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Abstract

We propose a new method for robust classification of multivariate func-
tional data. We exploit the joint use of two different depth measures, gen-
eralizing the outliergram to the multivariate functional framework, aiming
at detecting and discarding both shape and magnitude outliers in order to
robustify the reference samples of data, composed by G different known
groups. We asses by means of a simulation study method’s performance in
comparison with different outlier detection methods. Finally we consider
a real dataset: we classify a data minimizing a suitable distance from the
center of reference groups. We compare performance of supervised classi-
fication on test sets training the algorithm on original dataset and on the
robustified one, respectively.

1 Introduction

Nowadays biomedical and healthcare studies produce more and more frequently
data like signals, images and vital parameters (or a combination of these). This
drives statistical research towards the identification of suitable models and infer-
ential techniques for handling the complexity of such data. We focus our study
on multivariate functional data, i.e., data where each observation is a set of pos-
sibly correlated functions of time observed at discrete points. These functions
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can be viewed as trajectories of stochastic processes defined on a given infinite
dimensional functional space. Among others, well-knonw examples of such kind
of data are the bivariate gait data set containing the simultaneous variation of
the hip and knee angles of children (see Ramsay and Silverman (2005)), daily
temperatures measured at 3, 9 and 12 cm below ground during 21 days (see
Berrendero et al. (2011)), or 8-lead electrocardiagram (ECG) data studied in
Ieva et al. (2013).

In such a context, the problem of outlier detection is a crucial point for a
number of reasons. In fact, outliers are often considered as an error or noise,
instead, they may carry important information on the phenomenon under study.
Moreover, if not properly identified, they may lead to model misspecification,
biased parameter estimation and incorrect results, especially in Functional Data
Analysis, where the number of available statistical units is lower than the num-
ber of parameters. It is therefore important to identify them prior to modelling
and data analysis. Febrero-Bande et al. (2008) identify two reasons for the pres-
ence of outliers in functional data. First, gross errors can be caused by errors in
measurements and recording or typing mistakes, which should be identified and
corrected if possible. Second, outliers can be correctly observed data curves that
do not follow the same pattern as that of the majority of the curves. Moreover,
in spite of the multivariate context, in the functional one there is no general
definition of outliers. In fact, their nature is at least threefold: data may be am-
plitude outlier (the direct generalization of multivariate outliers), shape outlier
(i.e., outliers with reapect to the phase), or covariance outlier, i.e., generated
by a model that is different from the model of the central bulk of data in term
of the variance-covariance operator, as detailed in Tarabelloni and Ieva (2016).
In any case, their presence often depends on assumptions regarding the hidden
structure of data and the applied detection method. Yet, some definitions are
general enough to cope with various types of data and methods. In Hawkins
(1980) the author defines an outlier as “an observation that deviates so much
from other observations as to arouse suspicion that it was generated by a different
mechanism”.

In general, there are two ways to treat outliers in a data sample: i) to
apply outlier-detection tools and remove outlying observations from the dataset
before starting the analysis and the inference; ii) to robustify the estimators
adopted for carrying out the inference. Any combination of the two are also
allowed. The first option requires to point out and tune suitable methods for the
effective identification of outliers. Its aim is the robustification of the sample. In
other words, it focuses on mantaining only the most representative observations,
purging the sample of outliers. The second method, on the other hand, directly
targets the robustification of estimators, in order not to let them to be affected
by the presence of outlying observations. This is more concerned with the field of
robust statistics. Some examples of robust estimators and practices may be found
in Gervini (2008), Kraus and Panaretos (2012), Tarabelloni and Ieva (2016),
among others.
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In this paper we adopt the first approach and address the problem of robus-
tifying a dataset of curves in order to improve the performances in classification
and prediction of the cluster a new statistical unit belongs to. In particular we
consider an application to the study of electocardiographic curves (ECGs). The
dataset under study gathers more than two thousand signals with an associated
clinical diagnosis. In particular, for this study we deal with three different groups
(that we will call reference samples): healthy poeple, patients affected by Right
and Left Bundle Brunch Block (a particular kind of Acute Myocardial Infarc-
tion) respectively. Our goal is to carry out a semi-automatic diagnosis of a new
signal allocating it to one of the three groups on the basis of the curve morphol-
ogy. Since this operation may strongly be biased by the presence of outliers, we
aim at proving that the prediction performance may be improved if we robustify
the reference samples. In fact, the presence of atypical observations may affect
the statistical analysis even more in the context of supervised clustering, making
the recognition of similarity patterns among curves more difficult. Therefore, we
propose a new method (namely MOUT - Multivariate OUTliergram), consisting
in the joint use of two different depth measures, to detect and discard both shape
and magnitude outliers in order to robustify the reference samples and improve
the assignment procedure of a new statistical unit, as explained in the following.

