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Abstract

In this contribution we consider cardiovascular hemodynamic modeling in
patient-specific artery branches. To this aim, we first propose a procedure based
on non-uniform rational basis splines (NURBS) to parametrize the artery volume
which identifies the computational domain. Then, we adopt an isogeometric
hierarchically reducedmodel which suitably combines separation of variables with
a different discretization of the principal and of the secondary blood dynamics.
This ensures the trade-off desired in numerical modeling between efficiency and
accuracy, as shown by the good performances obtained in the numerical assessment
of the last section.

1 Introduction

In recent decades, much progress has been made in research towards the coupling of
medical imaging and computational fluid dynamics to study cardiovascular diseases [24].
The methods developed provide powerful tools to investigate the mechanism of diseases
and to design medical devices and therapeutic interventions. In this paper, we focus on
coronary arteries, which represent a common site for atherosclerotic lesion development.
Mechanical stresses resulting from intravascular pressure and flow may contribute to
the pathogenesis of atherosclerosis. In particular, flow perturbations associated with a
stenosis can modify the rate of plaque development, the direction of plaque extension
and the composition itself of the plaque. A detailed hemodynamic evaluation of the
disturbed flow and of the spatial and temporal flow distribution patterns may provide
an additional insight to understand the progression of atherosclerosis and may have
useful clinical value. Nevertheless, it is not trivial to measure local flow patterns and
mechanical forces in vivo with a sufficient accuracy.
Computational models become a useful tool in this regard [9]. In particular, reduced
models have been widely employed to contain the computational burden of standard
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three-dimensional models, with the aim of ensuring a trade-off between accuracy and
efficiency, for instance, in the prediction of benchmark quantities. In this work we
focus on hierarchically reduced models [8,18] to perform a preliminary analysis in car-
diovascular hemodynamics in a patient-specific framework. A first attempt, limited to
synthetic configurations, was carried out in [10]. In [16], the authors develop a specific
formulation of the hierarchical reduction to deal with real geometries. However, the
accuracy of the proposed method is shown to be lower than that of the approach in [10],
especially in the presence of highly oscillatory flows.
In this paper, after setting an ad-hoc procedure to build a NURBS volume parametriza-
tion of patient-specific arterial branches, we consider the isogeometric version of the
Hierarchical Model reduction, aka a HIgaMod reduction [19]. The main strength of
this approach is the capability to include in the modeling, while solving problems de-
fined in a one-dimensional (1D) domain, the transverse dynamics usually discarded by
downscaled models [9]. HIgaMod reduction exploits the idea of combining separation
of variables with a different numerical approximation, to take advantage from particular
features of the problem at hand. In more detail, along the mainstream we exploit the
high geometric efficiency and flexibility of an isogeometric approximation, ideal for
dealing with patient-specific geometries. The transverse components are modeled by a
suitable modal expansion. The rapid convergence of spectral approximations allows us
to capture the important features of the transverse dynamics with a relatively low num-
ber of modes. This results in accurate approximations with a lower number of degrees
of freedom compared with non-customized discretizations like classical finite element
solvers. Moreover, the use of an isogeometric discretization along the main stream al-
lows us to overcome the limits intrinsically related to a polar reference system [10]. The
numerical investigation carried out in the last section confirms the good performance
of HIgaMod reduction in terms of numerical reliability and efficiency, as well as when
employed to estimate common features used to assess the severity of stenotic lesions,
such as the Fractional Flow Reserve index.

2 Recontruction of patient-specific geometries

The reconstruction of a patient-specific geometry can be divided into four steps, namely,
the image acquisition, the segmentation and the processing of the image, the reconstruc-
tion of the volume surface and the parametrization of the enclosed volume. In this work,
we focus on the last step and, in particular, on the parametrization of segments of the
Left and of the Right Coronary Arteries (the LCA and the RCA, respectively).

Figure 1 shows two X-ray images from patients suffering from a Coronary Artery
(CA) disease1, together with the corresponding reconstructed volume surfaces. The
image segmentation and processing as well as the volume surface reconstruction are
performed using the Vascular Modeling Toolkit (VMTK) [3]. The specific algorithms
employed at this stage are not discussed here since beyond the goal of the paper. In

1the dataset here analyzed is publicly available in the Dropbox repository https://www.dropbox.
com/sh/ytn5g5idp507j4k/AAAjQOe-Zu9kZGiSH-Zxl4Boa?dl=0
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the sequel, we propose a new procedure to parametrize the volume enclosed by these
surfaces by resorting to non-uniform rational basis splines (NURBS) due to the great
flexibility and the high accuracy provided by these functions [7, 12] and with a view to
the model reduction performed in the next section.
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Figure 1. X-ray images of LCA and RCA trees (left panels) and corresponding volume surfaces (right
panels) reconstructed with VMTK.
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Figure 1: X-ray images of LCA and RCA trees (left panels) and corresponding volume
surfaces (right panels) reconstructed with VMTK.

2.1 NURBS representation of swept volumes

The parametrization of a generic three-dimensional (3D) volume turns out to be a
challenging task. In particular, it is not easy to find a unique method to successfully deal
with any geometry. Here, we consider the special class of swept volumes, i.e., volumes
which are obtained by moving through the space a two-dimensional (2D) shape (the
cross section of the lumen), whose geometry may vary during the sweep [1]. We are
interested in NURBS volumes, whose parametric representation is provided by

