isogeometric Analysis in the framework of the Galerkin method;
specifically, we consider the analysis of harmonic plane waves in an
isotropic and homogeneous elastic medium. We compare and discuss the
errors associated to the compressional and shear wave velocities and we
provide the anisotropic curves for numerical approximations obtained by
considering B–splines and NURBS basis functions of different regularity,
namely globally C0– and Cp−1–continuous, being p the polynomial
degree. We conclude our analysis by numerically simulating the seismic
wave propagation in a sinusoidal shaped valley with discontinuous elastic
parameters across an internal interface.
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1 Introduction

In the last decade, Isogeometric Analysis (IGA) [18, 29] has emerged as a methodology aiming at
encapsulating the exact geometrical representation of the computational domain, namely the field
of Computational Geometry (see e.g. [24]), into the numerical approximation of Partial Differen-
tial Equations (PDEs). This integration is made possible by the use of the same basis functions
considered for the geometrical representation also for the approximation of the unknown solution
fields of the PDEs, introducing the so–called Isogeometric concept [29]. B–splines and Non Uniform
Rational B–splines (NURBS) basis functions [35] have mostly been considered for the IGA method-
ology being the foundations of Computer Aided Design (CAD) systems, even if other geometrical
representations as T–splines [41] have been employed as well for their flexibility; see e.g. [9]. So
far, NURBS–based IGA has been mostly used in the framework of the Galerkin method [18, 29],
even if collocation techniques are recently receiving growing attention [6, 40]. The advantages of
the IGA methodology in terms of the “exact” geometrical representation have been exploited in
several applications, as e.g. structural mechanics [12, 29, 32] and fluid dynamics [10, 11, 46] among
the most common. Moreover, the use of B–splines and NURBS basis functions in IGA possess
several advantages in the numerical approximation of PDEs regardless of the geometrical consid-
erations, as highlighted, e.g., in fluid dynamics [2], structural dynamics [21, 38], high–order PDEs
[44], and phase field problems [27, 33]. Such advantages include the possibility of using globally
Cp−1–continuous basis functions, p being the polynomial degree, and the k–refinement strategy, a
procedure for the “enrichment” of the discrete function spaces peculiar of B–splines and NURBS
for which the degree and global continuity of the basis functions are increased; see e.g. [19, 26].
In particular, the use of globally Cp−1–continuous NURBS basis functions has been shown to be
superior to its Finite Elements counterpart of polynomial degree p by means of extensive spectrum
and dissipation analyses, both in terms of analytical and numerical results for 1D, 2D, and 3D
structural, vibration, acoustic, and wave propagation problems [18, 19, 20, 21, 30, 38].

Numerical (grid) dispersion analysis for the linear elastodynamics equations, i.e for linear wave
propagation in an elastic medium, is often used to assess the accuracy of numerical schemes for
applications in civil, geophysics, and earthquake engineering. Such analysis has been extensively
carried out for the Finite Elements method [3, 45], Discontinuous Galerkin methods [4, 16, 23,
28, 39], and the Spectral (element) method [22, 34, 42], including non–conforming high–order
discretizations [5]. In [20] a numerical dispersion analysis has been performed for NURBS–based
IGA for the Helmholtz equation in the 1D setting on an infinite line, including linear and p– and k–
refined quadratic approximations. This analysis has been extended in [30] to higher degree NURBS
basis functions for vibration problems of rods and beams of finite length. In addition, a numerical
dispersion analysis for 2D vibration problems described by the Helmholtz equation is reported in
[30] for the special case of a bilinear approximation; the associated anisotropic (dispersion) curve
is also reported for this case only.

In this respect, in this paper we propose a numerical dispersion analysis for the elastodynamics
equations, specifically for the linear wave propagation in an isotropic elastic medium, in terms of the
spatial approximation by means of NURBS–based IGA in the framework of the Galerkin method.
We report for the first time the anisotropic curves and errors associated to the compressional
and shear wave velocities in the elastic medium by considering both B–splines and NURBS basis
functions and different material properties (characterized by their Poisson ratio). Specifically, in our
numerical comparison, we consider B–splines and NURBS basis functions of different polynomial
degrees p with particular emphasis on their regularity properties, i.e. their global C0– or Cp−1–

2



Isogeometric numerical dispersion analysis for elastic wave propagation 3

continuity in the computational domain (this corresponds to either p– or k–refinement, see [19, 26]).
Our dispersion analysis is based on the procedure proposed in [42] for the coherent comparison of
numerical schemes in bounded computational domains for different wave directions without the
need to strongly enforce periodic boundary conditions. Specifically, we adapt the approach of [42],
originally developed for Spectral (element) methods, to NURBS–based IGA in the framework of the
Galerkin method with the aim of consistently comparing the results obtained with basis functions
of different polynomial degrees p and global C0– and Cp−1–continuity.

We conclude our analysis by numerically simulating a seismic event, i.e. an elastic wave prop-
agation problem, in a 2D portion of the earth mantle embedding a sinusoidal type valley. The
latter is delimited by an internal interface, which separates two regions with discontinuous mate-
rial parameters (different media); such configuration is suitably represented by means of C0/C1–
continuous B–splines basis functions. For the numerical simulation of this seismic event, we use
NURBS–based IGA for the spatial approximation and the generalized–α method ([17]) for the
time discretization with a fully implicit scheme. Through this example we numerically highlight
the suitability of NURBS–based IGA to solve elastodynamics problems with discontinuous material
properties across internal interfaces.

The paper is organized as follows. In Sec. 2 we briefly recall the linear elastodynamics model
used in seismic applications. Sec. 3 introduces to B–splines and NURBS basis functions, geometrical
representations, and the Isogeometric concept. In Sec.4 we discuss the spatial approximation of
the elastodynamics equations by means of NURBS–based IGA in the framework of the Galerkin
method, as well as the time discretization. In Sec. 5 we carry out the numerical dispersion analysis
for the problem at hand and specific for NURBS basis functions of different regularity; next, we
report and discuss the associated numerical results. In Sec. 6 we numerically simulate a seismic
event by solving the elastic wave propagation problem in a sinusoidal valley. Conclusions follow.

2 Mathematical Model

In this section we introduce the elastodynamics model, namely the linear elastic equation for a
compressible medium in the standard displacement formulation, similarly to [5].

Let us assume that an elastic medium is represented by an open spatial domain Ω ⊂ R
d

(|Ω| < +∞) with d = 2, 3. We denote the boundary of Ω as ∂Ω and we partition it into the subsets

ΓD, ΓN , and ΓNR such that
◦

ΓD ∩
◦

ΓN =
◦

ΓD ∩
◦

ΓNR =
◦

ΓN ∩
◦

ΓNR = ∅ and ∂Ω = ΓD ∪ ΓN ∪ ΓNR;
we also indicate with n̂ the outward directed, unit vector normal to ∂Ω. We are interested in
determining the displacement of the medium, say u = (u1, . . . , ud)

T = u(x, t), in terms of the
spatial x ∈ Ω and temporal t ∈ (0, T ) independent variables under the action of external forces,
where T delimits the time interval such that 0 < T < +∞. The displacement based equilibrium
equations for a linear elastic medium, endowed with suitable boundary and initial conditions, read:

find u : Ω× (0, T ) → R
d :





ρ
∂2u

∂t2
(t)−∇ · σ(u(t)) = f(t) in Ω× (0, T ),

u(t) = g on ΓD × (0, T ),

σ(u(t))n̂ = h(t) on ΓN × (0, T ),

non–reflecting b.c.s on ΓNR × (0, T ),
∂u

∂t
(0) = u̇0 in Ω,

u(0) = u0 in Ω,

(2.1)
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where σ(u) is the stress tensor (defined later), f = f(x, t) is the vector of external forces, ρ the
medium density, g = g(x) and h = h(x, t) are sufficiently smooth boundary data, and the initial
data u̇0 = u̇0(x), u0 = u0(x) are given and sufficiently smooth functions in Ω; non–reflecting
boundary conditions will be specified later on ΓNR. We remark that the explicit dependency of
the variables on the spatial coordinates in Eq. (2.1) has been omitted. By defining the strain

tensor as ϵ(u) =
1

2
(∇u +∇uT), the stress tensor σ(u) satisfies the constitutive relation σ(u) =

λ (∇ · u)I + 2µ ϵ(u), where λ and µ are the Lamé elasticity coefficients of the medium; the latter

are expressed in terms of the Young modulus E and Poisson’s ratio ν as λ =
ν E

(1 + ν) (1− 2ν)

and µ =
E

2(1 + ν)
, respectively. Also, we introduce the shear cs and the compressional cp wave

velocities defined as:

cs :=

√
µ

ρ
and cp :=

√
λ+ 2µ

ρ
, (2.2)

respectively. In order to include a damping factor into the linear elastic equation, we introduce an

internal forcing term fvisc(u) := −2ρ ζ
∂u

∂t
−ρ ζ2 u, where ζ is a suitable decay factor, dimensionally

consistent with the inverse of time. Therefore, the equilibrium equation (2.1) with damping term
reads:

ρ
∂2u

∂t2
(t)−∇ · σ(u)(t)− fvisc(u(t)) = f(t) in Ω× (0, T ). (2.3)

On the subset ΓNR of the boundary we introduce a fictitious traction, being a linear combination
of time and space derivatives, in order to set the non–reflecting boundary conditions. Similarly
to [5], by introducing the tangential unit vector τ̂ such that τ̂ · n̂ = 0 on ΓNR, the non–reflecting
boundary conditions of Eq.(2.1) read, for example in the two–dimensional case (d = 2) :





∂

∂n
(u · n̂) = −

1

cp

∂

∂t
(u · n̂) +

cs − cp
cp

∂

∂τ
(u · τ̂ ),

∂

∂n
(u · τ̂ ) = −

1

cs

∂

∂t
(u · τ̂ ) +

cs − cp
cp

∂

∂τ
(u · n̂),

on ΓNR × (0, T ), (2.4)

where the coordinates {n, τ}, which are defined by the vectors n̂ and τ̂ , have been considered. We
refer the reader to [15, 43] for the general form of the non–reflecting boundary conditions in the
three–dimensional case (d = 3).

3 B–splines and NURBS: the Isogeometric Concept

In this section we briefly recall the B–splines and NURBS basis functions, their properties, their
use for the geometrical representation of computational domains, and the so called Isogeometric
concept. For a more detailed review of the topic, we refer the interested reader to [35].

3.1 B–splines basis functions

A univariate B–Spline basis function is a piecewise polynomial of a given degree p ∈ N; specifically,
a B–spline basis is represented by n ∈ N basis functions, determined from a knot vector, that is
an ordered set Ξ = {ξ1, . . . , ξn+p+1} of real values. Specifically, we consider open knot vectors, for
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which the first and last knots of Ξ are repeated p + 1 times. The interval Ω̂ = (ξ1, ξn+p+1) ⊂ R

determines a patch or a parameter domain, while (ξi, ξi+1), for some i = p + 1, . . . , n, identifies a
knot span. If the size of a knot span is greater than zero, it is called mesh element in the parameter
domain Ω̂ and denoted as K̂j for some j = 1, . . . , nel, where nel is the number of mesh elements
in the parameter domain; the set of mesh elements in the parameter domain is simply called

mesh of the parameter domain, say K̂h :=
{
K̂j : j = 1, . . . , nel

}
. A B–spline basis {Ni,p(ξ)}

n
i=1 is

determined by the basis functions Ni,p(ξ) for some i = 1, . . . , n by using the Cox–de Boor recursive
formula; starting from q = 0 we define:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
i = 1, . . . , n+ p (3.1)

and, for q = 1, . . . , p:

Ni,q(ξ) =
ξ − ξi

ξi+q − ξi
Ni,q−1(ξ) +

ξi+q+1 − ξ

ξi+q+1 − ξi+1
Ni+1,q−1(ξ), i = 1, . . . , n+ p− q, (3.2)

under the assumption that
0

0
= 0. The global regularity of B–splines basis functions in the pa-

rameter domain depends on the knot vector, namely on the multiplicity of the knots. Indeed, the
basis functions are C∞–continuous inside each element of non–zero size; however, if a knot value
ξi is repeated 1 ≤ mi ≤ p+ 1 times, the basis functions possess only p−mi continuous derivatives
across ξi. Therefore, a B–spline basis function is globally Cα–continuous in the parameter domain
Ω̂ if the internal knots of Ξ are repeated at most m times, where α = p−m and m = max

i=p+2,...,n
mi.

We obtain the following algebraic relation between the number of mesh elements nel > 1 and the
number of basis functions, say nα, depending on their Cα–continuity across each internal knot:

nα = (p− α)nel + α+ 1 for α = 0, . . . , p− 1. (3.3)

As we can observe, the number of basis functions for a fixed number of mesh elements nel increases
when the regularity of the basis functions α decreases.

As examples of univariate B–splines basis functions of different regularities, we consider in Fig. 1
the polynomial oders p = 2 or 3 and the open knot vectors with internal knots 1/4, 1/2, and 3/4
with different multiplicities, being 0 the first knot and 1 the last. Finally, among the properties of
B–splines basis functions, we recall that they are pointwise non–negative (Ni,p(ξ) ≥ 0 for all ξ ∈ Ω̂),

represent a partition of the unity (

n∑

i=1

Ni,p(ξ) = 1 for all ξ ∈ Ω̂), and possess compact support in

p+1 knot spans; therefore, there are p+1 basis functions with support in each knot span (ξi, ξi+1),
for all i = 1, . . . , n+ p.

Multivariate B–splines basis functions are built by means of the tensor product of univariate
basis functions. For example, let Ξ = {ξ1, . . . , ξn+p+1} and H = {η1, . . . , ηm+q+1} be two knot

vectors, then, the bivariate B–splines basis functions are defined in the parameter domain Ω̂ =
(ξ1, ξn+p+1) × (η1, ηm+q+1) for ξ = (ξ, η) such that Qi,p,q(ξ) = Qi,p,q(ξ, η) = Nj,p(ξ)Mk,q(η) for
i = j + (k− 1)n = 1, . . . , Nbf , with j = 1, . . . , n and k = 1, . . . ,m; Nj,p and Mk,q are the univariate
basis functions built from the knot vectors Ξ and H, respectively and Nbf = nm indicates the
total number of basis functions. The extension to the general multivariate case is straightforward
in virtue of the tensor product rule. In this work we consider basis functions for which the same
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0,0,0 1/4 1/2 3/4 1,1,1
0

1

(a) Ξ = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1} and p = 2; the n =
6 basis functions are globally C1–continuous.

0,0,0 1/4 1/2,1/2 3/4 1,1,1
0

1

(b) Ξ = {0, 0, 0, 1/4, 1/2, 1/2, 3/4, 1, 1, 1} and p = 2;
the n = 7 basis functions are C1–continuous across the
knots 1/4 and 3/4, but only C0–continuous across the
knot 1/2 of multiplicity 2.

0,0,0,0 1/4 1/2 3/4 1,1,1,1
0

1

(c) Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1} and p = 3; the
n = 7 basis functions are globally C2–continuous.

0,0,0,0 1/4 1/2,1/2,1/2 3/4,3/4 1,1,1,1
0

1

(d) Ξ = {0, 0, 0, 0, 1/4, 1/2, 1/2, 1/2, 3/4, 3/4, 1, 1, 1, 1}
and p = 3; the n = 10 basis functions are C2–
continuous across the knot 1/4, C1–continuous across
the knot 3/4 of multiplicity 2, and only C0–continuous
across the knot 1/2 of multiplicity 3.

Figure 1: Univariate B–splines basis functions obtained from open knot vectors Ξ and polynomial
degrees p = 2 and p = 3 with different regularities.

polynomial degree is used along both the parametric directions, e.g. for which p = q in the bivariate
case; therefore, multivariate basis functions will be generically indicated by using the same notation
of univariate basis functions, i.e. Ni,p for some i = 1, . . . , Nbf .

We observe that the tensor product structure extends the positivity, the partition of the unity,
and the regularity properties of the univariate basis to the multivariate case. Multidimensional
mesh elements in the parameter domain are constructed by means of the tensor product of one
dimensional mesh elements, similarly to the univariate case; we indicate the set of such mesh

elements as K̂h :=
{
K̂j : j = 1, . . . , Nel

}
, where Nel is its total number.

