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Abstract

In this work, we propose a surrogate model for the Fluid-Structure In-
teraction (FSI) problem for the study of blood dynamics in carotid arteries
in presence of plaque. This model is based on the integration with subject-
specific data and clinical imaging. In more detail, we propose to model
the atherosclerotic plaque as part of the tissues surrounding the vessel wall
through the application of an elastic support boundary condition on the
external surface of the structure model. In order to characterize the plaque
and other surrounding tissues, such as the close-by jugular vein, the elas-
tic parameter of the boundary condition was spatially differentiated. The
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values of these parameters were estimated by minimizing the discrepancies
between computed vessel wall displacements and reference values obtained
from CINE Magnetic Resonance Imaging (MRI) data. As a first applica-
tion of the method, we considered three subjects with a degree of stenosis
greater than 70%. We found that accounting for both plaque and jugu-
lar vein in the estimation of the elastic parameters increases the accuracy.
In particular, in all patients, mismatches between computed and in vivo
measured wall displacements were 1-2 orders of magnitude lower than the
spatial resolution of the original MRI data. These results confirmed the
validity of the proposed surrogate model.

1 Introduction

Carotid arteries represent a preferential site for the development of atheroscle-
rotic plaques. Currently, plaque stenosis severity is the main criterion used to
inform clinical decisions regarding treatment (Naylor et al. 2017), such as carotid
artery stenting and carotid endarterectomy.

Imaging acquisitions such as Echo-Color Doppler (ECD), Magnetic Reso-
nance Imaging (MRI) and Computed Tomography (CT) are widely regarded as
reliable tools to evaluate the severity of the stenosis. Many studies, however,
suggest that purely morphological evaluations could have limitations for clinical
diagnosis, treatment selection, and surgery planning (Makris et al. 2010; Tang
et al. 2014). In fact, plaque development, progression and risk of rupture have
been linked not only to arterial geometry, but also to hemodynamic and mechan-
ical features. For example, low and oscillating Wall Shear Stress (WSS) has been
shown to correlate positively with intimal thickening (Hyun et al. 2000; Mey-
erson et al. 2001; Heise et al. 2003; Morbiducci et al. 2010) and atherosclerosis
initiation (Zarins et al. 1983; Ku et al. 1985; Nixon et al. 2009). In presence of
atherosclerotic plaque, peak systolic velocity (PSV) higher than 200 cm/s and
high values of WSS are considered as fluid-dynamics indicators that enhance
plaque vulnerability, increasing the risk of plaque rupture (Slager et al. 2005;
Mofidi et al. 2005; Groen et al. 2007).

To evaluate fluid-dynamic quantities, Phase Contrast (PC) MRI is considered
a very promising and reliable imaging tool. This technique has proven suitable
for flow velocity measurements in healthy subjects (Markl et al. 2010; Ponzini
et al. 2010). However, due to the high spatial and temporal resolutions needed
for a thorough analysis of stenotic carotids, PC MRI could lead to a slight
underestimation of the flow patterns in such districts (Baltes et al. 2008).

For the reasons mentioned above, image-based computational modeling rep-
resents an effective tool to characterize fluid-dynamics with high spatial and
temporal resolutions, required especially in pathological cases. In particular,
Computational Fluid Dynamics (CFD) has been used for the study of carotid
blood dynamics since the early ’90s (see e.g. Perktold and Resch 1990). In the
last three decades a lot of progress has been made and nowadays several indica-
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tions can be provided to clinicians in view of their decisions (see e.g. Hyun et al.
2003; Thomas et al. 2005; Kamenskiy et al. 2013; Harrison et al. 2014; Domanin
et al. 2017b,a).

Many studies have been proposed to assess stenotic carotids by means of
CFD (Rossmann et al. 2002; Lee et al. 2008; Groen et al. 2010; Sui et al. 2014;
Guerciotti et al. 2015). More precisely, such works investigate the contribution
of blood dynamic indices such as WSS to the pathophysiological processes linked
with atherosclerosis and to plaque rupture risk.

In order to obtain more accurate results, several works introduced Fluid-
Structure Interaction (FSI) models for stenotic carotids (see e.g Tang et al. 2004;
Gao et al. 2009; Kock et al. 2008; Wang et al. 2017). Regarding the plaque, dif-
ferent approaches have been considered in order to account for the changes in
geometry and mechanical properties determined by its morphology and compo-
sition. In Lee et al. 2012, the changes in geometry are modeled through the
inclusion of a stenosis in the fluid lumen. The presence of the plaque is however
ignored in the structure model, where no atheromasic region or specific mechan-
ical characterization is considered. Instead, in Tao et al. 2015, the geometric
contribution of the plaque is considered also in the structure by means of the
reconstruction of a thickened atheromasic region. However, no specific mechan-
ical characterization is introduced, as the atheromasic tissue is embedded as
part of the healthy tissue. Finally, we mention more complete studies in which
the plaque is included in the model by means of a multi-component structure
(Tang et al. 2004; Leach et al. 2009; Wang et al. 2017), made up of elements
such as a lipid-rich necrotic core and calcifications. In these works, the detailed
modeling of the plaque allows for a better understanding of both blood dynam-
ics and mechanical behaviour. Hovever, the different elements are delineated
from multi-contrast MRI images, a technique not widely available in the clinical
practice. This aspect, and the irregularities in plaque morphology, make the
reconstruction of the plaque a challenging task. To overcome this issue, a recent
strategy to outline the plaque region is based on assuming the diameter of the
originally healthy internal wall in correspondence of the stenosis, and consider-
ing the area between healthy and stenotic wall as the plaque region (Xu et al.
2020).