The new tool we propose is not the only one existing for outlier detection
in multivariate functional case. Therefore, another main aim of this paper
is to compare its performance with those provided by the main competitors,
i.e., the Multivariate Functional Boxplot (MFB) proposed in Ieva and Paganoni
(2013b), the Central Stability Plot (CSP) proposed in Hubert et al. (2015) and
the Time OUtlier (TOU), consisting in the application of the Half-Space Depth
of Claeskens et al. (2014) at each time point, declaring outliers those data la-
belled as outlier in one at least one time instance. All the methods are presented
and discussed in details in Section 3. In so doing, we would like to provide a
taxonomy of outlier detection methods for multivariate functional data.

The paper is organized as follows: In Section 2 the proposal of the new out-
lier detection method for multivariate functional data is given, starting from the
definition of the indexes that are needed for its construction; in Section 3 the
performances of the different multivariate functional outlier detection methods
are tested and compared using some simulated datasets of multivariate func-
tional data. Without loss of generality, we considered bivariate functional data
samples and contaminated them whit different percentage of outliers. Finally, in
Section 4 a real case study on Electrocardiographic (ECG) signals is considered,
in order to show the impact of robustification in a real setting. Then result are
discussed, together with potential further developments in Section 5.

All the analyses are carried out using the software R (R Core Team (2013)).
The codes are available from the authors upon request, and a library for the
computation of depth indexes in (multivariate) functional framework is available
upon request at the BitBucket Repository (https://bitbucket.org/ntarabelloni/roahd).
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2 Outlier Detection Tools in Multivariate Functional

Data

As mentioned in the Introduction, there are mainly two approaches for dealing
with outliers in multivariate functional case. Here we face the problem of outlier
detection in multivariate functional data following a diagnostic approach, i.e., it-
eratively discarding outliers from the sample until no more outliers are detected.
This is aimed at robustifying the samples as a preliminar step before performing
an assignment of a new statistical units to one of the groups that are present in
our data.

To this aim we will propose a new method for outlier detection in multivariate
functional setting, based on the outliergram introduced in Arribas-Gil and Romo
(2014), namely the Multivariate OUTliergram (MOUT). This generalization is
introduced and relative results are provd in Subsection (2.1).

As the original version of the outliergram, MOUT performs at best in de-
tecting shape outliers, i.e., data that are outliers in terms of phase more than
in amplitude. These are often more complex to identify, since the ways a data
may be outlier in terms of shape are much more with respect to the ways a data
may be outlier in terms of amplitude (essentially traslational way).

Since, as we said before, no general definition of outlier exists, the same is
for the methods adopted for identifying them, and a number of issuses arise (see
Tarabelloni and Ieva (2016) for deeper discussion on this). This is the reason
why we decided to rely on the features provided by the outliergram, showin that
they are more effective than the other proposals, at least in the majority o cases
where shape outliers are present. We then propose in Section (3) a comparison
of the performances o out method with three competitors based on some results
and graphical tools introduced in Sun and Genton (2012), Ieva and Paganoni
(2013b) and Hubert et al. (2015).

2.1 The multivariate outliergram

For introducing the MOUT, let us start recalling the definition of Modified Band
Depth (MBD) for univariate functional data introduced in Lopez-Pintado and
Romo (2009) and Lopez-Pintado and Romo (2011). Given a stochastic process
X taking values on the space C(I) of real continuous functions on the compact
interval I, the empirical version of the band depth of order J ≥ 2 for a function
f ∈ C(I) is

BDJ
X(f) =

J
∑

j=1

(

N

j

)−1
∑

i1<i2<...,<ij

I
{

G(f) ∈ B(fi1 , ..., fij ), ∀t ∈ I
}

, (1)

where the subset of the plane G(f) = {(t, f(t)) : t ∈ I} is the graph of the func-
tion f . B(f1, f2, ..., fj) is the band in R

2 delimited by f1, f2, ..., fj , realizations
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of independent copies of the stochastic process X, is defined as

B(f1, f2, ..., fj) = {(t, y(t)) : t ∈ I, min
r=1,...,j

fr(t) ≤ y(t) ≤ max
r=1,...,j

fr(t)}, j = 2, ..., J.