F(r, s, t) =
∑
i∈I

∑
j∈J

∑
k∈K

Ri jk (r, s, t)wi jkdi jk with (r, s, t) ∈ D = [0, 1]3, (1)

where the vector-valued coefficients di jk ∈ R
3 are the control points of the NURBS,

while
Ri jk (r, s, t) =

Ni,R (r)Nj,S (s)Nk,T (t)∑
i′∈I

∑
j′∈J

∑
k′∈K

wi′ j′k′Ni′,R (r)Nj′,S (s)Nk′,T (t)
(2)

denotes the rational spline basis function associated with di jk , wi jk ∈ R being the
corresponding weight [3]. Functions Ni,R , Nj,S , Nk,T (Ni′,R , Nj′,S , Nk′,T ) are B-
splines of a certain degree with respect to the knot vectors R, S and T , respectively
while the index sets for the control points, I, J ,K ⊂ Z, depend on the knot sequences
and on the degree of the B-splines [3].
The choice done for the domainD is very straightforward but consistent with the purpose
of the paper. Variable t is the sweep parameter and it is associated with the motion of
the 2D shape, which is parametrized by r and s. More precisely, F(r, s, t?) denotes the
surface identified by the value t? ∈ [0, 1] of the sweep parameter, with (r, s) ∈ [0, 1]2,
while the curve F(r†, s†, t), describes the trajectory of the point (r†, s†) ∈ [0, 1]2, when
t varies in [0, 1].
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Figure 2. Maps Rt? and R�1
t? (left); tracking of some guiding curves during the sweeping process (right).

curves, {cn(t)}l
n=0, are associated with specific points, Rt(r̃n, s̃n), images of the so-called anchors, (r̃n, s̃n),91

of the reference shape, whose trajectory is controlled in the sweeping process. With reference to the92

parametrization of CA geometries, we select as parameters to be tracked the baricenter, (r?, s?), of the93

artery cross section, and l points, {Rt(r̃n, s̃n)}l
n=1, of the boundary surface, so that the correspoding94

guiding curves, denoted by c?(t) = c0(t) and {cn(t)}l
n=1, respectively identify the centerline of the95

artery (provided by VMTK) and l curves along the lateral surface, Flat, of the artery (see Fig. 2, right).96

2.3. A variational approach97

We build the NURBS representation for the volume W by minimizing an objective functional, L,
which combines a standard mismatch contribution with geometric constraints. In particular, we solve
the minimization problem: find d? = arg mind L(d), where

L(d) =
l

Â
n=0

w(n)
Z 1

0
kF(r̃n, s̃n, t) � cn(t)k2 dt

| {z }
mismatch term

+ wO

Z

D

⌧
F(r, s, t) � c?(t),

∂tc?(t)
k∂tc?(t)k

�2

drdsdt
| {z }

orthogonality constraint

+ wR

Z

D

����∂tF(r, s, t) ⇥ ∂tc?(t)
k∂tc?(t)k

����
2

drdsdt
| {z }

rotation constraint

+ wC

Z

D
k∂tF(r, s, t)k2drdsdt

| {z }
regularity constraint

+
l

Â
n=1

w
(n)
S

Z 1

0
[hF(r?, s?, t) � F(r̃n, s̃n, t), Nn(t)i � nn]2 dt

| {z }
shape constraint

, (3)

with(r̃0, s̃0) = (r?, s?), k · k the Euclidean norm, < ·, · > the associated scalar product, ∂tc?(t) the tangent98
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points in (1) identifying a possible parametric representation for W. Moreover, since L is quadratic in d,106

we are led to solve a linear system in the unknowns dijk.107

Let us briefly comment now on the different contributions in (3), separately.108

The mismatch term simply minimizes the distance between the guiding curves and the points of G(t)109

Figure 2: MapsRt? andR−1
t?

(left); tracking of some guiding curves during the sweeping
process (right).

The two next sections are meant to formalize the approach adopted to provide a
parametric representation as in (1) for a volume surface furnished by VMTK. Such a
parametrization is not unique. In general, the weights, the control points, the degree
and the knot vector of the B-splines can be varied to identify F. Here, for the sake of
simplicity, we assume that the control points di jk constitute the only actual unknowns
of the proposed parametrization, while setting the weights to 1, the B-spline degree
to 3, and using uniformly distributed knots. Throughout the paper, we denote by
d = (di jk )i∈I, j∈J,k∈K the vector gathering the points of the whole control net.

2.2 Boundary surfaces, guiding curves and reference shape

The parametrization procedure is initiated starting from the volume surface provided
by VMTK. The first information we exploit is represented by the boundary surfaces,
Fin = F(r, s, 0) and Fout = F(r, s, 1), which confine the volume of interest, Ω. These
surfaces can be associated with the boundary nets, din = (di j minK )i∈I, j∈J and dout =

(di j maxK )i∈I, j∈J . When din and dout are specified, we can remove the corresponding
control points from the global set d of unknowns. In hemodynamics, surfaces Fin and
Fout coincide with the inflow and outflow profiles of the arterial segment and, in general,
are known.

The second information to be specified is represented by a set of (l + 1) functions,
cn : [0, 1] → R3 such that t 7→ cn(t) for n = 0, . . . , l, known as guiding curves.
These curves work as tracks driving the motion of the 2D curve, Γ = Γ(t), sweeping
the volume Ω. Moreover, it is standard to consider a map Rt : Γ̂ → Γ(t) with
(r, s) → Γ(t) = Rt (r, s) = F(r, s, t), modifying a planar reference shape, Γ̂, into
the moving surface, Γ(t). In Fig. 2, left we show an example of this map changing
the unit square into Γ(t?) = F(r, s, t?). We observe that the Cartesian coordinates
in Γ̂ become curvilinear in Γ(t?), and that the four vertices of Γ̂ split the boundary,
∂Γ(t?), of Γ(t?) into four portions. In general, the guiding curves, {cn(t)}l

n=0, are
associated with specific points, Rt (r̃n, s̃n), images of the so-called anchors, (r̃n, s̃n),
of the reference shape, whose trajectory is controlled in the sweeping process. With
reference to the parametrization of CA geometries, we select as parameters to be tracked
the baricenter, (r?, s?), of the artery cross section, and l points, {Rt (r̃n, s̃n)}l

n=1, of the
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boundary surface, so that the correspoding guiding curves, denoted by c?(t) = c0(t)
and {cn(t)}l

n=1, respectively identify the centerline of the artery (provided by VMTK)
and l curves along the lateral surface, Flat, of the artery (see Fig. 2, right).

