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Abstract

In this work, we focus on the Optimized Schwarz Method for circular flat
interfaces and geometric heterogeneous coupling. In the first case, we pro-
vide a convergence analysis for the diffusion-reaction problem and jumping
coefficients and we apply the general optimization procedure developed in
Gigante and Vergara, Numer. Math., 131(2), 369–404, 2015. In the numer-
ical simulations, we discuss how to choose the range of frequencies in the
optimization and the influence of the Finite Element and projection errors
on the convergence. In the second case, we consider the coupling between
a three-dimensional and a one-dimensional diffusion-reaction problem and
we develop a new optimization procedure. The numerical results highlight
the suitability of the theoretical findings.

1 Introduction

The Optimized Schwarz Method (OSM) is a well established Domain Decom-
position method based on looking for efficient parameters in Robin-like inter-
face conditions [30, 25]. This method has been considered for many problems,
such as the advection-reaction-diffusion problem [16, 26], the Helmholtz equa-
tion [17, 31], the shallow-water equations [35], the Maxwell’s equations [5], the
fluid-structure interaction problem [20, 43, 22, 23], and the scattering problem
[38].

From a geometric perspective, this method has been used for flat unbounded
interfaces [16, 26, 17, 31, 35, 5, 38], circular interfaces [18, 19], cylindrical inter-
faces [21, 43, 22, 23], and spherical interfaces [22]. In this paper, we address for
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the three-dimensional (3D) case a flat interface that, unlike previous works on
this topic, is not an unbounded surface. Rather, we consider here the case of a
flat circular interface. Analogously, for the overlapping case, the interface region
is given here by a cylinder instead of a 3D strip.

The study of circular flat interfaces is of particular interest when a Partial
Differential Equation (PDE) is solved in a cylindrical domain which is split in
two (or more) cylinders with interfaces orthogonal to the axial direction. For
example, this is the case when parallel computing is performed to speed up the
numerical solution of the problem at hand, or for jumping material parameters.
Here, we provide a convergence analysis of the partitioned procedure arising
in this context for a diffusion-reaction problem, and we discuss some optimal
choices of the interface parameters. We also show some numerical results that
highlight the effectiveness of our theoretical findings, and highlight the relation-
ship between the convergence and the Finite Element errors.

In the second part of the paper, we address the split of a cylinder into
two non-overlapping cylinders, where one of them (let say the distal one) is
substituted by a geometric reduced one-dimensional model, where only the axial
coordinate survives. This leads to a geometric multiscale model, where the
geometric heterogeneous coupling between 3D and 1D models is addressed. This
coupled problem has been studied in a general framework in [29, 2], and widely
considered in hemodynamic applications, see e.g. [7, 4, 33, 37]. The interface
conditions appearing in partitioned algorithms for the 3D-1D coupled problem in
hemodynamics involve Dirichlet and Neumann data [9], the total pressure [10, 3],
or the characteristic variables [7]. Other type of partitioned algorithms were
obtained in [4] by considering a Lagrange multipliers mortaring, and in [29, 32, 3]
by introducing the interface equation. Here, we address the case of Robin-
type interface conditions for the reaction-diffusion problem. In particular, we
study the convergence of the resulting Schwarz method and we propose optimal
values for the interface parameters. Finally, we show some numerical results
highlighting the effectiveness of our theoretical findings.

The outline of this paper is as follows. In Section 2 we address the case
of the generalized Schwarz algorithm obtained in the 3D-3D splitting, whereas
in Section 3 the one arising from the 3D-1D coupling. For each of these two
sections, we provide a convergence analysis of the related generalized Schwarz
algorithm, we discuss possible optimization procedures to find effective values of
the interface parameters, and we show the numerical results.