To overcome the problem of heavy ties due to the presence of the indicator
function, Lopez-Pintado and Romo (2009) proposed the Modified Band Depth
(MBD), where the time interval that f spends in the random band is weighted
over I. The empirical version of the MBD is

MBDJ
X(f) =

J
∑

j=2

(

n

j

)−1
∑

1≤i1<i2<···<ij≤n

λ̃{E(f ; fi1 , ..., fij )}, (2)

whereE(f) := E(f ; fi1 , ..., fij )={t ∈ I,minr=i1,...,ij fr(t) ≤ f(t) ≤ maxr=i1,...,ij fr(t)}

and λ̃(g) = λ(E(g))/λ(I) with λ the Lebesgue measure on I. In Lopez-Pintado
and Romo (2009), authors state that while the choice of J clearly increases the
magnitude of depth, it does not affect the induced ordering and therefore the
ranks. This was supported by a simulation study in Tarabelloni et al. (2015).
So given a set of curves (f, f1, ...fn) the MBD of f , that we will denote by
MBDJ

{f1,...,fn}
(f), measures the proportion of time interval I where the graph

of f belongs to the envelopes of the j-tuples (gi1 , ..., gij ), j = 2, . . . , J .

On the other hand, we recall also the definition and Modified Epigraph Index
(MEI) for univariate functional data introduced introduced in Lopez-Pintado
and Romo (2011). Given a stochastic process X taking values on the space C(I)
the empirical version of the epigraph index of a function f ∈ C(I) is

EIX(f) =
1

n

n
∑

i=1

I {fi(t) ≥ f(t), ∀t ∈ I} , (3)

where f1, f2, ..., fn are realizations of independent copies of the stochastic process
X. As before, to overcome the problem of heavy ties is more suitable to use the
MEI, whose empirical version is

MEIX(f) =
1

n

n
∑

i=1

λ̃({t ∈ I, fi(t) ≥ f(t)}). (4)

So given a set of curves (f, f1, ...fn) the MEI of f , that we will denote by
MEIJ{f1,...,fn}(f), accounts for the mean proportion of time interval I where
f lies below the curves of the sample.

Two are the different notions of depth measures for multivariate functional
data proposed in literature: see Claeskens et al. (2014) and Ieva and Paganoni
(2013b). Here we propose a generalization also of the MEI according to the one
of MBD introduced in Ieva and Paganoni (2013b). Let X be a stochastic pro-
cess taking values in the space C(I;Rh) of continuous functions f = (f1, ..., fh) :
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I → R
h, where I is a compact interval of R. We have a dataset Fn constituted

of n ∈ N sample observations of this process, which we indicate by f1, . . . , fn,
fj = (fj1, ..., fjh). The MBD of f with respect to Fn becomes then

MBDJ
{f1,...,f1}

(f) =

h
∑

k=1

pkMBDJ
{f1k ,...,fnk}

(fk); (5)

with pk > 0 ∀ k = 1, ..., h,
∑h

k=1 pk = 1. Analogously the MEI of f with
respect to Fn is

MEI{f1,...,f1}(f) =

h
∑

k=1

pkMEI{f1k ,...,fnk}(fk), (6)

with pk > 0 ∀ k = 1, ..., h,
∑h

k=1 pk = 1. In (5) and (6) the curves that form
the envelops are the components of the curves in Fn.

The idea of the paper is to jointly use the two different indexes (5) and (6)
to detect and discard both shape and amplitude outliers in order to robustify
a dataset. To this aim we generalize to multivariate functional data the result
proved in Theorem 2.2 of Arribas-Gil and Romo (2014).

Theorem
Let Fn and f be in the space C(I;Rh) of the continuous vector functions. Then

MBDJ
{f1,...,f1}

(f) ≤ a0 + a1MEI{f1,...,f1}(f) + a2n
2(MEI{f1,...,f1}(f))

2, (7)

where a0 = a2 = −2/(n(n − 1)) and a1 = 2(n+ 1)/(n − 1).