3.2 NURBS basis functions

NURBS, Non Uniform Rational B–splines ([35]), are built from B–splines by introducing a set of
weights for each basis function. By considering directly the multivariate case for which the same
polynomial degree p is considered along all the parametric directions, we introduce the weights

{wi}
Nbf

i=1 ⊂ R and we define the weighting function W (ξ) =

Nbf∑

i=1

Ni,p(ξ)wi, where {Ni,p(ξ)}
n
i=1 are

the B–splines basis functions. In our analysis, we bound ourself to the standard case of weights
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real and strictly positive. We define a set of NURBS basis functions {Ri,p(ξ)}
n
i=1 as:

Ri,p(ξ) :=
Ni,p(ξ)wi

W (ξ)
i = 1, . . . , Nbf , (3.4)

that is the ratio of two piecewise polynomials, both of degree p; therefore, we refer to p as the degree
of the NURBS basis functions. It is straightforward to see that NURBS basis functions still satisfy
the same properties of B–splines basis functions. We notice that B–splines are a particular case of
NURBS by construction, obtained by setting all the weights to the same value; henceforth we will
use the notation Ri,p, for some i = 1, . . . , Nbf , to indicate indifferently a B–splines or NURBS basis
function.

We remark that the NURBS and B–splines bases can be enriched by using the so called h– or
p–refinement procedures obtained by means of the knot insertion and order elevation techniques, re-
spectively. In addition, the k–refinement procedure, which is peculiar of the B–splines and NURBS
and consists in the sequential application of the order elevation and knot insertion techniques on
the initial knot vector Ξ, may be used to enrich the basis by introducing a limited number of basis
functions. For more information, we refer the reader to [18, 29, 35].

3.3 Geometrical representations by B–splines and NURBS

Given a set of univariate B–splines or NURBS basis functions {Ri,p}
Nbf

i=1 and a set of control points

{P i}
Nbf

i=1 ⊂ R
d in the physical domain R

d for d = 1, 2, 3, a NURBS geometry is a parametrization

x : Ω̂ → R
d defined as:

x(ξ) =

Nbf∑

i=1

Ri,p(ξ)P i. (3.5)

In this work, we consider the standard case for which the dimension of the physical domain Ω,
represented by the geometrical entity x, coincides with that of the parameter domain Ω̂ ⊂ R

κ, i.e.
for which κ ≡ d. Moreover, we consider the case of bivariate NURBS basis functions, for which
κ = 2, and computational domains Ω in the two–dimensional physical space R

2, i.e. for which
d = κ = 2.

We remark that the mesh K̂h defined in the parameter domain for the construction of the B–
splines and NURBS basis functions yields the mesh Kh in the physical domain Ω in virtue of the
geometrical mapping (3.5), i.e. Kh := {Kj : j = 1, . . . , Nel}, where Kj is the geometrical mapping

of the element K̂j in the parameter domain Ω̂ for some j = 1, . . . , Nel. Finally, we observe that when
the h–, p–, or k–refinement procedures are used, the geometrical representation (3.5) is preserved
in the sense that the geometrical mapping x(ξ) and its Jacobian remain the same for all the applied
refinement procedures.

3.4 The Isogeometric concept

Let us assume that a physical (computational) domain Ω is represented by means of the B–splines
or NURBS geometrical mapping (3.5) from a parameter domain Ω̂ by using the basis functions Ri,p

for i = 1, . . . , Nbf ; in addition, let us assume that a function ûh = ûh(ξ) is defined in Ω̂, as e.g. the
approximate solution of a scalar PDE. Then, according to the Isoparametric concept, any candidate
to represent each scalar component of the solution approximating the solution u in Eq. (2.1) at

7



8 L. Dedè, C. Jäggli, A. Quarteroni

any t will feature the following expansion with respect to the spatial parametric coordinate:

ûh(ξ) =

Nbf∑

i=1

Ri,p(ξ)Ui, (3.6)

where Ri,p, for i = 1, . . . , Nbf , are the same NURBS basis functions used in the geometrical repre-
sentation (3.5) and the coefficients Ui ∈ R are the corresponding control variables. We remark that
the properties of the function ûh follows from those of the B–splines or NURBS basis functions.
By assuming that the geometrical mapping x(ξ) of Eq. (3.5) is invertible, the function ûh can be
rewritten in the physical domain Ω as uh : Ω → R reading:

uh = ûh ◦ x
−1. (3.7)

For simplicity, in virtue of the invertibility of the geometrical mapping x(ξ), here henceforth we
will not distinguish between ûh and uh by writing uh regardless which domain, parametric Ω̂ or
physical Ω, we are referring to.

Finally, in view of the use of the Isogeometric concept in the framework of the Galerkin method,
it is convenient to introduce the B–splines and NURBS function spaces. By using the B–splines
or NURBS basis functions introduced in Secs. 3.1 and 3.2, we can define the finite dimensional
B–splines or NURBS function space as:

Nh := span {Ri,p, i = 1, . . . , Nbf} , (3.8)

with Nbf its dimension.

4 Numerical Approximation of PDEs: Isogeometric Analysis

We discuss the numerical approximation of the elastodynamics equations described in Sec. 2. For
the spatial approximation we consider NURBS–based IGA in the framework of the Galerkin method
[18, 29], while the generalized–α method for the time discretization [17].

4.1 Spatial approximation: NURBS–based IGA

Let us introduce the space of square integrable functions in Ω, i.e. L2(Ω), and the Hilbert space
H1(Ω) = {v : Ω → R

d such that Dαv ∈ L2(Ω) and |α| ≤ 1}, where α = {α1, . . . , αd} ∈ N
d is a

multi–index, |α| =
d∑

i=1

αi and Dα the multi–index distributional derivative operator; see e.g. [1].

By referring to Eq. (2.1), we set the trial function space S (actually, an affine manifold):

S := {v : Ω → R such that v ∈
[
H1(Ω)

]d
and vi|ΓD

= gi, ∀ i = 1, . . . , d}, (4.1)

where ΓD ⊂ ∂Ω and vi denotes the i–th components of the vector v, and the test function space:

V := {w : Ω → R
d such that w ∈

[
H1(Ω)

]d
and w|ΓD

= 0}. (4.2)
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Isogeometric numerical dispersion analysis for elastic wave propagation 9

Let us define the bilinear forms A, a, c, m : V × S → R from Eqs. (2.1) and (2.3) as:

A(w,u) = a(w,u) + c(w,u) +m(w,u), a(w,u) =

∫

Ω
σ(u) : ϵ(w) dΩ+

∫

Ω
ρζ2 u ·w dΩ,

c(w,u) =

∫

Ω
2ρζ

∂u

∂t
·w dΩ, m(w,u) =

∫

Ω
ρ
∂2u

∂t2
·w dΩ

(4.3)
and the linear functional F : V → R:

F (w; t) =

∫

Ω
f(t) ·w dΩ+

∮

ΓN

h(t) ·w dΩ. (4.4)

Then, the weak form of the linear elastodynamics equation (2.1) with viscous terms (2.3), in the
case ΓNR = ∅, reads:

find u(t) ∈ S : A(w,u(t)) = F (w; t) ∀w ∈ V , ∀t ∈ (0, T ), (4.5)

for u(0) = u0 and u̇(0) = u̇0. We remark that the bilinear form A(·, ·) and the linear functional
F (·; t) can be suitably modified to take into account for the non–reflecting boundary conditions (2.4)
on ΓNR ⊂ ∂Ω in the case in which ΓNR ̸= ∅.