In an effort to reduce the complexity related to the modeling of the atheroscle-
rotic plaque, in this work we propose a surrogate model able to accurately de-
scribe the influence of the plaque on blood dynamics. In more detail, we propose
an effective FSI model based on substituting the plaque region with a set of in-
dependent springs applied at the external surface of the stenotic carotid wall
(see Fig. 1), thus surrogating the presence of the atheromasic tissue. This model
relies on the prescription of a Robin boundary condition for the structure prob-
lem applied at the external surface, as done in Moireau et al. 2011 to account for
the surrounding tissues, with however a specific elastic parameter to characterize
the plaque.

The elastic spring parameter value was estimated by comparing the in vivo
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Figure 1: Complete (left) and surrogate (right) plaque models.

lumen-wall boundary displacements obtained from CINE MRI acquisitions with
the computed ones. A similar approach was also used to account for the de-
formable constraint exerted by the adjacent jugular vein. We believe that this
model could be of particular interest when one is focused only on fluid-dynamics
results, significantly reducing the complexity of the model.

We labeled our approach as data-driven because we are integrating compu-
tational modeling and clinical imaging to adapt our new surrogate model to
patient-specific cases. In particular, we reconstructed patient-specific geome-
tries, we estimated the spring parameters and we applied inlet boundary con-
ditions by processing three-dimensional MRI images and ECD measurements,
respectively.

The outline of the paper is as follows. In Section 2 we introduce the math-
ematical model for blood dynamics in carotids in presence of plaque and we
briefly detail the numerical methods. In Section 3, we describe the image data
processing, in particular the analysis of CINE MRI for the estimation of the
parameters. Finally, in Section 4 we present numerical results related to three
cases with patient-specific ECD and MRI data, which highlight the reliability of
the proposed method when used in a real setting of clinical data.

2 Mathematical and numerical model

In medium and large arteries like carotids, blood can be modeled as a homo-
geneous, incompressible, Newtonian fluid, whereas the vessel wall as an hyper-
elastic material. When modeling the plaque, a standard approach consists in
using the same constitutive law for healthy and atheromasic tissue, and in dif-
ferentiating the corresponding parameters (Tang et al. 2004, 2013; Yuan et al.
2015).

Here, we chose to model the plaque as a part of the surrounding tissues
(see Fig. 1), whose support was modeled as a Robin boundary condition at
the external surface of the arterial wall, as proposed in Moireau et al. 2011.
This allowed us to avoid the three-dimensional reconstruction of the plaque
itself, while still taking into account the influence of plaque morphology through
a stenosis in the fluid lumen. Both for calcific and lipidic plaques, the thin
intermediate layer of tissue present between the lumen and the core of the plaque
(for example given by the fibrous cap) can be assimilated to the healthy tissue
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from the mechanics point of view (Brinjikji et al. 2016). Accordingly, many
studies account for this by using the same mechanical properties in this layer
and in the healthy vessel (Tang et al. 2004; Wang et al. 2017).

Starting from this, we propose to differentiate the elastic parameter in the
Robin boundary condition for the structure problem, describing the support
of surrounding tissues, in correspondence of the plaque. In such a way, we
modeled the core of the plaque as a boundary condition and we characterized
the intermediate layer as the healthy vessel (see Fig. 1). We also differentiated
the support provided by the close-by jugular vein with respect to the other
tissues. We estimated the elastic parameters corresponding to the surrounding
tissues (αs), the jugular vein (αj) and the plaque (αp), by prescribing patient-
specific inlet flow rates obtained from ECD and by minimizing the discrepancy
of the computed wall displacements with measurements obtained from CINE
MRI data of the patient.

2.1 Surrogate mathematical model of the plaque

In accordance with the previous discussion, we consider the time-varying do-
mains Ωt

f ⊂ R3 and Ωt
s ⊂ R3, representing the lumen of the vessel and the vessel

wall, respectively (see Fig. 2). Let Σt be the interface between the fluid and
the structure domains, and Σt

ext,s, Σt
ext,j and Σt

ext,p be the external surface re-
gions in correspondence of the healthy vessel wall, the jugular vein contact area
and the plaque, respectively. We define n as the normal unit vector pointing
outward with respect to the structure domain. Since we work in a moving do-
main, the fluid problem was written in an Arbitrary Lagrangian-Eulerian (ALE)
framework (Hirt et al. 1974; Donéa et al. 1982), whereas solid quantities in the
Lagrangian frame (denoted by )̂.