Proof
Using Theorem 2.2 of Arribas-Gil and Romo (2014)

MBDJ
{f1k,...,fnk}

(fk) ≤ a0 + a1MEI{f1k ,...,fnk}(fk) + a2n
2(MEI{f1k ,...,fnk}(fk))

2,

∀k = 1, ..., h. By Jensen inequality

h
∑

k=1

pk(MEI{f1k ,...,fnk}(fk))
2 ≥

(

h
∑

k=1

pkMEI{f1k ,...,fnk}(fk)

)2

= MEI{f1,...,f1}(f)
2.

So, since a2 < 0 and a0, a1 and a2 are independent of k

MBD J
{f1,...,f1}

(f) =
h
∑

k=1

pkMBDJ
{f1k ,...,fnk}

(fk)

≤ a0 + a1

h
∑

k=1

pkMEI{f1k ,...,fnk}(fk) + a2

(

h
∑

k=1

pkMEI{f1k ,...,fnk}(fk)

)2

= a0 + a1MEI{f1,...,f1}(f) + a2n
2(MEI{f1,...,f1}(f))

2.
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The inequality (7) allows us to generalize the outliergram proposed in Arribas-
Gil and Romo (2014) to the case of multivariate functional data and propose the
multivariate outliergram as a tool to detect outliers. Consider a a scatterplot of
multivariate MBD vs multivariate MEI of data: the points far from the quadratic
boundary (7) correspond to shape outliers as well as data with very low values
of MBD are potential magnitude outliers. We can robustify a dataset discarding
data by studying the distribution of the distances di = MBDi− (a0+a1MEIi+
a2n

2(MEIi)
2, i = 1, ..., n. The data with di ≥ Qd3 + 1.5IQRd, where Qd3 and

IQRD are the third quartile and inter-quartile range of d1, ..., dn, are classified
as outliers.

As pointed out in Arribas-Gil and Romo (2014) this procedure might fail with
curves with extreme multivariate MEI values (near 0 or 1) and consequently very
low multivariate MBD independently of their possible atypical shape behaviour.
So also in the multivariate functional framework we iteratively shift toward the
center of the sample these extreme curves one by one. If for a curve the new
distance between the updated multivariate MEI and relative quadratic boundary
becomes outlier, we discard also this curve.

Last but not least, the choice of the MBD from Ieva and Paganoni (2013b)
implies a choice for the weights pks averaging the contribution of each compo-
nent of the multivariate unctional data. This is usually problem-driven, and in
general no gold standards have still been given so far. If there is no a priori
knowledge about the dependence structure between components they could be
chosen uniformly (i.e. pk = 1/h,∀ k = 1, ..., h). In Tarabelloni et al. (2015) a
different choice have been proposed, taking into account the distance between
the estimated variance-covariance operators of the two groups identified by the
binary outcome which was the focus of the study.

In this paper we propose a choice for the weights pk that should take in
account the variability of each component of the multivariate functional process
that generates data. Let us focus on the stochastic process generating data X
with law PX. Since the time interval is compact the space C(I;Rh) is embedded
in L2(I;Rh) the space of square integrable functions f = (f1, ..., fh) : I → R

h.
So we assume that X take values on L2(I;Rh). Let µl(t) = E [Xl(t)], for each
t ∈ I, denote the mean function of the l−component Xl(t), for 1 ≤ l ≤ h, then

µX(t) := (µ1(t), . . . , µh(t))
T = E[X(t)]

is the mean function of X. The covariance operator VX of X is a linear compact
integral operator from L2(I;Rh) to L2(I;Rh) acting on a function g as follows:

(VXg)(s) =

∫

I

VX(s, t)g(t)dt, (8)

The kernel VX(s, t) is defined by

VX(s, t) = E [(X(s)− µX(s))⊗ (X(t) − µX(t))] , s, t ∈ I (9)

7



where ⊗ is an outer product in R
h. For s, t fixed, VX(s, t) is a h×h matrix, whose

elements will be denoted as V kq
X

(s, t), for k, q = 1, ..., h. Let denote VXk
(s, t) the

diagonal element V kk
X

(s, t). We propose to set the weight of each component
proportional to the inverse of spectral norm of the variance-covariance operator
of the corresponding component:

qk = 1/λ
(1)
k , and pk =

qk
∑

qk
. (10)

where λ
(1)
k is the maximum eigenvalue of the VXk

(s, t) operator.
In conclusion, given a sample of multivariate functional data using the choice of
weights in (10), we can compute both the MBD, as in (5), and the MEI, as in
(6), of each curve with respect to the sample. Then we can construct the MOUT
and detect the potential outliers. We want to show that discarding the outliers
pointed out using the MOUT, i.e., robustifying the data sample, improves the
performances of the classification procedures.