Let us introduce two suitable finite dimensional subspaces Sh ⊂ S and Vh ⊂ V ; specifically,
by using the Isogeometric concept of Sec. 3.4 and the B–splines or NURBS function space Nh

of Eq. (3.8), we set Sh = S ∩ [Nh]
d and Vh = V ∩ [Nh]

d (1). Then the approximation of the
problem (4.5) by means of NURBS–based IGA in the framework of the Galerkin method reads:

find uh(t) ∈ Sh : A(wh,uh(t)) = F (wh; t) ∀wh ∈ Vh, ∀t ∈ (0, T ). (4.6)

The problem (4.6) is in semi–discrete form with the approximate solution reading uh(t) =

(u1,h(t), . . . , ud,h(t))
T : Ω → R

d, with uA,h =

Nbf∑

i=1

Ri,p UA,i(t), being {UA,i}
Nbf

i=1 the time depen-

dent control variables for each vectorial component A = 1, . . . , d; the vector of control variables is

U(t) =
(
UT

1 (t), . . . ,U
T
d (t)

)T
∈ R

(dNbf ). However, by taking into account the strong imposition of
the essential boundary conditions and indicating with Nh the dimension of the function space Sh,
for which generally Nh ≤ dNbf , we still refer to the vector of control variables as U(t) ∈ R

Nh for the
sake of simplicity. Also, we indicate with M, C, K ∈ R

Nh×Nh and F (t) ∈ R
Nh the mass, damping,

stiffness matrices, and vector of external forces obtained by the spatial discretization of the forms
m(·, ·), c(·, ·), and a(·, ·), and the functional F (·; t), respectively; similarly, U0 and U̇0 represent
the L2–projections of the initial data u0 and u̇0 onto Nh, respectively. Then, the semi–discrete
problem reads:

find U : (0, T ) → R
Nh :





M Ü(t) + C U̇(t) +KU(t) = F (t) ∀t ∈ (0, T ),

U(0) = U0,

U̇(0) = U̇0,

(4.7)

where U̇(t) and Ü(t) are the time derivatives of the displacement vector U(t).

1We assume that the Dirichlet data g belongs to the restriction of the NURBS space [Nh]
d onto ΓD; see Eq. (2.1).
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We remark that the matrices M, C, and K and the vector F (t) are assembled from the cor-
responding bilinear forms and linear functional by means of suitable quadrature formulas for the
evaluation of the integrals. In IGA a standard procedure consists in using the d–dimensional Gauss–
Legendre quadrature formula ([36]) induced by the tensor product construction of multivariate basis
functions. The quadrature formula is applied at the level of each element of the mesh Kh; more
commonly, in virtue of the isogeometric paradigm, the formula is applied in the parametric domain
Ω̂ at the level of the elements K̂ ∈ K̂h or in a parent domain [18]. For example, the integral of a
function ϕ̂(ξ) defined in the parametric domain Ω̂ ⊂ R

2, i.e. ϕ̂ : Ω̂ → R is approximated as:

∫

Ω̂
ϕ̂(ξ) dΩ̂ ≃

∑

K̂∈K̂h




r2∑

j=1

ϕ̂
(
ξrj
)
ŵr
j


 , (4.8)

where r is the number of quadrature nodes defining the Gauss–Legendre formula, while
{
ξrj
}r2

j=1

and
{
ŵr
j

}r2

j=1
are the quadrature nodes and weights in the parameter domain, respectively. In the

standard approach to NURBS–based IGA, we set r = p+1, which ensures the exact assembly of the
matrices M, C, and K when B–splines are considered; conversely, the matrices are approximated
when NURBS basis functions are considered, even if the same Gauss–Legendre formula with r =
p+1 is used by convention. We observe that more efficient quadrature formulas than the element–
wise Gauss–Legendre formula may be used in NURBS–based IGA by taking advantage of the
properties of NURBS basis functions; see [7, 31].

4.2 Time discretization: the generalized–α method

We consider the time discretization of the problem (4.6) by means of the generalized–α method,
a family of time integrations schemes for structural dynamics problems, initially proposed in [17].
The method has been introduced to control numerical dissipation at high frequency modes, while
minimizing low–frequency dissipation.

Let us partition the time interval [0, T ] into Nt sub–intervals of equal size ∆t =
T

Nt
for which

the discrete time steps are tn = n∆t for n = 0, . . . , Nt. Also, let us indicate with dn, vn, and an

the approximations of the vectors U(tn), U̇(tn), Ü(tn) at the discrete time step tn, respectively.
Then, one step of the generalized–α method at tn reads, for any n = 0, . . . , Nt − 1:

find dn+1, vn+1, an+1 ∈ R
Nh :





dn+1 = dn +∆tvn +∆t2
[(

1

2
− β

)
an + β an+1

]
,

vn+1 = vn +∆t [(1− γ)an + γ an+1] ,

Man+1−αm + C vn+1−αf
+Kdn+1−αf

= F (tn+1−αf
),

(4.9)

given dn, vn, and an; the parameters αm, αf , γ, and β ∈ R characterize the method with the
following definitions:

dn+1−αf
:= (1− αf )dn+1 + αf dn, vn+1−αf

:= (1− αf )vn+1 + αf vn,

an+1−αm := (1− αm)an+1 + αm an, tn+1−αf
:= (1− αf ) tn+1 + αf tn,

(4.10)

10
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Figure 2: Example of exact and numerical waves; dimensionless quantities on both the axes.

At the time step t0 = 0, we can set d0 = U0, v0 = U̇0, and a0 = M
−1

(
F (0)− C U̇0 −KU0

)
.

We recall that the generalized–α method is a second–order accurate scheme for linear problems,

provided that γ =
1

2
− αm + αf ; moreover, it is unconditionally absolutely stable if αm ≤ αf ≤

1

2

and
1

4
+

1

2
(αf −αm) ≤ β. Further, the generalized–α method maximizes high frequency dissipation

for β =
1

4
(1 − αm + αf )

2, while minimizes low frequency dissipation for αf =
αm + 1

3
. Following

[17] and by introducing the spectral radius of the amplification matrix for ∆t → ∞, say ρ∞ ∈ [0, 1],
all the previous properties can be satisfied by choosing the parameters αm, αf , γ, and β as:

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, β =
1

(ρ∞ + 1)2
, and γ =

3− ρ∞
2(ρ∞ + 1)

. (4.11)

In this manner, a family of second–order and absolutely stable generalized–α methods controlling
the numerical dissipation is defined in terms of the unique parameter ρ∞.

5 Numerical Dispersion Analysis

In this section, we are interested in quantifying the errors associated with the wave propagation
in elastodynamics problems, specifically in evaluating the quality of the numerical wave length
and velocities of propagation; see Fig. 2. Due to the mesh structure associated to the spatial
approximation method, such errors are dependent on the direction of wave propagation. The
analysis of these errors is typically called numerical (grid) dispersion analysis.

5.1 Harmonic plane waves

Let us consider the isotropic linear elastic equation (2.1) without the source term and in the space–
time domain Ω× R:

ρ
∂2u

∂t2
(t)−∇ · σ(u(t)) = 0 in Ω× R. (5.1)

In our analysis, we consider the computational domain Ω ⊂ R
d open and bounded, with d = 2, 3.

In order to study the dispersion of the numerical scheme, we consider particular solutions in the
form of harmonic plane waves uPW (k, ω) : Ω× R → R

d, reading:

uPW (k, ω) = uPW (x, t;k, ω) = eι(k·x−ω t)Ψ, (5.2)

11



12 L. Dedè, C. Jäggli, A. Quarteroni

where ω ∈ R is the angular frequency, k = (k1, . . . , kd)
T ∈ R

d is the wave vector, the vector
Ψ = (Ψ1, . . . ,Ψd)

T ∈ R
d, which is independent of x and t, represents the direction and magnitude

of the displacement, and ι is the imaginary unit such that ι2 = −1. For convenience, we rewrite
Eq. (5.2) as:

uPW (x, t;k, ω) = e−ι ω t zPW (x;k)Ψ with zPW (x;k) := eιk·x. (5.3)

By substituting Eq. (5.2) into Eq. (5.1) and by simplifying for the term eι(k·x−ω t), we obtain
that the plane wave uPW (t) satisfies Eq. (5.1) for some Ψ ∈ R

d, provided that:

−

(
ω2

κ2
− c2s

)
Ψ+ (c2p − c2s)

(
Ψ · k̂

)
k̂ = 0, (5.4)

where κ := |k|, k̂ =
k

κ
and cp and cs are the compressional and shear wave velocities defined in

Eq. (2.2), respectively. Eq. (5.4) admits two solutions; the first, say (ωp,Ψp), such that:

ωp = κ cp and Ψp = αp k̂ ∀αp ∈ R, (5.5)

the second, say (ωs,Ψs), such that:

ωs = κ cs and Ψs = αs n̂k ∀αs ∈ R, (5.6)

where the unit vector n̂k ∈ R
d is normal to k̂, i.e n̂k · k̂ = 0. The first wave, called compressional

wave or P–wave, travels with velocity cp and induces a displacement in the direction of the wave

vector k̂, while the second wave, called shear wave or S–wave, travels with velocity cs and induces
a displacement orthogonal to k̂, namely along n̂k.