2 The 3D-3D splitting case

2.1 Problem setting

Referring to Figure 1, we consider the following coupled problem in the overlap-
ping subdomains Ω1 = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, −∞ < z < H} and
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Ω2 = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, 0 < z < +∞}

− µ1△u1 + γ1u1 = 0 x ∈ Ω1, (1a)

u1|Σ = u1|z→−∞ = 0, (1b)

u1 = u2 x ∈ Γ1, (1c)

µ1
∂u1

∂z
= µ2

∂u2

∂z
x ∈ Γ2, (1d)

− µ2△u2 + γ2u2 = 0 x ∈ Ω2, (1e)

u2|Σ = u2|z→∞ = 0, (1f)

where µ1, µ2, γ1, γ2 are given positive parameters, Σ is the lateral surface, and
we considered the homogeneous case in view of the convergence analysis. The
interfaces Γ1 and Γ2 are located at z = H ≥ 0 and z = 0, respectively.

Figure 1: Unsplit computational domain (up) and overlapping subdomains (bot-
tom).

Introducing two linear operators S1 6= S2 and ω ∈ (0, 1], we consider the
following generalized Schwarz method for the solution of the previous problem,
obtained by linearly combining the interface equations (1c)-(1d):

Given ũ
(0)
2 , at each iteration n > 0, until convergence
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1. solve the problem in Ω1:

− µ1△u
(n)
1 + γ1u

(n)
1 = 0 x ∈ Ω1, (2a)

u
(n)
1 |Σ = u

(n)
1 |z→−∞ = 0, (2b)

S1u
(n)
1 + µ1

∂u
(n)
1

∂z
= S1ũ

(n−1)
2 + µ2

∂ũ
(n−1)
2

∂z
x ∈ Γ1; (2c)

2. solve the problem in Ω2:

− µ2△u
(n)
2 + γ2u

(n)
2 = 0 x ∈ Ω2, (3a)

u
(n)
2 |Σ = u

(n)
2 |z→∞ = 0, (3b)

S2u
(n)
2 + µ2

∂u
(n)
2

∂z
= S2u

(n)
1 + µ1

∂u
(n)
1

∂z
x ∈ Γ2; (3c)

3. relaxation step: ũ
(n)
2 = ωu

(n)
2 + (1 − ω)ũ

(n−1)
2 .

2.2 Convergence analysis

We report in what follows a convergence result of the previous partitioned al-
gorithm. In this first analysis, we assume that u1 and u2 do not depend on
the angular coordinate ϕ, i.e. uj = uj (r, z) , j = 1, 2. Although simplified, the
following analysis will highlight important features of the coupling with a flat
circular interface.

Let R be the radius of the cylinder and {xk}+∞
k=1 the positive zeros of the

Bessel function J0. Unlike the case of a flat unbounded interface, here we do
not consider the Fourier transform of our unknowns, rather, their Fourier-Bessel
expansions in the variable r ∈ [0, R] [27]:

uj (r, z) =

+∞∑

k=1

ûj (k, z) J0

(
xk

r

R

)
, (4)

where

ûj (k, z) =
2

R2J1 (xk)
2

∫ R

0
uj (r, z)J0

(
xk

r

R

)
rdr.

Notice that such functions satisfy the condition uj |Σ = 0.
We have the following result.

Proposition 1 The reduction factor related to the iterations (2)-(3), in the case
ω = 1 and u1 = u1(r, z), u2 = u2(r, z), is given by

ρ3D−3D(k) =
σ2 + µ1β1,k

σ2 − µ2β2,k
· σ1 − µ2β2,k

σ1 + µ1β1,k
e−(β1,k+β2,k)H , (5)

4



where σj = σj(k), j = 1, 2, are the symbols of Sj related to the Fourier-Bessel
expansion, and

βj,k =

√
γj

µj
+

x2
k

R2
. (6)

Proof. Since the expression of the Laplacian in cylindrical coordinates is

∆w =
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂ϕ2
+

∂2w

∂z2
,

and since the eigenfunctions of

1

r

∂

∂r

(
r
∂w

∂r

)

are the functions J0 (αr) with eigenvalues −α2, α ∈ R, we have for each j = 1, 2

∆uj =
1

r

∂

∂r

(
r
∂uj

∂r

)
+

∂2uj

∂z2

=
+∞∑

k=1

ûj (k, z)
1

r

∂

∂r


r

∂
(
J0

(
xk

r

R

))

∂r


 +

+∞∑

k=1

∂2ûj (k, z)

∂z2
J0

(
xk

r

R

)

=
+∞∑

k=1

(
− x2

k

R2

)
ûj (k, z)J0

(
xk

r

R

)
+

+∞∑

k=1

∂2ûj (k, z)

∂z2
J0

(
xk

r

R

)
.