2.3 A variational approach

We build the NURBS representation for the volumeΩ by minimizing an objective func-
tional,L, which combines a standard mismatch contribution with geometric constraints.
In particular, we solve the minimization problem: find d? = arg mind L(d), where

L(d) =
l∑

n=0
ω(n)

∫ 1

0
‖F(r̃n, s̃n, t) − cn(t)‖2 dt︸                                            ︷︷                                            ︸
mismatch term

+ωO

∫
D

〈
F(r, s, t) − c?(t),

∂tc?(t)
‖∂tc?(t)‖

〉2
drdsdt︸                                                       ︷︷                                                       ︸

orthogonality constraint

+ ωR

∫
D


∂tF(r, s, t) ×

∂tc?(t)
‖∂tc?(t)‖



2
drdsdt︸                                                 ︷︷                                                 ︸

rotation constraint

+ωC

∫
D

‖∂tF(r, s, t)‖2drdsdt︸                               ︷︷                               ︸
regularity constraint

+

l∑
n=1

ω(n)
S

∫ 1

0

[〈
F(r?, s?, t) − F(r̃n, s̃n, t),Nn(t)

〉
− νn

]2
dt︸                                                                       ︷︷                                                                       ︸

shape constraint

, (3)

with(r̃0, s̃0) = (r?, s?), ‖ · ‖ the Euclidean norm, < ·, · > the associated scalar product,
∂tc?(t) the tangent vector associated with the centerline, ∂tF(r, s, t) the tangent vector
to the curve Γ(t), × the standard cross product, Nn(t) = ċ?(t) ×

[
c?(t) + cn(t)

]
+

β(
[
ċ?(t) + ċn(t)

]
×

[
c?(t) + cn(t)

]
) the unit normal vector to the so-called ruled sur-

face [15], q(t, β) = (1− β)c?(t)+ βcn(t) with β ∈ [0, 1], generated by the pair of guiding
curves, c?(t) and cn(t), νn the desired distance between the two points F(r?, s?, t) and
F(r̃n, s̃n, t), and with ω(n), ωO, ωR, ωC , ω(n)

S
non-negative weights balancing the dif-

ferent contributions, with
∑l

n=0 ω
(n) + ωO + ωR + ωC +

∑l
n=1 ω

(n)
S
= 1. Albeit beyond

the purpose of this work, it can be proved the existence of at least a local minimum for
the objective functional. Vector d? will provide the control points in (1) identifying a
possible parametric representation for Ω. Moreover, since L is quadratic in d, we are
led to solve a linear system in the unknowns di jk .

Let us briefly comment now on the different contributions in (3), separately.
The mismatch term simply minimizes the distance between the guiding curves and the
points of Γ(t) associated with the anchors.
The orthogonality constraint imposes that the moving surface travels in the normal
plane with respect to the centerline, c?(t), of the artery. A priori one should ensure the
orthogonality of Γ(t) with respect to all the guiding curves. Nevertheless, for l > 1,
this is not trivial to be guaranteed even though possible (see, for instance, [1] where a
weighted average of the guiding curves is adopted for this purpose).
The rotation constraint enforces any possible torsion of Γ around the centerline to be
the closest as possible to zero during the whole sweeping procedure.
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Figure 3. Selected branch of a CA network (left) and NURBS representation of the swept volume (right).
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With a direct control on the derivative of the NURBS volume along t, the regularity constraint is meant to117

contain any possible oscillatory trend of W.118

With the shape constraint we control the change of the moving shape during the sweeping, by imposing119

that the distance between the centerline of the artery and each of the guiding curves is equal to nn.120

In Fig. 3, right we show the outcome of the procedure when applied to the VMTK volume surface in the121

left panel. As guiding curves we use the centerline of the artery and 24 curves equally spaced on the122

lateral surface. The maximum sampling distance is set to 4.1 · 10�4 [m], to benefit of the high accuracy123

ensured by the VMTK segmentation algorithm. The weights in (3) are set to w(n) = wO = w
(n)
S = 3V,124

wR = wC = V, with V = 0.5/(3l + 4), while nn = 0. All these values are preserved for the numerical125

assessment in Sect. 4.126

3. HIgaMod reduction for the Stokes equations127

We identify the computational domain W ⇢ R3 with the outcome of the parametrization procedure
detailed in the previous section. In W we approximate the standard Stokes equations
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⇥
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Figure 3: Selected branch of a CA network (left) and NURBS representation of the
swept volume (right).

With a direct control on the derivative of the NURBS volume along t, the regularity
constraint is meant to contain any possible oscillatory trend of Ω.
With the shape constraint we control the change of the moving shape during the sweep-
ing, by imposing that the distance between the centerline of the artery and each of the
guiding curves is equal to νn.
In Fig. 3, right we show the outcome of the procedure when applied to the VMTK
volume surface in the left panel. As guiding curves we use the centerline of the artery
and 24 curves equally spaced on the lateral surface. The maximum sampling distance is
set to 4.1 · 10−4 [m], to benefit of the high accuracy ensured by the VMTK segmentation
algorithm. The weights in (3) are set to ω(n) = ωO = ω(n)

S
= 3ς, ωR = ωC = ς,

with ς = 0.5/(3l + 4), while νn = 0. All these values are preserved for the numerical
assessment in Sect. 4.