3 Simulation studies

This section is devoted to compare the performance of the proposed procedure
(MOUT) in detecting outliers with other multivariate functional outlier detec-
tion methods through a simulation study. As mentioned before, we compare
four different techniques:

• MOUT - Multivariate OUTliergram, the multivariate functional out-
lier detection method proposed in Section 2.

• MFB - Multivariate Functional Boxoplot, the graphical tool pro-
posed in Ieva and Paganoni (2013b). In this case, according to the order
induced by the MBD in (5) and with the choice of pks proposed in (10),
the region which contains the 50% of most central curves of the sample is
constructed, then inflated by a factor F = 1.5 to build the fences of the
functional boxplot. Given the envelope of the functions entirely contained
inside the inflated region, the data crossing these fences even for one time
instance are considered outliers.

• CSP - Centrality-Stability Plot, the method built according to the
procedure described in Equation (14) of Hubert et al. (2015). For each
data in the plot we compute the vertical distance between the point and
the related theoretical bound. The points whose the related distances are
outliers in the univariate distribution of distances of each component are
considered outliers as a whole.

• TOU - Time OUtliers for halfspace depth. In this case, for each data
we compute the halfspace depth as in Claeskens et al. (2014) for each time
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point. The data for which we have at least one time point outlier are
considered outliers as multivariate functional data.

The MOUT, thanks to its definition and to the joint use of two different depth
indexes, should perform optimally in detection of outliers in shape, whereas the
MFB has been constructed mainly for detection in magnitude. Nevertheless,
since the truth of the last sentence depends also on the choice of the inflation
factor to construct the fences, it might work not optimally if the usual value of F
is not properly tuned (see Tarabelloni and Ieva (2016)). On the other hand, both
CSP and TOU are based on multivariate depths integrated over time interval;
for this reason, good performances in outlier detection are expected, but also a
possible large rate of false positive cases.

3.1 Models tested in the Simulation Study

We now test the four methods mentioned above on a set of simulated multi-
variate functional data contaminated with different percentage of outliers. We
generated, without loss of generality, 200 bivariate curves contaminated by three
different types of outliers (amplitude, shape and covariance outliers, as detailed
in the following), with different percentage of outliers (ν = {0.05, 0.1, 0.15, 0.2}
respectively). For each case, we applied the four methods for multivariate func-
tional outlier detection described above and computed the proportion of correctly
and falsely identified outliers. Results are reported in Table 1.

As reference model we choose a bivariate gaussian process

(X,Y ),X(t) = µX(t) + ZX(t), Y (t) = µY (t) + ZY (t)

with means

µX(t) = sin(2πt), t ∈ I = [0, 1], (11)

µY (t) = sin(4πt), t ∈ I = [0, 1] (12)

and exponential Matérn covariance functions

Cov(ZX(s), ZX(t) = CX(s, t) = αX exp (−βX |s− t|) , (13)

Cov(ZY (s), ZY (t) = CY (s, t) = αY exp (−βY |s− t|) , s, t ∈ I, (14)

being Cor(ZX(t), ZY (t)) = ρ. In the following, where not explicitly declared, we
will set αX = 0.5, αY = 0.7, βX = βY = 0.4 and the correlation between the two
components is ρ = 0.7.

The procedures are then tested in context where contaminations are present
in terms of magnitude outliers (Model 1), i.e., curves that lie far from the range
of the majority bulk of data, shape outliers (Model 2), i.e. curves that present
a different pattern with respect to the rest of the data, and covariance outliers
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(Model 3), i.e., curves generated by a model that is different from the model of
the majority of data just in term of the variance and covariance operator. For
each case, the four different percentage of contaminations mentioned before (ν =
{0.05, 0.1, 0.15, 0.2} respectively) are considered. These choices for the reference
models produce as output multivariate functional data that show features typical
of real functional data. The parameters of Matérn covariance tune the presence
of significant exponential-like time covariance functions and a strong correlation
between the two components.

Model 1 (magnitude outliers)

The first case of contamination is the one with magnitude outliers only. These
are related to amplitude variability, and are the analogue of the outlyingness
concept in the multivariate context. They are in general curves that lie far from
the range of the majority bulk of data and are often easy to detect.