The equations γjuj − µj∆uj = 0 therefore become

γj

+∞∑

k=1

ûj (k, z)J0

(
xk

r

R

)
− µj

+∞∑

k=1

(
− x2

k

R2

)
ûj (k, z)J0

(
xk

r

R

)
− µj

+∞∑

k=1

∂2ûj (k, z)

∂z2
J0

(
xk

r

R

)
= 0

+∞∑

k=1

((
γj

µj
+

x2
k

R2

)
ûj (k, z) − ∂2ûj (k, z)

∂z2

)
J0

(
xk

r

R

)
= 0.

This gives (
γj

µj
+

x2
k

R2

)
ûj (k, z) − ∂2ûj (k, z)

∂z2
= 0

for every k = 1, 2, 3, . . . The condition u1|z=−∞ = 0 and u2|z=∞ = 0 give

û1 (k, z) = C1 (k) eβ1,kz û2 (k, z) = C2 (k) e−β2,kz, (7)

where βj,k are given by (6) and Cj(k), j = 1, 2, are two functions determined as
usual by the interface conditions.

Now, by writing the Fourier-Bessel expansions of the interface conditions
(2c) and (3c) and using (7), we obtain

(σ1 + µ1β1,k)C
(n)
1 (k)eβ1,kH = (σ1 − µ2β2,k)C

(n−1)
2 (k)e−β2,kH ,

(σ2 − µ2β2,k)C
(n)
2 (k) = (σ2 + µ1β1,k)C

(n)
1 (k).
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Taking as usual for the reduction factor to quantity C
(n)
2 (k)/C

(n−1)
2 (k) (see e.g.

[16]), we obtain the thesis. ¤

We consider now the case without overlap, H = 0. In this case, we can use
the general convergence analysis provided in [22]. In particular, we have the
following result.

Proposition 2 In the case without overlap (H = 0), iterations (2)-(3), with
ω = 1 and u1 = u1(r, z), u2 = u2(r, z), converge if and only if

σ2 < σ1 and

(
σ1 +

µ1β1,k − µ2β2,k

2

) (
σ2 +

µ1β1,k − µ2β2,k

2

)
<

(
µ1β1,k + µ2β2,k

2

)2

, or

σ2 > σ1 and

(
σ1 +

µ1β1,k − µ2β2,k

2

) (
σ2 +

µ1β1,k − µ2β2,k

2

)
>

(
µ1β1,k + µ2β2,k

2

)2

.

Proof. Referring to Theorem 1 in [22], we observe that the hypothesis for its
application are satisfied since µ2β2,k > −µ1β1,k for all k, see [22]. Thus, the
thesis follows by a straightforward application of this theorem. ¤

2.3 Optimization procedures

We refer again to [22], where a general way to provide optimal values of the
interface parameters is provided for the case without overlap. We report, for the
sake of exposition, only the case µ1 = µ2 = 1. We have the following result.

Proposition 3 There exist three numbers ρ0 < 1, p−, p+, such that the reduc-
tion factor (5) for H = 0 satisfies

ρ3D−3D(k) ≤ ρ0, ∀k = kmin, . . . , kmax,

provided that σ1 = p, σ2 = 2M−p, with p ∈ [p−, p+] and M = 1
2

(√
γ2 +

x2
kmin

R2 −
√

γ1 +
x2

kmin

R2

)
.

In particular, for the case γ1 = γ2 = γ, we have M = 0,

p− =
1 −√

ρ0

1 +
√

ρ0
βkmax

p+ =
1 +

√
ρ0

1 −√
ρ0

βkmin
. (8)

and

ρ0 =




1 − 4

√
R2γ+x2

kmin

R2γ+x2
kmax

1 + 4

√
R2γ+x2

kmin

R2γ+x2
kmax




2

.