3 HIgaMod reduction for the Stokes equations

We identify the computational domain Ω ⊂ R3 with the outcome of the parametrization
procedure detailed in the previous section. In Ω we approximate the standard Stokes
equations




∂τu(z, τ) + ∇p(z, τ) − ∇ · (2ν∇su)(z, τ) = f(z, τ) ∀z ∈ Ω, τ ∈ I = (0,T]
∇ · u(z, τ) = 0 ∀z ∈ Ω, τ ∈ I

u(z, τ) = g(z, τ) ∀z ∈ Fin, τ ∈ I

u(z, τ) = 0 ∀z ∈ Flat, τ ∈ I(
2ν∇su − pI

)
(z, τ)n(z) · n(z) = 0 ∀z ∈ Fout, τ ∈ I

u(z, 0) = u0(z) ∀z ∈ Ω,
(4)

where u is the velocity field, p is the kinetic pressure, ν > 0 is the kinematic viscosity,
∇su = 0.5

[
∇u + ∇uT ]

is the symmetric gradient of the velocity representing the
deformation of the velocity tensor, f is the force per unit mass, g is a given inflow
profile, I is the identity tensor, n is the unit outward normal vector to the domain
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boundary ∂Ω = Fin ∪ Fout ∪ Flat, with Fin, Fout and Flat defined as in the previous
section, and u0 is the assigned initial velocity. Problem (4) represents the so-called full
problem.

The isogeometric hierarchical discretization applies to the weak form of the full
problem. To simplify the notation, we assume g(z, τ) = 0 in (4) and we denote by ΓD
the whole portion of ∂Ω where Dirichlet data are imposed, so that we have: for any
τ ∈ I, find u = u(τ) ∈ V = [H1

ΓD
(Ω)]3 and p = p(τ) ∈ Q = L2(Ω), such that




∫
Ω

∂τu(τ) · v dΩ +
∫
Ω

2ν∇su(τ) : ∇v dΩ −
∫
Ω

p(τ)∇ · vdΩ =
∫
Ω

f(τ) · vdΩ ∀v ∈ V,∫
Ω

q∇ · u(τ)dΩ = 0 ∀q ∈ Q,

(5)
standard notation for function spaces being adopted. Problem (4) is completed with
suitable assumptions on the data in order to ensure the well-posedness of formulation
(5).
According to a HiMod reduction [8, 17, 18, 21], we introduce two different function
spaces to model the blood flow along the main stream and the transverse direction.
In particular, following [19], we employ an isogeometric approximation of the blood
flow along the centerline, c?(t), of Ω and a modal expansion to describe the dynamics
parallel to the slices Γ(t). Then, the computations are performed in a reference domain,
Ω̂, related to the physical domain, Ω, by the invertible maps Ψ : Ω → Ω̂, with z =
(x, y, z) → Ψ(z) = (Ψx (z),Ψy (z),Ψz (z)), and Φ : Ω̂ → Ω, with ẑ = ( x̂, ŷ, ẑ) →
Φ(ẑ) = (Φx̂ (ẑ),Φŷ (ẑ),Φẑ (ẑ)). We assume that Ψ and Φ are differentiable with respect
to z and ẑ, respectively. Moreover, with reference to the notation adopted in the previous
section, we have that Ω̂ ≡ D, ẑ = (t, r, s), Φ ≡ F and Ψ ≡ F−1.

Thus, the HIgaMod approximation for the velocity and the pressure in (4) is provided
by suitable functions belonging to the reduced spaces

Vmu =

{
vmu (z) =

mu∑
k=1

Nh,u∑
j=1

[ vx,k, j
vy,k, j
vz,k, j

]
R̂qu, j (Ψx (z))ϕ̂u,k (Ψy (z),Ψz (z))

}
,

Qmp =

{
pmp (z) =

mp∑
w=1

Nh,p∑
i=1

pw,i R̂qp,i (Ψx (z))ϕ̂p,w (Ψy (z),Ψz (z))
}
,

respectively, satisfying (5) after choosing v = R̂qu,b (Ψx (z))ϕ̂u,c (Ψy (z),Ψz (z)) and
q = R̂qp,e (Ψx (z))ϕ̂p, f (Ψy (z),Ψz (z)).Here, functions {R̂qu,b}

Nh,u

b=1 , {R̂qp,e}
Nh,p

e=1 denote
the NURBS of degree qu and qp, respectively defined in the interval [0, 1] and employed
to discretize u and p along the centerline, while functions {ϕ̂u,c }mu

c=1, {ϕ̂p, f }
mp

f=1 represent
the modal basis adopted to model the transverse behaviour of the velocity and of the
pressure, respectively. NURBS R̂qu,b and R̂qp,e have to include the boundary conditions
onFin andFout. Functions ϕ̂u,c and ϕ̂p, f are demanded to be orthonormal with respect to
the L2(Γ̂)-scalar product, with Γ̂ = (0, 1)2. Moreover, following [2], we adopt educated
modal bases which automatically include the boundary conditions assigned on Flat in an

7



essential way. This is achieved by solving an auxiliary (2D) Sturm-Liouville Eigenvalue
(SLE) problem, Lϕ = λϕ, in Γ̂ completed with the desired boundary data on ∂Γ̂. In
particular, we chooseL = ∆ for both the bases andwe assign homogeneousDirichlet and
homogeneous Neumann boundary data for the velocity and for the pressure, respectively
to impose the no-slip condition for u and free pressure along the lateral wall of the artery.
Additionally, thanks to the isogeometric approach, each 2D SLE problem reduces to two
1DSLEproblems, so that functions ϕ̂u,c (Ψy (z),Ψz (z)) and ϕ̂p, f (Ψy (z),Ψz (z)) coincide
with the products ϕ̂u,y,c (Ψy (z))⊗ ϕ̂u,z,c (Ψz (z)) and ϕ̂p,y, f (Ψy (z))⊗ ϕ̂p,z, f (Ψz (z)), with
ϕ̂u,y,c, ϕ̂p,y, f and ϕ̂u,z,c, ϕ̂p,z, f solutions to the 1D SLE problems along the y- and the
z-directions. This consideration allows us to skip all the issues intrinsically related to
the employment of a polar coordinate system [10]. Finally, we remark that, a priori,
one might adopt a different number of modes as well as different modal basis functions
for each component of the velocity. The choice done above is meant to simplify the
discussion.