The data can be written as

Xi(t) = (5/2 + wX
i )µX(t) + ZX

i (t), (15)

Yi(t) = (5/2 + wY
i )µY (t) + ZY

i (t), (16)

where wX
i and wY

i are an exponential sample, i.e. wX
i ∼ E(2), wY

i ∼ E(2)
µX , µY are the means of the reference model and (ZX

i (t), ZY
i (t)) is a realization

from a centered stochastic bivariate gaussian process with the same exponential
covariance as the reference model. The random multiplicative terms in the
pointwise mean functions drive the presence of magnitude outliers, see Figure 1.

Model 2 (shape outliers)

The second case of contamination is the one with only shape outliers. These
are related to phase variability and does not have a counterpart in classic mul-
tivariate statistics. In general they can be hidden in the middle of the sample
of curves and the detection of these outliers could be difficult.

The contaminated data can be written as

Xi(t) = wX
i µ̃X(t) + ZX

i (t), (17)

Yi(t) = wY
i µ̃Y (t) + ZY

i (t), (18)

where wX
i and wY

i are an exponential sample, i.e., wX
i ∼ E(2), wY

i ∼ E(2),
µ̃X(t) = sin(2π(t − 0.5)), µ̃Y (t) = sin(4π(t − 0.25)) are the means of the con-
taminated model and (ZX

i (t), ZY
i (t)) is a realization from a centered stochastic

bivariate gaussian process with the same exponential covariance as the reference
model. The shift in time dependence of the pointwise mean functions drive the
presence of shape outliers, see Figure 2.
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Model 3 (covariance outliers)

The third case of contamination is the one with the so called covariance outliers.
These data are generated changing, with respect to the reference model, the
parameters of the variance covariance structure.

The contaminated data can be written as

Xi(t) = wX
i µX(t) + ZX

i (t), (19)

Yi(t) = wY
i µY (t) + ZY

i (t), (20)

where wX
i and wY

i are an exponential sample, i.e. wX
i ∼ E(2), wY

i ∼ E(2),
µX , µY are the means of the reference model and (ZX

i (t), ZY
i (t)) is a realization

from a centered stochastic bivariate gaussian process with exponential Matérn
covariance functions, as in the reference model, but such that αX = 1.5, αY =
1.7, βX = βY = 1 and the correlation between the tho components is ρ = 0.
Even if the covariance operator has the same Matérn structure of the reference
model in (13), the different choice for the parameters α, β and ρ drives the pres-
ence of covariance outliers, see Figure 3.

In Figures 1, 2 and 3 we show the curves generated with the three different
models in a single simulation run and with a percentage of contaminated data
equal to ν = 0.1.
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Figure 1: Model 1 (magnitude outliers), ν=0.1
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Figure 2: Model 2 (shape outliers), ν=0.1
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Figure 3: Model 3 (covariance outliers), ν=0.1
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Model 1 Model 2 Model 3

Method pc pf pc pf pc pf
ν = 0.05
MOUT 0.9890 (0.0314) 0.0293 (0.0144) 0.9030 (0.1087) 0.0304 (0.0145) 0.9000 (0.0000) 0.0316 (0.0000)
MFB 0.1920 (0.1292) 0.0001 (0.0007) 0.0680 (0.0764) 0.0001 (0.0005) 0.0980 (0.0943) 0.0001 (0.0005)
CSP 1.0000 (0.0000) 0.0386 (0.0151) 0.9830 (0.0451) 0.0365 (0.0116) 0.9610 (0.0650) 0.0394 (0.0137)
TOU 1.0000 (0.0000) 0.0261 (0.0293) 0.9230 (0.0897) 0.02670 (0.0272) 0.9180 (0.0869) 0.0235 (0.0184)

ν = 0.1
MOUT 0.9685 (0.0406) 0.0172 (0.0111) 0.7745 (0.1038) 0.0179 (0.0119) 0.6920 (0.1189) 0.0216 (0.0109)
MFB 0.1310 (0.0918) 0.0001 (0.0006) 0.0430 (0.0503) 0.0001 (0.0006) 0.0650 (0.0601) 0.0001 (0.0008)
CSP 0.8880 (0.1604) 0.0198 (0.0115) 0.6520 (0.2122) 0.0208 (0.0126) 0.9060 (0.0641) 0.0244 (0.0118)
TOU 0.9650 (0.0626) 0.0242 (0.0142) 0.6445 (0.1410) 0.0274 (0.0291) 0.8935 (0.0642) 0.0203 (0.0210)