5.2 Formulation of the discrete eigenvalue problem

For the definition of the discrete eigenvalue problem, we consider the approach introduced in [42]
for the comparison of different Spectral (element) methods ([13, 14]). The proposed approach is
based on the spatial discretization of the elastodynamics equations (5.1) for a general undetermined
solution u(t) and the approximation of the harmonic wave particular solution uPW (k, ω) of Eq. (5.2)
by using the same numerical scheme. Then, the discrete wave solution is combined with the
discrete elastodynamics wave equation into a discrete eigenvalue problem yielding the discrete
angular frequencies corresponding to compressional and shear wave velocities. According to [42],
this approach allows the computation of the wave velocities in bounded computational domains Ω
without the need of using periodic boundary conditions ([22, 23, 34]), a constraint that would be
difficult to fulfill when comparing different numerical schemes for different wave directions k.

Let us consider the isotropic elastic wave equation (5.1) endowed with homogeneous Neumann

conditions on ∂Ω, i.e. for which σ(u)n̂ = 0; then, by setting S = V =
[
H1(Ω)

]d
, we can rewrite the

problem in the weak formulation (4.5). Similarly, the problem approximated with NURBS–based
IGA in the framework of the Galerkin method reads as in Eq. (4.6), where the function spaces
Sh = Vh have dimension Nh = dNbf ; similarly to Eq. (4.7), the matrix–vector form of the discrete
problem, which is continuous in time, reads:

find U : R → R
Nh : M Ü(t) +KU(t) = 0 ∀t ∈ R, (5.7)

12



Isogeometric numerical dispersion analysis for elastic wave propagation 13

Following the approach of [42], we proceed in determining the discrete harmonic plane wave,
obtained by L2–projection of the harmonic plane wave uPW (k, ω) (5.2) onto the NURBS space

Nh (3.8). From Eq. (5.3), we obtain z̃PW,h(k) : Ω → R, reading z̃PW,h(k) =

Nbf∑

i=1

Ri,p Z̃PW,i(k), by

solving the following L2–projection problem for some given wave vector k:

find z̃PW,h(k) ∈ Nh :

∫

Ω
wh z̃PW,h(k) dΩ =

∫

Ω
wh zPW (k) dΩ ∀wh ∈ Nh, (5.8)

with the control variables Z̃PW (k) ∈ C
Nbf (2). Then, from Eq. (5.8), the discrete harmonic wave,

say ũPW,h(k, ω) : Ω× R → C
d, for k and ω given, reads:

ũPW,h(t;k, ω) = e−ι ω t z̃PW,h(k)Ψ. (5.9)

We remark that the notation ũPW,h(t;k, ω) is used to indicate that the discrete harmonic plane
wave is not obtained by solving the Galerkin problem under the assumption (5.2), which would
yield the approximated harmonic plane uPW,h(t;k, ω), but rather its approximation in the NURBS
space Nh by means of L2–projection. For the sake of simplicity, we rewrite ũPW,h(t;k, ω) in matrix–

vector form; with this aim we introduce the matrices Rp : Ω → R
Nh×d and Z̃PW (k) ∈ C

Nh×d

reading, e.g. for the two–dimensional case d = 2:

Rp :=

[
Rp 0

0 Rp

]
and Z̃PW (k) :=

[
Z̃PW (k) 0

0 Z̃PW (k)

]
, (5.10)

where Rp : Ω → R
Nbf is the vector of the NURBS basis functions Rp =

(
R1,p, . . . , RNbf ,p

)T
. Then,

the discrete harmonic plane wave ũPW,h(t;k, ω) reads:

ũPW,h(t;k, ω) = e−ι ω t
R

T
p Z̃PW (k)Ψ = R

T
p ŨPW (t;k, ω). (5.11)

where ŨPW (k, ω) : R → C
Nh , being ŨPW (t;k, ω) := e−ι ω t

Z̃PW (k)Ψ.

According to the procedure proposed in [42], we replace the control variables ŨPW (t;k, ω) of
the discrete harmonic plane wave ũPW,h(t;k, ω) into Eq. (5.7), thus obtaining:

(
−ω2

M+K
)
Z̃PW (k)Ψ = 0, (5.12)

after having simplified the term e−ι ω t. By pre–multiplying the previous equation by the matrix(
Z̃PW (k)

)H
corresponding to the transpose complex conjugate of Z̃PW (k), we obtain the following

d–dimensional generalized eigenvalue problem for a prescribed wave vector k:

find ω̃h(k) ∈ R, Ψ̃h(k) ∈ R
d : K̃

Z̃PW
(k) Ψ̃h(k) = (ω̃h(k))

2
M̃

Z̃PW
(k) Ψ̃h(k), (5.13)

where:

K̃
Z̃PW

(k) :=
(
Z̃PW (k)

)H
KZ̃PW (k) (5.14)

2The Gauss–Legendre quadrature formula used to approximate the integrals in the weak form (5.8) will be discussed
in Sec. 5.3.
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and

M̃
Z̃PW

(k) :=
(
Z̃PW (k)

)H
MZ̃PW (k). (5.15)

Following [42], one can show that the d eigenvalues ω̃h(k) are real.

By specializing to the two–dimensional case for which d = 2, we can associate the largest of the
two eigenvalues, say ω̃p,h(k), to the discrete compressional wave (P–wave), while the smallest, say
ω̃s,h(k), to the discrete shear wave (S–wave). Then, from the previous discrete angular frequencies
ω̃p,h(k) and ω̃s,h(k) we compute the numerical wave velocities for a given k:

c̃p,h(k) :=
ω̃p,h(k)

κ
and c̃s,h(k) :=

ω̃s,h(k)

κ
, (5.16)

together with the corresponding wave velocity errors:

ẽp(k) :=
c̃p,h(k)

cp
− 1 and ẽs(k) :=

c̃s,h(k)

cs
− 1; (5.17)

from the previous errors we introduce the corresponding relative errors, often used in studying the
effect of the wave direction (i.e. the angle θ), reading:

̂̃ep(k) := ẽp(k) + 1 and ̂̃es(k) := ẽs(k) + 1. (5.18)

5.3 Dispersion analysis for NURBS

We aim at performing the numerical dispersion analysis following the procedure outlined in Sec. 5.2
with NURBS basis functions of different degrees p and different regularity, namely Cα–continuous
in Ω for some α = 0, . . . , p− 1 as discussed in Sec. 3. Specifically, we are interested in performing
such analysis when considering the same number of NURBS basis functions in each parametric
direction per wave length. We remark that this represents an adaptation to the NURBS context
of the numerical grid dispersion analysis performed with Finite Elements ([22, 23, 28, 34, 39]) or
Spectral methods ([5, 42]) for which basis functions are interpolatory at the grid nodes.