Now, the HIgaMod approximation for problem (4) coincides with (5) formulated in
the spaces Vmu , Qmp , for given modal indices mu, mp ∈ N

+. The reduced spaces for
velocity and pressure are expected to fulfill an inf-sup condition [5]. While this issue has
been largely investigated for isogeometric and spectral methods [4,6], we are not aware
of theoretical results dealing with hybrid methods merging both the techniques. Here,
we adopt an empirical approach which proved to furnish reliable numerical results. In
particular, given a certain degree qu ≥ 2 for the NURBS associated with the velocity and
a certain modal index mu ≥ 3, the degree of NURBS {R̂qp,e}

Nh,p

e=1 is set to qp = qu − 1,
while the modal index for the pressure is chosen as mp = mu − 2. Additionally, an
inter-element continuity at most Cqu−2([0, 1]) is assumed for both the NURBS bases.
Modal indices set the accuracy of the HIgaMod discretization. In this work, we fix
index mu driven by a priori considerations. An adaptive selection of modal indices can
be pursued, for instance, by generalizing the analysis developed in [20, 22].
From a computational viewpoint, HIgaMod approximation allows us to solve a system of
coupled 1D problems instead of the full 3D one. The algebraic form of the semi-discrete
HigaMod approximation is



MxMxMx 0 0 0

0 MyMyMy 0 0

0 0 MzMzMz 0

0 0 0 0





u̇x

u̇y

u̇z

ṗ



+



AxAxAx BxyBxyBxy BxzBxzBxz PxPxPx

ByxByxByx AyAyAy ByzByzByz PyPyPy

BzxBzxBzx BzyBzyBzy AzAzAz PzPzPz

QxQxQx QyQyQy QzQzQz 0





ux

uy

uz

p



=



FxFxFx

FyFyFy

FzFzFz

0



, (6)

with Ms mass matrices, As, Bst and Ps, Qs the matrices coupling the velocity com-
ponents and velocity with pressure, respectively, Fs the source term of the momentum
equation and us and p the vectors collecting the HIgaMod (unknown) coefficients us,k, j
and pw,i, for the velocity and for the pressure, respectively, being s, t = x, y, z,
k = 1, . . . ,mu, j = 1, . . . , Nh,u, w = 1, . . . ,mp, i = 1, . . . , Nh,p. Then, each macroblock
shares the pattern typical of the HiMod reduction applied to a scalar problem [18]. The
time-dependence in (6) is finally tackled with the implicit Euler scheme.
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Figure 4. Test case 1: reconstruction of the original cerebrovascular network (left); branch representing
the domain W (center); trend of the stenotic profile along the centerline (right).

the inflow) radius. Fig. 4, right shows the profile of SP (z) compared with standard control values,179

SP ,1:4 = 25%, 50%, 75%, 100%.180

The problem data in (4) are set according to [13]. In particular, the density, r, and the dynamic181

viscosity, µ, of the fluid, such that n = µ/r, are set to 1160 [kg/m3] and to 4.5 · 10�3 [Pa · s], respectively182

to mimic the blood properties in medium size cerebral arteries. The velocity profile imposed at the inflow183

is set in the normal direction and with a constant value equal to the velocity expected in this region of184

the arterial tree, i.e., g(z) = ḡn with ḡ ⇡ 0.25 [m/s] and z 2 Fin.185

We approximate the solution to (4) by resorting both to a standard FE solver [11] and the HIgaMod186

discretization. The FE approximation is computed by resorting to a P2 � P1 basis associated with a187

3D mesh consisting of 116104 elements, with a maximum diameter equal to 10�5. Concerning the188

HIgaMod discretization, we adopt the empirical recipe provided in Sect. 3 to ensure the fulfillment189

of the inf-sup condition, by setting qu = 2, mu = 5, and by introducing a knot partition of [0, 1] with190

a uniform step hx = 4 · 10�2 for both NURBS {R̂qu ,b}
Nh,u
b=1 and {R̂qp ,e}

Nh,p
e=1 . Fig. 5 compares the results191

provided by the FE and the HIgaMod approximations. From a qualitative point of view, the results are192

fully comparable. The reliability of the HIgaMod solution is confirmed also by quantifying the modeling193

error with respect to both the L2(W)- and the H1(W)-norms, being kuFE � umukL2(W) = 1.4 · 10�3,194

kpFE � pmpkL2(W) = 2.7 · 10�4 and kuFE � umukH1(W) = 7.1 · 10�2, kpFE � pmpkH1(W) = 3.9 · 10�2,195

respectively with uFE, pFE the FE approximation. As expected, the gain provided by the reduced model196

in terms of efficiency is significant. Indeed, the HIgaMod approximation demands 109.732 [s] to be197

compared with 493.281 [s] required by the FE solver3. This is due to the lower number of HIgaMod198

degrees of freedom (DOFs) (i.e., 2100) with respect to the ones characterizing the FE solution (i.e., 563001).199

200

4.2. Test case 2: a stenotic lesion in a coronary artery201

The reliability of HIgaMod in clinical practice is verified by extracting a portion of the coronary202

artery network both from a healthy (the control study) person and from a patient suffering from a203

severe stenotic lesion (see the left panels in Fig. 1). The volume parametrization of the stenotic artery204

turns out to be particularly challenging. Indeed, it exhibits some rotations and oscillations moving205

along the centerline. Despite that, it succeeds in detecting the features of the domain relevant for the206

simulation. The first two panels in Fig. 6 display the stenotic severity along the centerline both for the207

3 the computations have been run on a personal computer with a 2.2 GHz 6-Core Intel Core i7 processor (CPU 8750H) and 16
GB 2400 MHz LPDDR4 SDRAM.