The coupled problem at each time t > 0 reads as follows: find blood velocity
u = u(t,x), blood pressure p = p(t,x), structure displacement d = d(t,x) and
fluid domain displacement df = df (t,x), such that:

ρf

(
∂u

∂t
+ ((u− uf ) · ∇)u

)
−∇ · T f (u, p) = 0 in Ωt

f , (1a)

∇ · u = 0 in Ωt
f , (1b)

u =
∂d

∂t
on Σt, (1c)

T s(d)n = T f (u, p)n on Σt, (1d)

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ω̂s, (1e)

d̂f = d̂ on Σ̂, (1f)

−∆d̂f = 0 in Ωt
f , (1g)

where ρf and ρs are the fluid and solid densities, together with suitable initial
and boundary conditions. In particular, in what follows we report the Robin
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Figure 2: Fluid and structure domains. Highlighted, the area of the external
wall surrogating the plaque (in yellow) and the area of contact with the jugular
vein (in blue).

boundary conditions on Σ̂ext,s∪Σ̂ext,j∪Σ̂ext,p proposed here to model the support
of external tissues and the plaque:

αsd̂+ T̂ s(d̂)n̂ = Pextn̂ on Σ̂ext,s, (2a)

αjd̂+ T̂ s(d̂)n̂ = Pextn̂ on Σ̂ext,j , (2b)

αpd̂+ T̂ s(d̂)n̂ = Pextn̂ on Σ̂ext,p. (2c)

Condition (2c) surrogates the presence of the atherosclerotic plaque by differ-
entiating the parameter αp = αp(x) with respect to the values αs = αs(x) and
αj = αj(x) used to describe the elastic response of the surrounding tissues in
correspondence of the healthy vessel and the jugular vein, respectively. In Eq.
(2), Pext represents the pressure in the neck.

Following a classical choice in haemodynamic applications, the ALE map was
defined considering an harmonic extension operator (Eq. (1g)), so the displace-
ment field at the boundary d

∣∣
Σt

is extended into Ωt
f to obtain the fluid domain

displacement df and velocity uf = ḋf . This introduces a geometric coupling
given by condition (1f). Conditions (1c)-(1d) are the kinematic and dynamic
fluid-structure interface conditions, respectively.
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In Eq. (1a), the fluid Cauchy stress tensor is defined by

T f (u, p) = −pI + µf

(
∇u+ (∇u)T

)
,

where µf is the fluid viscosity.

In Eq. (1e), T̂ s is the solid Piola-Kirchhoff stress tensor. We considered
a neo-Hookean model to describe the solid, where the Cauchy stress tensor is
given by

T s(d) =
λ

2

(
J − 1

J

)
I +

µs
J

(
F̂ sF̂

T

s − I
)

,

where µs is the shear modulus, λ is Lamé’s first parameter, F̂ s is the deformation
gradient tensor, and J = det(F̂ s). This model is known not to be accurate for
the computation of Von Mises stresses. However, we believe that it is a suitable
choice for our aims, since we were interested mainly in fluid-dynamic quantities.
Moreover, the displacements are not so large to require an anisotropic model.
Accordingly, the choice of a neo-Hookean constitutive law has been considered
in many FSI studies of fluid-dynamics in carotids in presence of plaque (Li et al.
2006; Kock et al. 2008; Tao et al. 2015).

2.2 Other boundary conditions and numerical details

2.2.1 Structure/fluid mesh boundary conditions

The boundary of the solid domain ∂Ω̂s is completed by the inlet and outlet rings
Σ̂s,in, Σ̂ICA

s,out and Σ̂ECA
s,out .

The corresponding boundary conditions prescribed on Σ̂s,in a tangential ho-
mogeneous Neumann boundary condition to allow movement of the inlet in the
tangential directions τ j , j = 1, 2, and a homogeneous Dirichlet boundary con-
dition in the normal direction:

(T̂ sn̂) · τ̂ j = 0, j = 1, 2 on Σ̂s,in, (3a)

d̂ · n̂ = 0 on Σ̂s,in. (3b)

A homogeneous Dirichlet boundary condition for all the components was instead
prescribed on Σ̂ICA

s,out and Σ̂ECA
s,out :

d̂ = 0 on Σ̂ICA
s,out ∪ Σ̂ECA

s,out . (4)

Accordingly, for the fluid domain problem we prescribed on Σ̂f,in a tan-
gential homogeneous Neumann condition and a normal homogeneous Dirichlet
condition:

∇d̂f n̂ · τ̂ j = 0, j = 1, 2 on Σ̂f,in, (5a)

d̂f · n̂ = 0 on Σ̂f,in. (5b)
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Figure 3: 3-element windkessel model used to represent the behaviour of the
downstream vasculature.

2.2.2 Fluid boundary conditions

The boundary of the fluid domain ∂Ωt
f is made up of the inlet section Σt

f,in,

two outlet sections ΣICA
f,out and ΣECA

f,out of the internal (ICA) and external carotid

arteries (ECA), respectively, and the interface Σt. We detail here the boundary
conditions prescribed at the fluid inlet and outlets.

Inlet boundary condition On the inlet section Σt
f,in we considered patient-

specific conditions based on flow rates:∫
Σtf,in

u · n dσ = Qin.