Proof. The thesis follows by the application of Theorem 2 in [22]. ¤

The previous result gives us a range of constant values for the interface
parameters which guarantees that the reduction factor is less than ρ0 < 1, i.e.
convergence independent of k.
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2.4 Numerical results

2.4.1 Generalities

The numerical results presented here have been obtained by means of the Finite
Element (FE) code FreeFem++ (www.freefem.org).

In all the numerical experiments, we consider the cylinder Ω = {(r, ϕ, z) :
0 ≤ r < R, 0 ≤ ϕ < 2π, 0 < z < 2L} split into two non-overlapping domains
Ω1 = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, 0 < z < L} and Ω2 = {(r, ϕ, z) : 0 ≤
r < R, 0 ≤ ϕ < 2π, L < z < 2L}, separated by the interface Γ = {(r, ϕ, z) : 0 ≤
r < R, 0 ≤ ϕ < 2π, z = L}. In our case, we have used R = 0.5 and L = 2.5.
Moreover, if not otherwise specified, we set γ1 = γ2 = 10 and µ1 = µ2 = 1. As
a consequence, we have M = 0 in the estimates of Proposition 3.

The numerical solutions have been obtained by solving two-dimensional axi-
symmetric problems. The corresponding meshes were formed by triangles, and
the discretization parameter is h = R/10 = 0.05. The stopping criterion is given
by ∫

Γ
|u(n)

1 − u
(n−1)
1 |2dγ ≤ ε2,

where ε = 10−7. If not otherwise specified, we use P2 Finite Elements and we
consider no relaxation, i.e. ω = 1.

2.4.2 On the choice of the frequencies in the optimization procedure

In the above Proposition 3, the optimal interface parameters are established
after an a priori evaluation of the relevant “frequency” parameters k. It is
well known that when applying this method in a numerical simulation, certain
frequencies can be considered irrelevant to the problem. For example, in the
(two dimensional) classical approach to the problem, the interface is modeled
as an unbounded line, and the continuous Fourier transform

∫ +∞
−∞ f(x)e−ixmdx

is used. When adapting this analysis to a particular case, only the frequencies
m between two values Mmin and Mmax are considered. Indeed, one can dis-
regard all frequencies smaller than Mmin = π/D, where D is a characteristic
dimension of the effective interface used in the numerical experiment, as well
as all frequencies greater than the Nyquist-Shannon frequency Mmax = π/h.
The Fourier-Bessel expansion that we use here already takes into account the
shape and dimensions of the interface. Thus, unlike the case of analysis for an
unbounded interface, there is no reason to disregard any of the lower values
of the “frequency” parameter k. On the other hand, in our two-dimensional
axi-symmetric numerical simulations the interface reduces to the interval [0, R]
and the mesh size is given by h = R/N for an integer N , with nodes, say,
0 = r1 < r2 < . . . < rN < rN+1 = R. In this situation one can disregard all the
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values of k greater than N . Indeed, if k > N then the linear system





u
(0)
2 (r1, L) = α1J0

(x1r1

R

)
+ . . . + αkJ0

(xkr1

R

)

. . .

u
(0)
2 (rN , L) = α1J0

(x1rN

R

)
+ . . . + αkJ0

(xkrN

R

)

has more variables than equations, and therefore will never have one solution
only (we have not considered the equation corresponding to rN+1 = R since all
the functions J0(xkr/R) vanish there). For this reason, when computing the
optimal interface values in (2.8), all the values of k greater than R/h = N can
be considered irrelevant to the problem.

In conclusion, according to the previous analysis, the shape and dimension
of the interface and the size of the mesh allow us to disregard all frequency
parameters k outside the interval [Kmin, Kmax], where Kmin = 1 and Kmax =
R/h.

It is perhaps worth observing here that the value Kmax = R/h = N cor-
responds to the Nyquist-Shannon frequency π/h in the following sense: the

function J0

(xkr

R

)
with the highest possible value of k, that is J0

(xNr

R

)
, per-

forms exactly N half oscillations in the interval [0, R], which means on average
half oscillation for each interval of length h. Similarly, the functions eimx with
the highest possible value of m, that is e±iπx/h perform exactly half oscillation
for each interval of length h.