Figure 4: Test case 1: reconstruction of the original cerebrovascular network (left);
branch representing the domain Ω (center); trend of the stenotic profile along the
centerline (right).

4 Numerical assessment

In this section we investigate the reliability of the HIgaMod approximation on two
patient-specific geometries. This investigation is performed by comparing HIgaMod
with a standard finite element (FE) discretization, also to verify the efficiency charac-
terizing the reduced modeling with respect to a full one. The second test case is meant
to check the applicability of HIgamod in clinical analysis as well.

4.1 Test case 1: blood flow in a cerebrovascular arterial branch

We consider a segment of the cerebrovascular network shown in Fig. 4, left2. The com-
putational domain (shown in Fig. 4, center) is generated by resorting to the reconstruction
procedure in Sect. 2. We evaluate the stenotic severity of the arterial branch by com-
puting, for any z along the centerline, the stenotic profile SP (z) = 100 · RD (z)/RP [%],
where RD (z) is the maximum inscribed distal (i.e, at the outflow) radius measured
at z, while RP measures the maximum inscribed proximal (i.e, at the inflow) ra-
dius. Fig. 4, right shows the profile of SP (z) compared with standard control values,
SP,1:4 = 25%, 50%, 75%, 100%.

The problem data in (4) are set according to [13]. In particular, the density, ρ, and
the dynamic viscosity, µ, of the fluid, such that ν = µ/ρ, are set to 1160 [kg/m3] and to
4.5 · 10−3 [Pa · s], respectively to mimic the blood properties in medium size cerebral
arteries. The velocity profile imposed at the inflow is set in the normal direction and
with a constant value equal to the velocity expected in this region of the arterial tree,
i.e., g(z) = ḡn with ḡ ≈ 0.25 [m/s] and z ∈ Fin.

We approximate the solution to (4) by resorting both to a standard FE solver [11]
and the HIgaMod discretization. The FE approximation is computed by resorting to
a P2 − P1 basis associated with a 3D mesh consisting of 116104 elements, with a
maximum diameter equal to 10−5. Concerning the HIgaMod discretization, we adopt
the empirical recipe provided in Sect. 3 to ensure the fulfillment of the inf-sup condition,
by setting qu = 2, mu = 5, and by introducing a knot partition of [0, 1] with a uniform

2the data used in this analysis comes from the ANEURYSK project and is publicly available in the
repository http://ecm2.mathcs.emory.edu/aneuriskweb/index
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step hx = 4 · 10−2 for both NURBS {R̂qu,b}
Nh,u

b=1 and {R̂qp,e}
Nh,p

e=1 . Fig. 5 compares the
results provided by the FE and the HIgaMod approximations. From a qualitative point
of view, the results are fully comparable. The reliability of the HIgaMod solution is
confirmed also by quantifying the modeling error with respect to both the L2(Ω)- and
the H1(Ω)-norms, being ‖uFE − umu ‖L2 (Ω) = 1.4 · 10−3, ‖pFE − pmp ‖L2 (Ω) = 2.7 · 10−4

and ‖uFE − umu ‖H1 (Ω) = 7.1 · 10−2, ‖pFE − pmp ‖H1 (Ω) = 3.9 · 10−2, respectively with
uFE, pFE the FE approximation. As expected, the gain provided by the reduced model
in terms of efficiency is significant. Indeed, the HIgaMod approximation demands
109.732 [s] to be compared with 493.281 [s] required by the FE solver3. This is due to
the lower number of HIgaMod degrees of freedom (DOFs) (i.e., 2100) with respect to
the ones characterizing the FE solution (i.e., 563001).
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healthy (S (h)
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p (z)) patient, still compared with reference control values. The208

criticality of the stenosis is highlighted by the trend of S (s)
p in the second panel.209

The data in (4) are chosen following [13], with a blood density, r, and dynamic viscosity, µ, set to210

1060 [kg/m3] and 5 · 10�3 [Pa · s], respectively to simulate the blood properties in large size coronary211

arteries. As in the previous test case, we impose at the inflow a velocity profile in the normal direction212

and with a constant value, being g(z) = ḡn with ḡ ⇡ 0.1 [m/s] and z 2 Fin.213

We start by considering the blood flow modeling in the healthy branch. For the sake of comparison,214

we resort to a P2 �P1 FE discretization on a 3D mesh consisting of 72630 tetrahedra [11], with a maximum215

diameter equal to 10�5, and to a HIgaMod discretization based on a knot partition of [0, 1] with a uniform216

step, hx = 2 · 10�2, for the NURBS associated both with the velocity and the pressure, and on the values217

qu = 2 and mu = 7. Figure 7 shows the pressure and the velocity trend for both the approximations. The218

matching is good, with slight differences in the pressure distribution towards the outflow section.219

We consider now the stenotic patient. The reference P2 � P1 FE solution is computed on a220

mesh constituted by 145328 elements, and exhibiting a strong refinement in correspondence with221

the stenosis [11]. As far as the HIgaMod discretization is concerned, we set mu = 9, qu = 3 and we adopt222

a uniform knot partition of [0, 1] with step hx = 5 · 10�3 to define the NURBS functions {R̂qu ,b}
Nh,u
b=1 and223