The values of Qin(t) were obtained from ECD measurements, as discussed in
(Guerciotti et al. 2015; Domanin et al. 2017b). To prescribe the previous condi-
tion, each flow rate was mapped to a pseudo-parabolic velocity profile, leading
to a Dirichlet boundary condition:

u = gin on Σt
f,in. (6)

where gin was chosen such that
∫

Σtf,in
gin · n dσ = Qin.

Outlet boundary conditions Outlet boundary conditions on ΣICA
f,out and

ΣECA
f,out were modeled using a geometric multiscale approach, where a zero-dimensional

model was coupled to each of the outlets of the three-dimensional domain in or-
der to describe the downstream vasculature. In particular, we considered here a
3-element windkessel lumped parameter model, which provides a dynamic rela-
tionship between outlet pressure and flow for the FSI solution (Westerhof et al.
2008) (see Fig. 3).

The corresponding differential equation linking pressure and flow for the
generic outflow Σf,out is the following:

d (P −R1Q)

dt
+

1

R2C
(P −R1Q) =

Q

C
,
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where R1 represents the proximal resistance, R2 the distal resistance and C the
distal compliance. Applying the method of integrating factors, its analytical
solution can be written as (Quarteroni et al. 2016)

P (t) = R1Q(t) + (P (0)−R1Q(0)) e
− t
R2C +

1

C

∫ t

0
Q(τ)e

− τ−t
R2C dτ . (7)

Setting P = − 1
|Σf,out|

∫
Σf,out

T f (u, p)n · n dσ and Q = ρf
∫

Σf,out
u · n dσ (Quar-

teroni et al. 2016), Eq. (7) can be interpreted as a resistance condition for the
FSI problem.

In a time-discrete setting, Eq. (7) is applied over the timeline of a single
time step, from tn to tn+1. At time tn+1, the flow rate Q is unknown, thus a
possible solution is given by evaluating the flow rate term through a suitable
extrapolation from previous time steps. Setting P (0) = 0 and Q(0) = 0 (that is,
starting from an unloaded system), using a first-order extrapolation for Q, and
assuming the traction constant over Σf,out, we obtained the following Neumann
boundary condition:

T f (un+1, pn+1)n · n = R1ρf

∫
Σf,out

un · n dσ +
1

C
I(tn) on Σf,out, (8)

where I(tn) is the numerical approximation of the integral between tn and tn+1

appearing in Eq. (7), which can be approximately computed through a quadra-
ture rule (e.g. trapezoidal rule). To complete (8), we prescribed a null traction
along the tangential directions.

The parameters of the windkessel model for each outlet ΣICA
f,out and ΣECA

f,out

can be tuned to match available data, such as flow distribution between the
branches and systolic and diastolic pressure data (Westerhof et al. 2008). In our
application, in order to avoid the phenomenon of spurious reflections given by
the truncation of the computational domain, we chose the value of R1 as the one
obtained in the case of a resistance absorbing boundary condition (Nobile and
Vergara 2008):

R1 =

√
ρfβ

2

1

A3/4
,

where β = hsE
(1−ν2)

π
A , hs is the structure thickness, A is the lumen radius at the

given outlet, and E and ν are the Young modulus and the Poisson coefficient.
We recall that the absorbing condition was derived by assuming a linear thin
solid, but it was proven to be effective when coupled with any solid model choice
(Nobile and Vergara 2008; Nobile et al. 2013).

This choice allowed us to tune only the two parameters R2 and C for each
outlet, along with parameters αs, αj and αp in the external Robin boundary
condition, to match reference lumen-wall boundary displacements obtained from
imaging data, as explained in Section 3.
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2.2.3 Numerical details

For the numerical solution of the FSI problem (1)-(2)-(3)-(5)-(4)-(6)-(8), we
considered a first order time discretization for fluid, structure and kinematic
conditions, with a semi-implicit treatment of the fluid convective term. The
geometric coupling was treated explicitly, a strategy which is known to be stable
and accurate in hemodynamics (Swim and Seshaiyer 2006; Fernández et al. 2007;
Nobile et al. 2013; Quarteroni et al. 2017). The resulting FSI problem was solved
monolithically by means of first order Finite Elements, stabilized by means of the
SUPG-PSPG technique (Tezduyar 1991; Forti and Dedè 2015), with an inexact
Newton method given by a block approximation of the Jacobian, leading to the
split solution of fluid velocity, pressure and vessel wall unknowns (Crosetto et al.
2011; Deparis et al. 2016). This method has been shown to be highly scalable
in the hemodynamic regime.

3 Methods for processing imaging data

Three subjects (P1, P2, P3 in what follows) were selected for this study. All
carotids were evaluated by means of ECD and MRI acquisitions. All patients
featured a stenosis at the level of the ICA (70% for P1, 80% for P2 and P3) and
were followed at Fondazione IRCSS Ca’ Granda, Ospedale Maggiore Policlin-
ico, Milan, in particular at the Vascular Surgery Operative Unit for the ECD
acquisitions and at the Operative Unit of Radiology for the MRI acquisitions.