Let us specifically consider the two–dimensional case for which d = 2 with the computational
domain Ω = (0, 1)2 and assume that the wave vector k is in the form:

k = 2π k (cos(θ), sin(θ))T , (5.19)

with k > 0 the circular wavelength and θ ∈ [0, 2π); we notice that when the angle θ is expressed

in degrees, it is indicated as ϑ ([◦]) reading ϑ = θ
180◦

π
. We recall that bivariate NURBS basis

functions are built by applying the tensor product rule to the univariate basis functions, which we
assume to possess the same degree p and global continuity α along all the parametric directions
(i.e. built from the same knot vectors Ξ along both the parametric directions). By recalling the
notation of Sec. 3.1, we indicate with Nbf = n2 the total number of basis functions, where n is the
number of basis functions along the single parametric direction, which we fix a priori. We define
the number of NURBS basis functions in each parametric direction per wave length, say G, and its
inverse measuring the wave length per resolution, say H, as:

G :=
n

k
and H :=

k

n
. (5.20)
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Since we are aiming at comparing the numerical dispersion for NURBS basis functions of different
regularity, namely Cα–continuous for α = 0, . . . , p − 1, for fixed values of H, that is with a fixed
number of univariate basis functions n for a prescribed wave length k, we need to built such basis
functions from knot vectors possessing a different number of non–zero elements nel, say nel,α.
According to the formula (3.3), we have:

nel,α = ⌈ñel,α⌉ , with ñel,α :=
n− α− 1

p− α
for α = 0, . . . , p− 1, (5.21)

for a prescribed value of univariate basis functions n > p+ 1 and degree p ≥ 1 (3).
On the other side, since we are operating in the Galerkin framework, the numerical dispersion

analysis stemming from the solution of the generalized eigenvalue problem (5.13), involves the use
of quadrature formulas for approximating the integrals related to the assembly of the matrices M
and K of Eq. (5.7), as well as to the computation of the control variables Z̃PW (k) of L2–projection
problem (5.8). When considering B–splines basis functions, the standard Gauss–Legendre quadra-
ture formula (4.8) with r = p + 1 quadrature nodes per element along each parametric direction
ensures the exact assembly of the matrices M and K, while this is not the case of the integrals
involved in the problem (5.8), since the harmonic plane wave function zPW (k) is not of polynomial
type. Indeed, the assembly of the matrices M and K with the standard Gauss–Legendre formula
with r = p + 1 is exact regardless the regularity α = 0, . . . , p − 1 of the B–splines basis functions.
Conversely, the computation of the control variables Z̃PW (k) for the harmonic plane waves is sensi-
tive to the regularity of the B–splines basis functions α, since a different total number of quadrature
nodes per parametric direction, say nqn,α, is used, being nqn,α = r nel,α for α = 0, . . . , p − 1. It
follows that if we aim at comparing the numerical dispersion obtained by B–splines basis func-
tions of different regularity α = 0, . . . , p − 1 under the same conditions, namely the same value of
the parameter G of Eq. (5.20), we also have to ensure that the error associated to the numerical
quadrature is “sufficiently” small; the latter goal can be achieved by considering the same total
number of quadrature nodes per wave length, say Q, defined as:

Q :=
nnq

k
, (5.22)

where nqn is the prescribed number of quadrature nodes along each parametric direction and k is the
circular wavelength of Eq. (5.19). Since the number of elements nel,α increases when the regularity
of the B–splines basis functions decreases, i.e. for α = p− 1, . . . , 0, according to the formula (5.21),
and with a prescribed n, we set nqn = rp−1 nel,p−1, where rp−1 = r = p + 1 for the standard
Gauss–Legendre quadrature formula. By enforcing nqn,α := rα nel,α ≥ nqn for all α = 0, . . . , p− 2,
we obtain from Eqs. (3.3) and (5.21) that the number of Gauss–Legendre quadrature nodes per
mesh element rα varies for Cα–continuous B–splines basis functions as:

rα = ⌈r̃α⌉ , with r̃α :=
nnq

ñel,α

= r (p− α)
n− p

n− α− 1
for α = 0, . . . , p− 1. (5.23)

We remark that according to the previous formula, the total number of Gauss–Legendre quadrature
nodes per mesh element rα is larger for smaller values of α; in this manner, the total number of
quadrature nodes per wave lengthQ (see Eq. (5.22)) is slightly biased in favor of C0–continuous basis
functions with respect to basis functions which are globally Cp−1–continuous, i.e. nqn,0≥̃nqn,p−1 (

4).

3For example for n = 10 and p = 3, we have nel,α = 3, 4, and 7, for α = 0, 1, and 2, respectively.
4For example for n = 10 and p = 3, we have rα = 10, 7, and 4 and nqn,α = 30, 28, and 28, for α = 0, 1, and 2,

respectively.
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We use the above Gauss–Legendre quadrature formulas also when considering NURBS basis func-
tions, even if in this case the assembly of the matrices M and K of Eq. (5.7) also involves some nu-
merical quadrature errors other than the computation of the control variables Z̃PW (k) in Eq. (5.8)
as for B–splines basis functions.

5.4 Dispersion analysis: numerical results

We propose and discuss some numerical results for the dispersion analysis according to the general-
ized eigenvalue problem outlined in Sec. 5.2. We consider both the cases of B–splines and NURBS
basis functions by comparing different polynomial degrees p and regularity α = 0 and p − 1, i.e.
basis functions which are either C0– or Cp−1–continuous. We propose a comparison both in terms
of the phase velocity errors ẽp(k) and ẽs(k) of Eq. (5.17) associated to the compressional and shear
waves (P– and S–waves) vs. the parameter H of Eq. (5.20), i.e. the resolution per wavelength. We
also discuss the influence of the Poisson’s ratio ν on the numerical dispersion analysis.

Following the discussion about the Gauss–Legendre quadrature formulas in Sec. 5.3, we remark
that the use of the enhanced quadrature rule rα of Eq. (5.23) for “small” values of the parameter H
of Eq. (5.20) does not significantly affect the results of the numerical dispersion analysis obtained
for r = p+ 1 regardless of the regularity α of the NURBS basis functions. Conversely, for “large”
values of H, e.g. H ≃ 0.25− 0.5 the numerical errors associated to basis functions of low regularity
are generally very sensitive to the choice of the number of quadrature nodes per mesh element.
Therefore, all the numerical results presented in this section are obtained with the Gauss–Legendre
quadrature rule rα provided in Eq. (5.23).

For the numerical tests considered in this section, we set the density ρ = 2 · 103 kg/m3 and the
exact compressional wave (P–wave) velocity cp = 3 · 103m/s; the remaining elastic parameters are
computed from ρ, cp, and the Poisson’s ratio ν by means of Eq. (2.2). Specifically, the exact shear

wave (S–wave) velocity is determined as cs = cp

√
1− 2ν

2(1− ν)
; e.g. we have cs = 2 · 103m/s and

cs = 1.225 · 103m/s for ν = 0.1 and ν = 0.4, respectively. We consider both B–splines and NURBS
basis functions with a fixed number of univariate basis functions equal to n = 25 regardless of
their polynomial degree p = 1, 2, 3, and 4 and their global C0– or Cp−1–continuity; the resolution
per wave length determined by the parameter H is varied by changing the modulus of the circular
wavelength k (see Eq. (5.19)).

B–splines basis functions

We start our numerical dispersion analysis for B–splines basis functions by comparing the phase
errors ẽp(k) and ẽs(k) associated to the P– and S–waves velocities of Eq. (5.17), respectively, vs.
H. We consider different values of the Poisson’s ratio ν = 0.1 and 0.4, with the angles ϑ = 0◦

and 45◦ for the direction of the wave vector k of Eq. (5.19). In Figs. 3–6 we report the results
obtained for B–splines basis functions of polynomial degrees p = 1, 2, 3, and 4 and globally Cα-
continuous for α = 0 and α = p−1. We notice that the errors corresponding to basis functions of the
maximum regularity, i.e. globally Cp−1–continuous, are generally smaller than their C0–continuous
counterpart of the same polynomial degree p, also for relatively large values of the parameter H;
this is evident for example in the approximation of the shear S–wave velocity for ϑ = 45◦ for the
values of the Poisson’s ratio ν = 0.1 and 0.4 in Figs. 4(c)–(d) and 6(c)–(d), for which we report
a significantly smaller error ẽs(k) with globally Cp−1–continuous basis functions. As for example,
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B–splines: ν = 0.1 and ϑ = 0◦ (θ = 0).
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Figure 3: P– and S–waves velocity errors ẽp(k) (top) and ẽs(k) (bottom) vs. H for ν = 0.1, ϑ = 0◦

(θ = 0), and p = 1, 2, 3, 4; B–splines basis functions globally Cα–continuous with α = 0 (left) and
α = p− 1 (right).

we observe from Figs. 6(c)–(d) that the values of the computed S–wave velocities c̃s,h(k) obtained
with B–splines basis functions of polynomial degree p = 2 for H = 0.3 are about the 30% and 10%
larger than the exact one cs(k) when considering basis functions which are C0– and C1–continuous,
respectively; similar results are obtained for p = 3 and 4. We also observe that the superiority of
Cp−1–continuous basis versus the C0–continuous ones is not affected by the choice of the Poisson’s
ratio ν and the angle ϑ of the wave vector k; moreover, from Figs. 4 and 6 we observe that the
errors obtained with C0–continuous basis functions are more sensitive to the choice of the Poisson’s
ratio ν with respect to B–splines basis functions Cp−1–continuous, as clearly highlighted for the
errors ẽs(k).
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B–splines: ν = 0.1 and ϑ = 45◦ (θ = π/4).
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Figure 4: P– and S–waves velocity errors ẽp(k) (top) and ẽs(k) (bottom) vs. H for ν = 0.1, ϑ = 45◦

(θ = π/4), and p = 1, 2, 3, 4; B–splines basis functions globally Cα–continuous with α = 0 (left)
and α = p− 1 (right).