{R̂qp ,e}
Nh,p
e=1 . We relax the inter-element regularity by decreasing it to Cqu�3. The locally refined mesh224

used for the FE simulation as well as the high order HIgaMod discretization combined with the relaxed225

inter-element continuity have proved to be necessary to deal with the steep gradients characterizing the226

velocity in the stenotic region and to avoid the generation of spurious oscillations. Figure 8 gathers the227

pressure and the velocity yielded by the two discretizations. The reliability of HIgaMod is confirmed228

also for this challenging geometric configuration. Both p and u are correctly described despite the229

severe stenotic area which strongly influences the local blood dynamics. The accuracy of the HIgaMod230

approximation is quantitatively corroborated by the L2- and by the H1-norm of the modeling error231

computed with respect to the FE approximation, (uFE, pFE), being kuFE � umukL2(W) = 1.2 · 10�3,232

kpFE � pmpkL2(W) = 9.7 · 10�3 and kuFE � umukH1(W) = 4.4 · 10�2, kpFE � pmpkH1(W) = 8.5 · 10�2,233

respectively. The gain in terms of computational time provided by HIgaMod is remarkable, the HIgaMod234

discretization demanding about a quarter of the time required by the FE solver (153.334 [s] for HIgaMod235

to be compared with 646.081 [s] for FE).236

We now move to the clinical investigation. In particular, we focus on the numerical computation of237

the Fractional Flow Reserve (FFR) index. FFR is used in coronary catheterization to measure pressure238

differences across a coronary artery stenosis to determine the likelihood that the stenosis impedes239

Figure 5. Test case 1: comparison between FE (left) and HIgaMod (right) approximations.

Figure 5: Test case 1: comparison between FE (left) and HIgaMod (right) approxima-
tions.

4.2 Test case 2: a stenotic lesion in a coronary artery

The reliability of HIgaMod in clinical practice is verified by extracting a portion of
the coronary artery network both from a healthy (the control study) person and from a
patient suffering from a severe stenotic lesion (see the left panels in Fig. 1). The volume
parametrization of the stenotic artery turns out to be particularly challenging. Indeed,
it exhibits some rotations and oscillations moving along the centerline. Despite that, it
succeeds in detecting the features of the domain relevant for the simulation. The first
two panels in Fig. 6 display the stenotic severity along the centerline both for the healthy
(S (h)

p (z)) and for the stenotic (S (s)
p (z)) patient, still compared with reference control

values. The criticality of the stenosis is highlighted by the trend of S (s)
p in the second

panel.
The data in (4) are chosen following [13], with a blood density, ρ, and dynamic

viscosity, µ, set to 1060 [kg/m3] and 5 · 10−3 [Pa · s], respectively to simulate the blood
properties in large size coronary arteries. As in the previous test case, we impose at

3the computations have been run on a personal computer with a 2.2 GHz 6-Core Intel Core i7 processor
(CPU 8750H) and 16 GB 2400 MHz LPDDR4 SDRAM.
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Figure 6. Test case 2: trend of the stenotic profile and of the FFR index along the centerline for the control
study case (first and third panel) and for the sick patient (second and fourth panel).

Figure 7. Test case 2, healthy patient: comparison between FE (left) and HIgaMod (right) approximations.

oxygen delivery to the heart muscle (myocardial ischemia). More rigorously, FFR is defined as the240

pressure after (distal to) a stenosis relative to the pressure before (proximal to) the stenosis. In clinical241

practice, patients with FFR values close to the treatment threshold (0.81 � 0.85) have a higher likelihood242

of future major adverse cardiac events when compared with patients with a near normal FFR value243

(0.96 � 1.0) [14]. To reliably exclude the presence of functionally significant stenoses, a threshold equal to244

0.80 is routinely used to increase measurement sensitivity. Here we have computed as possible estimate245

for the FFR index the ratio between the pressure along the centerline and the pressure at the inflow,246

by modeling the pressure both with the FE and the HIgaMod approximations. The two last panels247

in Fig. 6 show the trend of this ratio for the healthy and for the stenotic patients. The two methods248

predict essentially the same index variation for the control subject, being FFRFE(t) � 97.94% for the FE249

solver and FFRHIgaMod(t) � 97.96% for the HIgaMod approximation, with t 2 [0, 1]. This patient clearly250

belongs to a risk-free zone in the reference spectrum according to both the models. On the contrary, a251

slight mismatch can be appreciated when comparing the FFR evolution along the centerline of the ill252

patient, although both the models detect the sharp fall of the pressure due to the severe arterial occlusion253

(the stenotic profile reaches approximately 85% in a neighborhood of t = 0.53). In particular, the location254

along the centerline where the critical values FFR1 = 75% and FFR2 = 80% are reached coincide with255

tFE,1 = 0.5149 and tFE,2 = 0.5223 with the FE solver and with tHIgaMod,1 = 0.5153 and tHIgaMod,2 = 0.5229256

for the HigaMod solver. These results show that both solvers identify this patient with a high risk profile.257

The last results are very promising, although preliminary. They show that HIgaMod reduction258

allows us to reach a level of clinical accuracy fully comparable with the one provided by the full FE259

solver, while ensuring a remarkable reduction in computational costs, here understood in terms of260

computational time, number of DOFs and memory requirement.261

Figure 6: Test case 2: trend of the stenotic profile and of the FFR index along the
centerline for the control study case (first and third panel) and for the sick patient
(second and fourth panel).

the inflow a velocity profile in the normal direction and with a constant value, being
g(z) = ḡn with ḡ ≈ 0.1 [m/s] and z ∈ Fin.

We start by considering the blood flow modeling in the healthy branch. For the
sake of comparison, we resort to a P2 − P1 FE discretization on a 3D mesh consisting
of 72630 tetrahedra [11], with a maximum diameter equal to 10−5, and to a HIgaMod
discretization based on a knot partition of [0, 1]with a uniform step, hx = 2 ·10−2, for the
NURBS associated both with the velocity and the pressure, and on the values qu = 2 and
mu = 7. Figure 7 shows the pressure and the velocity trend for both the approximations.
The matching is good, with slight differences in the pressure distribution towards the
outflow section.
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Figure 6. Test case 2: trend of the stenotic profile and of the FFR index along the centerline for the control
study case (first and third panel) and for the sick patient (second and fourth panel).