Thus, by the above observations, it is reasonable to choose an initial guess

u
(0)
2 (r, L) =

k2∑

k=k1

û
(0)
2 (k)J0

(
xk

r

R

)
,

with 1 ≤ k1 ≤ k2 ≤ Kmax. From a theoretical point of view, no other frequencies
appear in the iterative process other than those between k1 and k2. For this
reason the best possible choice in Proposition 3 should be kmin = k1 and kmax =
k2.

In the practical situation, however, as the iterations proceed, frequencies
other than those strictly between k1 and k2 seem to appear, due to the Finite
Element approximation. These new frequencies are not irrelevant to the com-
putations, and it may therefore be better to choose different values of kmin and
kmax than k1 and k2 respectively when applying Proposition 3.

In order to be able to detect the above described phenomenon in the practical
situations, it is convenient to define the following effective reduction factor

ρ
(n)
h =

(∫
Γ |u(n)

1 − u
(n−1)
1 |2dγ

)1/2

(∫
Γ |u(n−1)

1 − u
(n−2)
1 |2dγ

)1/2
, (9)
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which is computable by the numerical experiments (it is in fact the ratio between
two consecutive stopping criterium quantities). Notice that by the orthogonality

of the functions J0

(xkr

R

)
,

ρ
(n)
h =

(
+∞∑

k=1

(ρ3D−3D (k))2 wk

)1/2

, (10)

where

wk =

∣∣∣∣
̂
u

(n−1)
1 (k) − ̂

u
(n−2)
1 (k)

∣∣∣∣
2

πR2J2
1 (xk)

∫
Γ |u(n−1)

1 − u
(n−2)
1 |2dγ

. (11)

Thus, the effective reduction factor ρ
(n)
h can be considered as a weighted ℓ2

(
N, {wk}+∞

k=1

)

average of the reduction factor {ρ3D−3D (k)}+∞
k=1. For a generic initial guess

u
(0)
2 , one can a posteriori deduce that the leading frequency in the increment(∫
Γ |u(n−1)

1 − u
(n−2)
1 |2dγ

)1/2
is one of the values of k for which ρ

(n)
h ≈ ρ3D−3D (k).

Indeed, if ρ
(n)
h ≈ ρ3D−3D

(
k
)

for some k, then one can extrapolate that in (10), all

the weights are negligible except for wk, and this means precisely that the k-th

Fourier-Bessel coefficient of u
(n−1)
1 − u

(n−2)
1 is sensibly bigger than the others.

In the forthcoming results, we will analyze the convergence history for dif-
ferent choices of k1, k2, kmin and kmax, all included in the range [Kmin, Kmax] =
[1, R/h]. In order to make the exposition clearer, we recall that Kmin and Kmax

are the extreme frequencies compatible with the mesh, k1 and k2 the extreme
frequencies appearing in the initial guess, whereas kmin and kmax the extreme
frequencies used in the application of (8) for the optimization.

2.4.3 k1 = k2 = 1

In the first set of numerical simulations, we consider in the initial guess only the

first value of k, namely k = 1. Thus, in principle we should have u
(0)
2 = J0

(
x1r
R

)
.

We want to investigate first the production of sources of error generated only by
the FE error. Thus, we approximate J0

(
x1r
R

)
with a parabola, in order to have

a vanishing projection error onto the FE space. In particular, we set

u
(0)
2 = 1 −

( r

R

)2
.

Observe that the corresponding Fourier-Bessel coefficients û
(0)
2 (k) from (11) are

small for k 6= 1, but not vanishing. In particular, they decrease in modulus as k
increases.

As a first choice, we set kmin = kmax = 1 in the optimization procedure, i.e.
we exploit the fact that the main contribution in the initial guess is given by k =
1, thus ignoring the presence of other frequencies. Owing to the estimates (8),
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we obtain p− = p+ = 5.75. The numerical simulation converges in 8 iterations.
In Table 1 we report the reduction factors as a function of k estimated a priori
by means of (5) and the effective reduction factors as a function of the number
of the iteration n estimated by means of (9). We report only some values in
correspondence of the most significant k and n.