In Figs. 7–10 we compare the relative P– and S–waves velocity errors êp(k) and ês(k) of
Eq. (5.18) by means of the so–called anisotropic curves, that is the representation of such errors
in polar coordinates for different wave directions k obtained by changing the angle ϑ (or θ) in
Eq. (5.19). In this comparison we consider the results obtained with globally C0– and Cp−1–
continuous B–splines basis functions of polynomial degrees p = 1, 2, 3, and 4 with ν = 0.1 and 0.4;
such results are obtained by setting the number of control variables per wave length G = 4, or
equivalently H = 0.25 according to the definitions (5.20). As we can observe already from Fig. 7,
both the numerical P– and S–wave velocities overestimate the exact ones, with the maximum errors
occurring at ϑ = 0◦ for the P–wave, while at ϑ = 45◦ for the S–wave. Also, we observe that the
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B–splines: ν = 0.4 and ϑ = 0◦ (θ = 0).
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(a) ẽp(k) vs. H for α = 0 (b) ẽp(k) vs. H for α = p− 1
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(c) ẽs(k) vs. H for α = 0 (d) ẽs(k) vs. H for α = p− 1

Figure 5: P– and S–waves velocity errors ẽp(k) (top) and ẽs(k) (bottom) vs. H for ν = 0.4, ϑ = 0◦

(θ = 0), and p = 1, 2, 3, 4; B–splines basis functions globally Cα–continuous with α = 0 (left) and
α = p− 1 (right).

error associated to the S–wave velocity is very sensitive to the chosen Poisson’s ratio, conversely
to the P–wave velocity error for which the anisotropic curves qualitatively overlap. As evident
from all the Figs. 8–10, the curves obtained by means of globally Cp−1–continuous basis functions
outperform the corresponding ones obtained with the corresponding globally C0–continuous ones.
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B–splines: ν = 0.4 and ϑ = 45◦ (θ = π/4).
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(a) ẽp(k) vs. H for α = 0 (b) ẽp(k) vs. H for α = p− 1
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(c) ẽs(k) vs. H for α = 0 (d) ẽs(k) vs. H for α = p− 1

Figure 6: P– and S–waves velocity errors ẽp(k) (top) and ẽs(k) (bottom) vs. H for ν = 0.4, θ = 45◦

(θ = π/4), and p = 1, 2, 3, 4; B–splines basis functions globally Cα–continuous with α = 0 (left)
and α = p− 1 (right).
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B–splines: p = 1.
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Figure 7: P– and S–waves velocity relative errors êp(k) (top) and ês(k) (bottom) vs. ϑ ∈ [0, 360◦)
(θ ∈ [0, 2π)) in polar coordinates, obtained with G = 4 (H = 0.25), for ν = 0.1 (blue) and
ν = 0.4 (red); B–splines basis functions of degree p = 1 and globally C0–continuous.
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B–splines: p = 2.
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(a) êp(k) vs. ϑ for α = 0 (b) êp(k) vs. ϑ for α = 1
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Figure 8: P– and S–waves velocity relative errors êp(k) (top) and ês(k) (bottom) vs. ϑ ∈ [0, 360◦)
(θ ∈ [0, 2π)) in polar coordinates, obtained with G = 4 (H = 0.25), for ν = 0.1 (blue) and
ν = 0.4 (red); B–splines basis functions of degree p = 2 and globally Cα–continuous with α = 0 (left)
and α = p− 1 = 1 (right).
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B–splines: p = 3.
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(a) êp(k) vs. ϑ for α = 0 (b) êp(k) vs. ϑ for α = 2
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Figure 9: P– and S–waves velocity relative errors êp(k) (top) and ês(k) (bottom) vs. ϑ ∈ [0, 360◦)
(θ ∈ [0, 2π)) in polar coordinates, obtained with G = 4 (H = 0.25), for ν = 0.1 (blue) and
ν = 0.4 (red); B–splines basis functions of degree p = 3 and globally Cα–continuous with α = 0 (left)
and α = p− 1 = 2 (right).
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B–splines: p = 4.
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(a) êp(k) vs. ϑ for α = 0 (b) êp(k) vs. ϑ for α = 3
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Figure 10: P– and S–waves velocity relative errors êp(k) (top) and ês(k) (bottom) vs. ϑ ∈ [0, 360◦)
(θ ∈ [0, 2π)) in polar coordinates, obtained with G = 4 (H = 0.25), for ν = 0.1 (blue) and
ν = 0.4 (red); B–splines basis functions of degree p = 4 and globally Cα–continuous with α = 0 (left)
and α = p− 1 = 3 (right).
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NURBS: ν = 0.1 and ϑ = 0◦ (θ = 0).
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(a) ẽp(k) vs. H for α = 0 (b) ẽp(k) vs. H for α = p− 1
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(c) ẽs(k) vs. H for α = 0 (d) ẽs(k) vs. H for α = p− 1

Figure 11: P– and S–waves velocity errors ẽp(k) (top) and ẽs(k) (bottom) vs. H for ν = 0.4,
ϑ = 0◦ (θ = 0), and p = 2, 3, 4; NURBS basis functions globally Cα–continuous with α = 0 (left)
and α = p− 1 (right).

NURBS basis functions

As done for B–splines basis functions, we perform the same dispersion analysis for NURBS basis
functions. As for example, we consider bivariate NURBS basis functions obtained by the application
of the p– or k–refinement procedures (see Sec. 3.2 and [18]), depending on the desired regularity
of the basis functions, starting from a reference basis. The latter is determined for the polynomial
degree p = 2 from the knot vector Ξ = {0, 0, 0, 1, 1, 1} along both the parametric directions, but
weights w1 = w3 = 1 and w2 = 1/2 only along the first parametric direction, being all unitary
along the other; in this manner, we obtain NURBS basis functions which are not symmetric along
both the parametric directions. With the same data considered for the B–splines basis functions,
we report in Figs. 11 and 12 the errors ẽp(k) and ẽs(k) vs. H obtained for p = 2, 3, and 4 and
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NURBS: ν = 0.1 and ϑ = 45◦ (θ = π/4).
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(a) ẽp(k) vs. H for α = 0 (b) ẽp(k) vs. H for α = p− 1
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(c) ẽs(k) vs. H for α = 0 (d) ẽs(k) vs. H for α = p− 1

Figure 12: P– and S–waves velocity errors ẽp(k) (top) and ẽs(k) (bottom) vs. H for ν = 0.4,
ϑ = 45◦ (θ = π/4), and p = 2, 3, 4; NURBS basis functions globally Cα–continuous with α = 0 (left)
and α = p− 1 (right).

ν = 0.1 with the angles of the wave vector ϑ = 0◦ and 45◦, respectively. We notice that the results
qualitatively resemble those obtained in Figs. 3 and 4. In particular, the same considerations about
the superiority of globally Cp−1–continuous basis functions still hold.

In Fig. 13 we report the anisotropic curves obtained with the globally C0– and C1–continuous
NURBS basis functions described previously; we consider both the cases of Poisson’s ratio ν = 0.1
and 0.4. Once again, we remark the superiority of the smooth basis with respect to the continuous
ones. We remark that the anisotropic curves are not any longer symmetric along the bisecting lines
of the quarters of the circle, since the NURBS basis is not symmetric.
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NURBS: p = 2.

 

 

0
◦

90
◦

180
◦

270
◦

0.75
1.0

1.25

ν = 0.1
ν = 0.4

 

 

0
◦

90
◦

180
◦

270
◦

0.75
1.0

1.25

ν = 0.1
ν = 0.4
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Figure 13: P– and S–waves velocity relative errors êp(k) (top) and ês(k) (bottom) vs. ϑ ∈ [0, 360◦)
(θ ∈ [0, 2π)) in polar coordinates, obtained with G = 4 (H = 0.25), for ν = 0.1 (blue) and
ν = 0.4 (red); NURBS basis functions of degree p = 2 and globally Cα–continuous with α = 0 (left)
and α = p− 1 = 1 (right).