3.1 Characteristics of image data

Carotid bifurcations were sampled with ECD using an iU22 ultrasound scanner
and linear 8MHz probe (Philips Ultrasound, Bothell, WA). For more details
regarding the ECD acquisitions, we refer to Guerciotti et al. 2015 and Domanin
et al. 2017b.

MRI acquisitions were performed with a Siemens 1.5T Avanto scanner (Siemens
Healthcare, Hoffman Estates, IL) with the following sequences and parameters:

• 3D Fat-suppressed T1-weighted Gradient-Echo images in the coronal plane,
from now on referred to as 3D-FLASH MRI (repetition time (TR) = 3.13,
echo-time (TE) = 1.14, flip-angle = 25◦, matrix = 384 × 346 × 230),
acquired before and during injection of paramagnetic contrast medium
(gadolinium). The in-plane resolution is 0.84 × 0.84mm and the slice
thickness is 1mm;

• 2D TurboFLASH retrospectively electrocardiography-gated images in the
axial plane, from now on referred to as CINE MRI (TR = 46.35, ET =
1.3, flip-angle = 70◦, matrix = 272 × 245). The in-plane resolution is
1.1× 1.1mm and the slice thickness is 6mm. For each acquisition plane,
18 (for P3) or 25 (for P1 and P2) phases were reconstructed throughout the
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cardiac cycle, obtaining a temporal resolution of 28 - 48 ms. The discrete
time instants of acquisition is generically denoted by tk;

• Turbo spin-echo (TSE) T1-weighted axial images (TR = 7.50, TE = 8.9,
flip-angle = 144◦, slice thickness = 4mm, matrix = 320 × 224).

3.2 Geometry reconstruction

Three-dimensional carotid geometries were reconstructed from 3D-FLASH MRI
images. Segmentation was performed using a level-set technique (www.vmtk.org;
Antiga et al. (2008); Izzo et al. (2018)) with a colliding fronts initialization. The
surface mesh of the lumen boundary was extracted as the zero-level isosurface
through the marching cubes algorithm (Lorensen and Cline 1987). For each
patient, the surface model was successively discretized into a fluid mesh of tetra-
hedra. Since the resolution of available MRI data was not suitable to detect the
vessel wall, the structure domain was generated by extruding the surface mesh
of the lumen boundary in order to obtain a realistic thickness for the vessel wall
(10% of the diameter, Harloff et al. (2009)). The computational meshes are made
up of 160k, 187k, 220k fluid tetrahedra and 128k, 124k, 170k solid tetrahedra,
for P1, P2, P3, respectively. This corresponds to a representative value of the
space discretization h, which is 0.1 cm far from the stenosis and 0.04 cm at the
stenosis (about 8% of the respective diameters).

Based on the localization of the stenosis, on the analysis of TSE images (see
Fig. 4, a) and on consultations with physicians, we were able to localize the
region Σext,p in the external structure boundary corresponding to the plaque.
In view of the estimation of parameter α, detailed in Section 3.5, we divided
the remaining external boundary of the structure mesh into two (possibly non-
connected) regions Σext,s and Σext,j , identifying the surrounding tissues and the
area of contact with the jugular vein, respectively (see Fig. 4, c and d).

Figure 4: From left to right: a) TSE image; b) CINE MRI; c) 3D-FLASH MRI.
In all images the carotid lumen and external wall are shown in fuchsia, the plaque
bulk in yellow and the jugular vein in blue; d) Computational structure mesh.
Σext,s in white, Σext,j in blue, Σext,p in yellow.
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s1
s2

Figure 5: CINE MRI acquisition planes viewed on a 3D-FLASH image (left and
middle) and corresponding position on the carotid (right).

3.3 CINE MRI processing

As observed in Section 2, the optimization procedure to find suitable values for
the elastic parameters αs, αj and αp was based on planar displacements of the
lumen-wall boundary, which were obtained from CINE MRI images (see Fig. 4,
b).

Axial acquisition planes were positioned 6mm apart covering a region cen-
tered in the bifurcation with a dimension of 5−6 cm, giving a total of 8−10 slices
for each patient (see Fig. 5). Before image processing, the datasets were eval-
uated to assess image quality. A limited number of acquisitions which were af-
fected by noise, slices in which the carotid cross-section was too slanted or where
the carotid exhibited an excessive in-plane rigid translation were neglected. For
all remaining slices, a segmentation procedure was applied to all time frames in
order to obtain the displacements required for the parameter estimation. Im-
age segmentation and contour processing were performed with an in-house code
developed using the Matlab Image Processing Toolbox (Natick, MA).