ν = 0.15
MOUT 0.8410 (0.0823) 0.0065 (0.0063) 0.5637 (0.1264) 0.0087 (0.0078) 0.5767 (0.1148) 0.0113 (0.0084)
MFB 0.1140 (0.0815) 0.0001 (0.0006) 0.0260 (0.0353) 0.0000 (0.0000) 0.0530 (0.0416) 0.0000 (0.0000)
CSP 0.1287 (0.0881) 0.0264 (0.0159) 0.2017 (0.0920) 0.0261 (0.0148) 0.8110 (0.0865) 0.0117 (0.0076)
TOU 0.2647 (0.0950) 0.0236 (0.0142) 0.2510 (0.0859) 0.0218 (0.0129) 0.8580 (0.0652) 0.0214 (0.0327)

ν = 0.2
MOUT 0.4322 (0.1623) 0.0011 (0.0024) 0.3150 (0.1082) 0.0029 (0.0037) 0.4512 (0.1045) 0.0041 (0.0056)
MFB 0.0628 (0.0550) 0.0000 (0.0000) 0.0102 (0.0171) 0.0000 (0.0000) 0.0370 (0.0303) 0.0000 (0.0000)
CSP 0.0305 (0.0281) 0.0491 (0.0201) 0.0930 (0.0496) 0.0346 (0.0200) 0.6755 (0.0928) 0.0046 (0.0046)
TOU 0.1535 (0.0589) 0.0221 (0.0139) 0.1703 (0.0653) 0.0208 (0.0119) 0.8098 (0.0808) 0.0117 (0.0084)

Table 1: Mean (standard deviation) over 100 simulation runs of the proportion
of true positive pc and false positive pf in the three different Models

Table 1 reports the obtained results, in term of the proportion of true positive
pc (i.e., the number of correctly identified outliers over the number of outliers in
the dataset) and the proportion of false positive pf (i.e., the number of wrongly
identified outliers over the number of non-outlying curves in the dataset).
Let us observe that the proposed multivariate outliergram (MOUT) performs
very well in particular in shape outliers detection, as expected, also for high
values of contamination. The MFB has a very low efficiency in detecting also
magnitude outliers, and it guarantees no false positive cases. The two methods
based on integrated multivariate depths (CSP and TOU) show very remarkable
performance in all the three methods; however the rate of false positive il in
general higher than the parallel index of MOUT, and the percentage of correctly
identified outliers decreases in particular for magnitude and shape outliers as long
as the percentage of contaminated data ν increases. Supported by the results of
the simulation study we decide to go deeper in studying MOUT properties and to
propose it as a preprocessing instrument to robustify a sample of curves in order
to improve classification procedures. In the following section we will present
the use of MOUT in a classification problem of real data: electrocardiographic
signals of healthy and pathological subjects.

4 Application to ECG signals

In this section we apply the method MOUT proposed in Section 2 for robustifying
a dataset of vital signals (ECGs) arising from a real case study where the basic
statistical unit (the patient) is characterized by a 8-variate function (the ECG),
which describes his/her heart dynamics on the eight leads I, II, V1, V2, V3, V4,
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V5 and V6. ECG traces are collected in the PROMETEO database. PROM-
ETEO project (PROgetto sull’area Milanese Elettrocardiogrammi Teletrasferiti
dall’Extra Ospedaliero) has been started in 2008 with the aim of spreading the
intensive use of ECGs as pre-hospital diagnostic tool. The project was also a
way of constructing a new database of ECGs with features never recorded before
in any other data collection on heart diseases. In fact, both physiological signals
(i.e., signals from patients not really having heart diseases) and pathological
ones are present. See Indino (2015) for a detailed description of the dataset and
of the techniques to denoise, smooth and register data.