Figure 7. Test case 2, healthy patient: comparison between FE (left) and HIgaMod (right) approximations.

oxygen delivery to the heart muscle (myocardial ischemia). More rigorously, FFR is defined as the240

pressure after (distal to) a stenosis relative to the pressure before (proximal to) the stenosis. In clinical241
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tFE,1 = 0.5149 and tFE,2 = 0.5223 with the FE solver and with tHIgaMod,1 = 0.5153 and tHIgaMod,2 = 0.5229256

for the HigaMod solver. These results show that both solvers identify this patient with a high risk profile.257

The last results are very promising, although preliminary. They show that HIgaMod reduction258

allows us to reach a level of clinical accuracy fully comparable with the one provided by the full FE259

solver, while ensuring a remarkable reduction in computational costs, here understood in terms of260

computational time, number of DOFs and memory requirement.261

Figure 7: Test case 2, healthy patient: comparison between FE (left) and HIgaMod
(right) approximations.

We consider now the stenotic patient. The reference P2 − P1 FE solution is com-
puted on a mesh constituted by 145328 elements, and exhibiting a strong refinement
in correspondence with the stenosis [11]. As far as the HIgaMod discretization is
concerned, we set mu = 9, qu = 3 and we adopt a uniform knot partition of [0, 1]
with step hx = 5 · 10−3 to define the NURBS functions {R̂qu,b}

Nh,u

b=1 and {R̂qp,e}
Nh,p

e=1 .
We relax the inter-element regularity by decreasing it to Cqu−3. The locally refined
mesh used for the FE simulation as well as the high order HIgaMod discretization
combined with the relaxed inter-element continuity have proved to be necessary to deal
with the steep gradients characterizing the velocity in the stenotic region and to avoid

11
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Figure 8. Test case 2, stenotic patient: comparison between FE (left) and HIgaMod (right) approximations.

As a possible follow-up of this work, we cite the extension of the approach here proposed to an262

arterial network, the introduction of simplified fluid-structure models to include the effect of the arterial263

wall and the generalization of the HIgaMod discretization to a parameter dependent setting to properly264

include patient data.265
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Figure 8: Test case 2, stenotic patient: comparison between FE (left) and HIgaMod
(right) approximations.

the generation of spurious oscillations. Figure 8 gathers the pressure and the velocity
yielded by the two discretizations. The reliability of HIgaMod is confirmed also for
this challenging geometric configuration. Both p and u are correctly described despite
the severe stenotic area which strongly influences the local blood dynamics. The ac-
curacy of the HIgaMod approximation is quantitatively corroborated by the L2- and by
the H1-norm of the modeling error computed with respect to the FE approximation,
(uFE, pFE), being ‖uFE − umu ‖L2 (Ω) = 1.2 · 10−3, ‖pFE − pmp ‖L2 (Ω) = 9.7 · 10−3 and
‖uFE − umu ‖H1 (Ω) = 4.4 · 10−2, ‖pFE − pmp ‖H1 (Ω) = 8.5 · 10−2, respectively. The gain
in terms of computational time provided by HIgaMod is remarkable, the HIgaMod dis-
cretization demanding about a quarter of the time required by the FE solver (153.334 [s]
for HIgaMod to be compared with 646.081 [s] for FE).

We now move to the clinical investigation. In particular, we focus on the numerical
computation of the Fractional Flow Reserve (FFR) index. FFR is used in coronary
catheterization to measure pressure differences across a coronary artery stenosis to
determine the likelihood that the stenosis impedes oxygen delivery to the heart muscle
(myocardial ischemia). More rigorously, FFR is defined as the pressure after (distal to)
a stenosis relative to the pressure before (proximal to) the stenosis. In clinical practice,
patients with FFR values close to the treatment threshold (0.81 − 0.85) have a higher
likelihood of future major adverse cardiac events when compared with patients with a
near normal FFR value (0.96−1.0) [14]. To reliably exclude the presence of functionally
significant stenoses, a threshold equal to 0.80 is routinely used to increase measurement
sensitivity. Here we have computed as possible estimate for the FFR index the ratio
between the pressure along the centerline and the pressure at the inflow, by modeling
the pressure both with the FE and the HIgaMod approximations. The two last panels
in Fig. 6 show the trend of this ratio for the healthy and for the stenotic patients. The
two methods predict essentially the same index variation for the control subject, being
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FFRFE(t) ≥ 97.94% for the FE solver and FFRHIgaMod(t) ≥ 97.96% for the HIgaMod
approximation, with t ∈ [0, 1]. This patient clearly belongs to a risk-free zone in the
reference spectrum according to both the models. On the contrary, a slight mismatch
can be appreciated when comparing the FFR evolution along the centerline of the ill
patient, although both the models detect the sharp fall of the pressure due to the severe
arterial occlusion (the stenotic profile reaches approximately 85% in a neighborhood
of t = 0.53). In particular, the location along the centerline where the critical values
FFR1 = 75% and FFR2 = 80% are reached coincide with tFE,1 = 0.5149 and tFE,2 =

0.5223 with the FE solver and with tHIgaMod,1 = 0.5153 and tHIgaMod,2 = 0.5229 for the
HigaMod solver. These results show that both solvers identify this patient with a high
risk profile.

The last results are very promising, although preliminary. They show that HIgaMod
reduction allows us to reach a level of clinical accuracy fully comparable with the one
provided by the full FE solver, while ensuring a remarkable reduction in computational
costs, here understood in terms of computational time, number of DOFs and memory
requirement.

As a possible follow-up of this work, we cite the extension of the approach here
proposed to an arterial network, the introduction of simplified fluid-structure models to
include the effect of the arterial wall and the generalization of theHIgaMod discretization
to a parameter dependent setting to properly include patient data.
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