As a first processing step, a region of interest (ROI) was delineated around
the cross-section of the carotid (see Fig. 6, a). Since the segmentation procedure
is pixel-based, the position of the contour points and, as a consequence, the
computed values of displacement are strictly related to the spatial resolution
of the available CINE MRI data. In order to avoid the potential clipping of
the displacements, the images were upsampled using bilinear interpolation to
increase their resolution from the original 1.1 × 1.1mm. Image contrast was
enhanced (see Fig. 6, b) to ease the automatic segmentation. A thresholding
operation was applied to the grayscale image, obtaining the corresponding binary
image by clustering the original gray-level intensity values into two classes (in
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Figure 6: Automatic segmentation of CINE MRI images. a) Selection of the
ROI; b) Upsampling and contrast enhancement; c) Thresholded binary image;
d) Resulting segmented boundary; e) Jagged contour; f) Approximated smooth
contour; g) Lumen-wall boundary displacements δ `CINE (in light blue) for selected
time instants tk throughout the cardiac cycle.

black and in white in Fig. 6, c). This operation was done through the application
of Otsu’s method (Otsu 1979), an iterative procedure that looks for the optimal
gray-level threshold able to separate the image pixels by minimizing the intra-
class intensity variance. For each acquisition plane, the contour of the carotid
was then made up of all points positioned in the pixel centers placed on the
boundary between black and white (see Fig. 6, d).

Given the small dimension of the carotid diameter with respect to the image
resolution, such segmented contours could feature a jagged boundary (see Fig. 6,
e). In order to regularize the contours, we approximated them by fitting a closed
curve C(t) for each time t in the cardiac cycle. Writing C(t) in polar coordinates,
(x(t), y(t)) belongs to C(t) ifx(t) = x0 + r(θ, t) cos(θ)

y(t) = y0 + r(θ, t) sin(θ)
θ ∈ [0, 2π],

where (x0, y0) is the average location of the contour centroid over the cardiac
cycle. Representing r(θ, t) through a Fourier decomposition of order N , we have
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for each k:

r(θ, t) =
N∑
j=0

(aj(t) cos(jθ) + bj(t) sin(jθ)) , (9)

for a suitable value of N (see Fig. 6, f), chosen in order to approximate the
contour while retaining its features.

In order to compute the lumen-wall boundary displacements, the contour
corresponding to the time frame of minimum filling was chosen as a reference
(tref ). For all other time frames, the displacements were computed as the normal
distances between the current and the reference contours (see Fig. 6, g). This
procedure was repeated for all available slices, obtaining for each slice ` the
displacement δ `CINE(t, θ), which is a scalar function of time and angular position.

3.4 Lumen-wall boundary displacement processing

Given the variability of the processed data, the pipeline explained in Section 3.3
was repeated several times by varying some of the processing parameters. In
such a way, starting from the same dataset, we were able to provide a descrip-
tive analysis of the displacements computed given different sets of processing
parameters. In particular, different values were chosen for the image upsam-
pling factor γ (γ = 2, 4, 6, 8) and for the order N of the Fourier decomposition
in Eq. (9) needed to regularize the contours (N = 2, 3). In addition to this,
both the original jagged contours and their smooth approximations (see Fig. 7,
on the top) were considered for the computation of displacements. This resulted

in 12 instances δ `,jCINE(t, θ), j = 1, . . . , 12, of the function δ `CINE for each slice `.
For each of them, we considered a mean value over the contour, computed by
considering a specific range Θ ` of angular positions as follows:

∆`,j
CINE(t) =

1

L`

∫
Θ `

δ `,jCINE(t, θ) dθ, (10)

where L ` is the length of the portion of the contour parametrized by the angular
position θ ∈ Θ `. In such a way, we obtained for each time frame 12 values of
∆`,j
CINE, j = 1, . . . , 12 (see Fig. 7, on the bottom left), one for each set of processing

parameters. Starting from these families of curves, they were joined to produce
a displacement band ∆̂`

CINE(t) for each slice `, defined as

∆̂`
CINE(t) =

{
(t,∆`

CINE) : ∆`
CINE(t) ∈

[
∆`,min
CINE (t),∆`,max

CINE (t)
]}

,

where, for each t, ∆`,min
CINE (t) = minj=1,...,12 ∆`,j

CINE(t) and ∆`,max
CINE (t) = maxj=1,...,12 ∆`,j

CINE(t)
(see Fig. 7, on the bottom right). In view of the parameter estimation (see Sec-

tion 3.5), we also introduced for each time t the mean value ∆`,mean
CINE (t) and com-

puted significant statistical indices such as point-wise variance and interquartile
ranges. For our application, a more thorough analysis of temporal correlation
between time frames was neglected.
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Figure 7: On the top, lumen-wall boundary contours shown for 5 values of the
upsampling factor γ, both for the original jagged contours and for the smooth
approximations. On the bottom, representative ∆`,j

CINE curves (left) and corre-

sponding displacement band ∆̂`
CINE (right). Also shown, its mean value ∆`,mean

CINE

and interquartile range, shown in darker blue.

3.5 Parameter estimation

The reference displacements ∆`,mean
CINE (t) obtained from CINE MRI were used to

tune a subset of model parameters. In particular, we estimated the values of αs,
αj and αp in the structure external Robin boundary condition (see Section 2.1)
and of R2 and C in the windkessel boundary condition (see Section 2.2.2). As
regards the other parameters, such as the elastic properties of the healthy ves-
sel and intermediate layer, we considered standard values taken from literature.
While these parameters still exhibit inter-subject variability, we chose to focus
on the estimation of parameters that are essential for the description of a patho-
logical condition through our surrogate model.