For each statistical unit in the dataset we have a list of technical information,
useful for signal processing and analysis. More precisely, they include waves
repolarisation and depolarisation times, landmarks indicating onset and offset
times of the main ECG’s subintervals and an automatic diagnosis, established

by the commercial Mortara-Rangoni VERITAS
TM

algorithm. We used these
automatic diagnoses to label the ECG traces we analysed. Moreover, for each
patient a reference beat signal lasting 1.2 seconds and measured on a grid of 1200
points (msec) is provided. It is built from the heartbeat rhythm of the patient
measured over 10 seconds (10000 sampled time points). We then analyze 8
curves (one for each lead of the ECG) for each patient, representing the patient’s
“Median” beat for that lead. This representative heartbeat is a trace of a single
cardiac cycle (heartbeat), i.e., of a P wave, a QRS complex, a T wave, and a U
wave, which are normally visible in 50% to 75% of ECGs (see Ieva et al. (2013)
for further details).

Among the diseases that are present in the PROMETEO database, we focus
our analysis on G = 3 groups of patients: Normal (i.e., healthy people), those af-
fected by Left Bundle Branch Blocks (LBBBs) and Right Bundle Branch Blocks
(RBBBs), a particular kind of Myocardial Infarction, which are among the most
common and easily detectable through the analysis of the ECG signal.

So, the dataset we analyse consists of the ECG signals of n = 2102 subjects,
among which 1602 are Normals, 224 are affected by LBBB and 276 by RBBB.
Figure 4 shows denoised and registered lead I data we consider for our analysis
(see Ieva et al. (2013) for further details on wavelet denoising and landmarks
registration adopted for preprocessing data).
The analysis is carried out separately for each of the G groups present in the
original dataset. We randomly splitted each group in a training (85%) and a
test set (15%): for each element of the test set we compute the L2 distance with
respect to the mean of each training set group and we classify it according to a
minimization criterium.

In each group of data (Normals, LBBBs and RBBBs) separately we carried
out the robustification procedure detailed above, discarding the outliers pointed
out both by the multivariate functional boxplot and by the multivariate outlier-
gram. The robustified dataset is then composed by n = 2020 subjects, among
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Figure 4: Denoised and registered data (lead I) for the three groups of patients
with superimposed the mean functions (black solid lines).

which 1564 are Normals, 205 are affected by LBBB and 251 by RBBB.
We then tested the efficacy of this procedure classifying the curves of the

test sets according to the following procedure: we compute the L2 distances be-
tween each curve of this test set and the mean of the three groups and we assign
a curve to the group that minimizes this distance. We repeated this analysis
k = 40 times to avoid bias selection.

The mean (± sd) correct classification rate, over the k = 40 runs of the proce-
dure is 0.9108(±0.0163) if we consider the robustified training datasets, while
it is 0.9014(±0.0148) in the case of the original (i.e., non robustified training
datasets). There is statistical evidence (p-value of Wilcoxon comparison test
equal to 0.0075) to conclude that the distribution of correct classification rates
over the 40 repetitions after robustification is stochastically greater than the one
computed before robustification. Similar results are obtained using the median,
instead of the mean, in the minimization of the L2 distances.

5 Conclusions and further developments

In this paper a new method, namely MOUT - Multivariate OUTliergram, for
robustifying a dataset of multivariate functional data is proposed. It is aimed
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at identifying and discarding multivariate functional outliers from a dataset in
order to enforce the performances of a classifier in terms of prediction for a new
statistical unit. In fact, the presence of outliers in high dimensional context
like Functional Data Analysis may may lead to model misspecification, biased
parameter estimation and incorrect results.

Since in the (multivariate) functional one there is no general definition of
outliers, in this work we considered many different scenarios for testing the
performances of the new method. We settled suitable simulation studies con-
sidering amplitude, shape and covariance outliers with different percentage of
outliers, and for each of them compared the new technique proposed with a list
of competitors from the literature. From the discussion of the results, it emerged
that MOUT performs very well in identifying shape outliers, but also provides
satisfying performance in all the other contexts.

We finally applied the MOUT to a real case study on ECG curves, aimed
at performing a semi-automatic diagnosis for Acute Myocardial Infarction. Af-
ter the robustificaton carried out through the MOUT, the performance of the
classifier improved significantly.

In summary, this paper provides a taxonomy of the main methods for outlier
detection in multivariate functional context, testing their performances in many
different scenarios. Moreover, it discusses a crucial topic that is becoming more
and more central in high dimensional contexts like FDA, that is how to treat out-
liers once you are able to define and identify them. The computational tools pro-
posed in the paper are available in the free language R, suitably organized in the
package roahd, available at https://bitbucket.org/ntarabelloni/roahd.
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