27
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Figure 14: Sinusoidal type shaped valley for the simulation of the earthquake.

Material cp

[m
s

]
cs

[m
s

]
ρ

[
kg

m3

]
ζ

[
1

s

]

1 (“soft”) 0.7000 · 103 0.3500 · 103 1.900 · 103 3.141 · 10−2

2 (“hard”) 3.500 · 103 1.800 · 103 2.200 · 103 6.283 · 10−2

Table 1: Material parameters for the simulation of the earthquake.

6 Simulation of Seismic Waves

We consider the numerical approximation of the elastodynamics equations presented in Sec. 2 by
means of NURBS–based IGA in the framework of the Galerkin method with the aim of simulating
the propagation of seismic waves in a portion of the earth mantle. In particular, we consider an
earthquake event occurring in a sinusoidal valley, inspired by the problem proposed in [5, 15]; the
two–dimensional computational domain under consideration is depicted in Fig. 14. Specifically,
the simulation aims at reproducing a seismic event occurring in a valley composed of sediments as
sandstone, namely “soft” material, deposited over the course of thousands of years on a bedrock of
granite, namely “hard” material.

As anticipated, the computational domain Ω = (0, L)× (0, H) is represented in Fig. 14, where
L = 2 · 104m and H = 104m; the sinusoidal type valley of “soft” material is delimited by the
B–spline curve x(ξ) (3.5) determined by the knot vector Ξ = {0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1} and
control points P 1 = (0, Hv1)

T, P 2 = (∆Lv, Hv1)
T, P 3 = (2∆Lv, Hv2)

T, P 4 = (3∆Lv, Hv2)
T,

P 5 = (4∆Lv, Hv1)
T, and P 6 = (L,Hv1)

T, where Hv1 = (H − 102)m, Hv2 = (H − 103)m, and
∆Lv = 4 ·103m. Homogeneous Neumann boundary conditions are considered for the top boundary
of Ω, i.e. edge 3 in Fig. 14; on the edges 1, 2, and 4 the non–reflecting boundary conditions (2.4) are
imposed with the aim of simulating the propagation of the seismic waves only in a limited part of the
earth mantle, by avoiding significant reflections. The material properties are discontinuous across
the interface representing the valley, as reported in Table 1; we remark that the “harder” material
possesses higher compressional (cp) and shear (cs) wave velocities than the “softer” material. A
point source of seismic excitation is placed in the rock region. Specifically, following [5], the forcing
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term f of Eq. (2.1) is a point source load of the form:

f(x, t) = d(x) q(t), (6.1)

where the function d describes a Dirac distribution function in space:

d(x) = δ(x− P ) d̂, (6.2)

P = (104, 5 · 103)Tm is the source location, and d̂ = (1, 0)T the direction of the applied force; the
function q(t) in Eq. (6.1) represents the time history through a Ricker–type function defined as:

q(t) = q0
(
1− 2λ(t− t0)

2
)
e−λ(t−t0)2 , (6.3)

where q0 = 1010Nm−2 is a suitable scaling factor, t0 = 2 s is the time shift, and λ = 9.8696 s−1 is
a parameter determining the “width” of the wavelet. We are interested in the seismic propagation
of a time lapse of 30 s, for which T = 30 s, starting from the initial conditions u0 = u̇0 = 0.

For the spatial approximation we use NURBS–based Isogeometric Analysis in the framework
of the Galerkin method. NURBS basis functions of polynomial degree p = 2 are used in both
the parametric directions for representing the computational domain as well as for defining the
finite dimensional NURBS function space Nh for the solution of problem (4.6). The NURBS
basis functions are chosen as C1–continuous in the computational domain Ω except across the
curve representing the sinusoidal valley, where they are only C0–continuous; such basis functions
can be obtained as tensor product rule of the univariate B–splines basis depicted in Figs. 1(a)
and (b) (see Sec. 3). We remark that the flexibility of NURBS basis functions in allowing the local
reduction of the smoothness is particularly suitable in this case; indeed, the basis functions are
only C0–continuous through such interface, where the material properties are discontinuous and a
reduced regularity of the solution is expected. The NURBS space Nh is composed of Nbf = 13, 780
basis functions, with a quasi–uniform computational mesh with mesh elements of sizes indicatively
h1 ≃ 20m in the basin and h2 ≃ 150m in the bedrock. For the time discretization we use the fully
implicit, generalized–α method described in Sec. 4.2 for which we set the time step ∆t = 0.005 s
and ρ∞ = 0.5 for the definition of the parameters αm, αf , β, and γ characterizing the method.
Since the problem (2.1) is linear in the unknown u, in the case of smooth solutions, we expect a
second order convergence of the error with respect to the time discretization, as well as for the
spatial approximation error in seminorm H1, being basis functions of polynomial degree p = 2
used.

The propagation of the seismic waves in the earth mantle is illustrated in Fig. 15 at different
times. We notice the propagation of the waves from the source point P , where the forcing term is
located, and an amplification of the wave, when the seismic waves enters into the “soft” material
from the bedrock (Figs. 15(d) and (f)). In the Figs. 15(e)–(h) we observe that the main wave is
reflected from the internal interface, where the material properties are discontinuous, and travels a
second time upwards to the surface, without loosing a significant amount of energy. In Figs. 16 (a)–
(h) we compare the horizontal and vertical displacements recorded at the receivers stations R1–R4

reported in Fig. 14; we remark that the receiver R4 is placed at the same distance from the source
location as the two receivers R2 and R3 and that the receivers R1, R2, and R3 are located at the
surface of the valley, i.e. the “soft” material region. By comparing the displacements recorded in
R1, R2, and R3 we confirm that the displacement of the material remains significant in magnitude
for a longer period of time than in the bedrock material, where the amplitude of the seismic waves
is damped in a shorter period of time. Indeed, we remark that most of the seismic waves do not
cross the material interface immediately, but once entered in the “soft” material valley they are
basically trapped inside at significant amplitude for longer time than in the bedrock.
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(a) t = 1.5 s (b) t = 2.0 s

(c) t = 2.5 s (d) t = 3.0 s

(e) t = 4.0 s (f) t = 7.0 s

(g) t = 10.0 s (h) t = 13.0 s

Figure 15: Evolution of the seismic waves in the sinusoidal shaped valley: displacement magnitude
|u| ([m]) at different times.
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(a) Horizontal displacement recorded in R1 (b) Vertical displacement recorded in R1

(c) Horizontal displacement recorded in R2 (d) Vertical displacement recorded in R2

(e) Horizontal displacement recorded in R3 (f) Vertical displacement recorded in R3

(g) Horizontal displacement recorded in R4 (h) Vertical displacement recorded in R4

Figure 16: Computed horizontal u1 and vertical u2 displacements ([m]) vs. time t (scaled as
1/20 s) at the four receivers stations R1, R2, R3, and R4 highlighted in Fig. 14 (the displacements
magnitudes are on different scales).
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7 Conclusions

In this paper we numerically approximated the linear elastodynamics equations by means of
NURBS–based Isogeometric Analysis (IGA) in the framework of the Galerkin method, for which
we considered the numerical solution of elastic wave propagation problems, specifically in seismic
applications. In particular, we carried out a numerical dispersion analysis for the elastodynam-
ics equations, our focus being on the comparison of the use of globally C0– and Cp−1–continuous
NURBS basis functions, where p is the polynomial degree. In our discussion, we included the
anisotropic curves for two–dimensional problems, i.e. the study of the errors associated to the
compressional and shear wave velocities errors for different directions of the wave vector. Based
on such dispersion analysis, we conclude that the use of globally Cp−1–continuous NURBS basis
functions is more efficient than their C0–continuous counterpart of polynomial degree p. In fact, the
associated errors are significantly smaller when considering the same number of degrees of freedom.
However, we remark that a complete analysis should involve the comparison of the computational
costs associated to the use of NURBS basis functions with different regularity, a matter that should
be further investigated.
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