In view of the parameter estimation, the vessel wall displacements dnh '
dh(tn), resulting from the discretizations of FSI simulations, were sampled at
each acquisition time tk on the fluid-structure interface Σk on planes corre-
sponding to the acquisition planes of CINE MRI images. Here, we denote with
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Σk the approximation of the interface Σtk after discretization. Since comparison
between computed and measured displacements was possible only for in-plane
displacements, the through-plane component of the FSI displacements was ne-
glected. In such a way, for each slice ` and time tk, the in-plane displacement
scalar function δ `,kh (θ) was obtained from FSI simulations as follows:

δ `,kh (θ) =

(
2∑
i=1

(
d kh

∣∣∣
Σk
· si
)2
) 1

2

,

where si, i = 1, 2, represent the versors lying on the CINE MRI acquisition
planes (Fig. 5). Starting from this function, a mean value over Θ ` was computed
as follows:

∆`,k
h =

1

L`

∫
Θ `

δ `,kh (θ) dθ.

The values of αs, αj , αp, R2 and C were then estimated in order to min-

imize the discrepancies between ∆`,k
h = ∆`,k

h (wk
h(q)) and the reference dis-

placements ∆`,mean
CINE (tk), where w k

h = (ukh, p
k
h ,d

k
h ) is the FSI numerical solu-

tion and q = (αs, αj , αp, R2, C). Indicating with a ˜ the optimized parame-
ters, the optimization problem for the parameter estimation then reads: find
q̃ = (α̃s, α̃j , α̃p, R̃2, C̃) such that

q̃ = arg min
q

∑
`,k

∣∣∣∆`,k
h (w k

h (q))−∆`,mean
CINE (tk)

∣∣∣2 , (11)

with wk
h subjected to the time-discretization of system (1).

In order to solve the optimization problem (11) we considered a basic direct
search method based on the Hooke and Jeeves algorithm (Hooke and Jeeves
1961; Quarteroni et al. 2000), where an FSI problem is solved using a value of q
that is iteratively adjusted. In particular, starting from a uniform value of α (αs
= αj = αp) and values of R2 and C taken from literature, we set the increment
δq = −ηδE, where E is the quadratic error appearing in (11) and η is a suitable
acceleration parameter. At each iteration we then updated q as q + δq and
evaluate the new error E. We refer to Perego et al. (2011) and Bertoglio et al.
(2012) for efficient strategies to solve inverse problems in the FSI context based
on gradient descent and Kalman filters methods, respectively, applied however
to synthetic data.

In order to check the significance of the optimal values estimated with this
procedure, we verified for each case that ∆`,k

h (w k(q̃)) is placed within the refer-

ence band ∆̂`
CINE(tk).

4 Results and Discussion

In this section we present the results of the surrogate plaque model described
in Section 2, obtained by the integration of CINE MRI images as described in
Section 3.
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All numerical simulations were performed with the Finite Element library
lifeV (www.lifev.org). We considered a neo-Hookean material for the vessel
wall, with parameters λ = 9.31 · 105Pa and µs = 1.03 · 105Pa. Moreover, we
set ρf = 1.06 g/cm3, µf = 0.035 g/cm · s and ρs = 1.20 g/cm3. The time
discretization parameter is ∆t = 10−3s.

From the descriptive statistical analysis of the displacement bands obtained
from the segmentation of CINE MRI images, we had a representation of the
variability of the processed data. The variability of the computed values of
displacements justified our choice of reproducing the segmentation procedure
for different sets of parameters. At the same time, for each of the time frames,
which were processed separately, the displacements lay in a small range of values,
with a relative standard deviation that remains below 0.65.

Figure 8: External boundary tags for P1 (left), P2 (center) and P3 (right).
Plaque shown in yellow, jugular contact area in shades of blue, external tissues
in white.

Table 1: Optimal external support parameter values set in patients P1, P2, P3
to account for the surrounding tissue (αs), the jugular vein (αj) and the plaque
(αp). Expressed in g/(cm2 · s2). The color code defined in Figure 8 is used to
relate values to the corresponding wall regions.

αs αj αp

P1 2.0 · 106 �
0.5 · 106

4.0 · 1061.8 · 106

1.5 · 106

P2 1.2 · 106 �
8.0 · 105

3.2 · 106

2.0 · 105

P3 2.0 · 106 �
1.2 · 106

4.0 · 106

1.0 · 106
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In Table 1 we report the results of the parameter estimation procedure re-
garding the surrogate plaque model and the external support of the jugular vein
and other surrounding tissues. Approximately six iterations were required for
each patient to obtain the optimized parameter values using our algorithm. Mul-
tiple regions were identified corresponding to the contact with the jugular vein,
where different parameter values were used. A further parameter value was used
for the overall support of other surrounding tissues (Fig. 8).

The parameter values used in the windkessel model coupled to both outlets
(ECA and ICA) are reported in Table 2 for all patients.

Table 2: Windkessel model parameter values. Resistances expressed in Pa/(cm3·
s), compliances expressed in (Pa/cm3)−1.

ECA ICA

R2 C R2 C

P1 2.0 · 103 5.0 · 10−3 1.0 · 103 4.0 · 10−3

P2 5.0 · 103 1.0 · 10−3 1.0 · 103 5.0 · 10−3

P3 2.0 · 102 5.0 · 10−3 1.0 · 103 1.0 · 10−4

Fig. 9 shows the comparison between the computed displacements ∆`
h and

the mean values of the lumen-wall boundary displacement ∆`,mean
CINE computed

from CINE MRI. In the same figure, we also report the lumen-wall boundary
displacement bands ∆̂`

CINE, highlighting their interquartile range. For all pa-
tients, we report the results obtained on slices located at the CCA and at its
bifurcating branches (ECA and ICA). Notice that the sets Θ ` of angular po-
sitions used in the computations of displacements (see (10)) correspond to the
area of contact with the jugular vein for slices A, B, F in Fig. 9, whereas to
the whole contour for the other slices. We focused our analysis on the systolic
phase, when plaque is subjected to maximum stresses and then it is most at risk
of rupture.

We notice that the computed displacements are in good agreement with the
ones reconstructed from CINE MRI images. In particular, all the displacement
curves lie in the uncertainty bands for almost all the time instants and for all
the slices. This is in our opinion an excellent result, since the input of numerical
simulations were given by another source of images with respect to CINE MRI
(used here only for comparison), i.e. by ECD. To confirm this, in Table 3
we report the absolute and relative discrepancies between computed (∆`

h) and

measured (∆`,mean
CINE ) displacements, computed as root mean-squared errors. We

point out that, in all patients, the error remains 1-2 orders of magnitude below
the original image resolution (1.1× 1.1mm).

To further highlight the validity of our approach, we compared for patient P2
the results obtained with the parameter values obtained with our minimization
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Figure 9: Comparison between computed displacements (shown in fuchsia) and
reference lumen-wall boundary displacements obtained from CINE MRI (dis-

placement bands ∆̂`
CINE and mean values ∆`,mean

CINE , shown in blue) for P1 (top),
P2 (middle) and P3 (bottom). Displacements are computed on the contours
highlighted in green.
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Table 3: Evaluation of the discrepancies between computed and measured dis-
placements, reported as absolute (mm) and relative (%) root mean-squared er-
rors.

Slice Absolute
error
[mm]

Mean Relative
error [%]

Mean

P1
A 0.07

0.06
18.40

17.13
B 0.04 15.85

P2

C 0.04

0.03

11.47

11.25D 0.01 4.76

E 0.02 10.10

F 0.02 5.70

P3
G 0.04

0.04
12.59

10.96
H 0.03 9.34

problem (configuration (i)) with two other scenarios regarding the choice of the
elastic properties of the external support (surrounding tissues, jugular vein and
plaque):

(ii) setting αj = αs, that is neglecting the presence of the jugular vein, and
using values of αs and αp taken from configuration (i);

(iii) setting αp = αj = αs, that is neglecting both the jugular vein and the
plaque, and using a value of αs taken from configuration (i).

In Fig. 10 we report the corresponding results, which highlight that the
inclusion of both the surrogate plaque model and the close-by jugular vein im-
proved the agreement with the reference displacements. Indeed, considering a
quantitative comparison, the average relative error obtained by including both
the plaque and the jugular vein (11.25%) is almost half of those obtained in
configurations (ii) and (iii) (21.15% and 19.96%, respectively). We observe in
particular slice F, where neglecting the jugular vein lead to an error of about
40% in both scenarios.

To complete our analysis, in Fig. 11 we report some fluid dynamic quantities
in order to highlight the disturbed flow arising as a consequence of the presence
of the plaque. The evaluation of this disturbed flow, as obtained by our new
surrogate model, is important to evaluate the risk of plaque rupture and the
formation of transition to turbolence effects Lee et al. (2008); Lancellotti et al.
(2017). To this aim, we report the velocity streamlines and WSS maps at the
systolic peak for all patients. As expected, we observe a highly disturbed flow
after the stenosis in the ICA, characterized by large vortices, and elevated WSS
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Figure 10: Comparison of lumen-wall boundary displacements for three simu-
lation configurations: (i) External support differentiated into surrounding tis-
sues, jugular vein and surrogate plaque model; (ii) αj = αs (the jugular vein
is neglected); (iii) αp = αj = αs (both the jugular vein and the plaque are
neglected).

values at the stenosis and at the ICA in the region where flow impinges on the
artery wall.

5 Conclusions

In the present work we introduced a surrogate model for FSI in human carotid
arteries based on the substitution of the atherosclerotic plaque modeling with a
suitable boundary condition for the external structure surface, avoiding the com-
plexities related to the geometric reconstruction and mechanical characterization
of the plaque. To improve the accuracy, we also characterized the influence of
the close-by jugular vein. To estimate the parameters in the surrogate model,
we used CINE MRI data of structure displacement. We applied our approach
to three subjects. In all cases, we found that describing the impact of both the
plaque and the jugular vein improved the agreement of numerical results with
CINE MRI data.
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Figure 11: On the top, peak velocity streamlines. On the bottom, peak WSS
maps.
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