A priori reduction factors (5) Effective reduction factors (9)

ρ3D−3D(1) = 0.0 ρ
(3)
h = 0.005

ρ3D−3D(2) = 0.110 ρ
(4)
h = 0.124

ρ3D−3D(3) = 0.257 ρ
(5)
h = 0.166

ρ3D−3D(4) = 0.372 ρ
(6)
h = 0.216

ρ3D−3D(5) = 0.460 ρ
(7)
h = 0.249

ρ3D−3D(10) = 0.686 ρ
(8)
h = 0.271

Table 1: Left: estimated reduction factors for selected values of k. Right: effec-
tive reduction factors for selected values of the iteration n. Case k1 = k2 = 1
and kmin = kmax = 1.

From these results we observe that the a priori reduction factor in correspon-
dence of k = 1 is as expected vanishing, and increasing values of ρ3D−3D are
obtained for increasing k. Notice that that the effective reduction factor in Ta-
ble 1, right column, reaches a value which is very similar to ρ3D−3D(3) = 0.257.
This means that the leading value is k = 3. This is the result of the balance
between small (large) values of the Fourier-Bessel coefficient for k large (small)
and large (small) values of the corresponding ρ3D−3D. In particular, although
characterized by large values of the reduction factor (see Table 1, left column)
the high frequencies seem to not influence the convergence. Probably, also the
FE error plays a role in determining the leading value of k, dumping and/or
emphasizing some frequencies. This point is under investigation.

As a second choice, we set kmin = Kmin = 1 and kmax = Kmax = R/h = 10
in the optimization procedure, i.e. we ignore that the main contribution in the
initial guess comes from k = 1 and we consider all the frequencies appearing
in the initial guess. In this case, the estimates (8) lead to p− = p+ = 18.79.
The numerical simulation converges in 11 iterations. In Table 2 we report again
some significant values of the reduction factors as a function of k estimated a
priori by means of (5) and of the effective reduction factors as a function of the
number of the iteration n estimated by means of (9).

From these results, first we observe that the a priori reduction factor given
by the optimal choice (8) is not vanishing for k = 1. Instead, it features its
maximum values for k = 1 and k = 10, that is the extreme values of the range of
possible k’s. This is in accordance with the optimality procedure of Proposition
3 which is based on finding a range of constant (i.e. independent of k) values for
the interface parameters that leads to a small reduction factor independently of
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A priori reduction factors (5) Effective reduction factors (9)

ρ3D−3D(1) = 0.282 ρ
(3)
h = 0.282

ρ3D−3D(2) = 0.058 ρ
(4)
h = 0.282

ρ3D−3D(3) = 0.001 ρ
(5)
h = 0.283

ρ3D−3D(4) = 0.014 ρ
(6)
h = 0.283

ρ3D−3D(5) = 0.053 ρ
(7)
h = 0.283

ρ3D−3D(6) = 0.101 ρ
(8)
h = 0.283

ρ3D−3D(7) = 0.150 ρ
(9)
h = 0.283

ρ3D−3D(8) = 0.197 ρ
(10)
h = 0.283

ρ3D−3D(9) = 0.241 ρ
(11)
h = 0.283

ρ3D−3D(10) = 0.282

Table 2: Left: estimated reduction factors for selected values of k. Right: effec-
tive reduction factors for selected values of the iteration n. Case k1 = k2 = 1
and kmin = 1, kmax = 10.

k. Second, we highlight that this maximum value (0.282) is in fact coincident
with the effective reduction factor. This means that k = 1 is the leading value of
k in the practice computation (we exclude k = 10 since in the previous numerical
computations we deduced that the higher frequencies, although characterized by
large reduction factors, do not provide important contributions to the error). In
this case, although an error due to k = 2 and k = 3 is still present (as in the
previous case), it is rapidly dumped by the corresponding small reduction factor
(ρ3D−3D(2) = 0.058, ρ3D−3D(3) = 0.001).

We repeated the same tests with initial guess

u
(0)
2 =

√
2

RJ1(x1)
J0

(x1r

R

)
.

In the case kmin = kmax = 1 one should obtain convergence in one iteration,
because k = 1 is the only frequency in the initial guess, and ρ3D−3D = 0.0. In
practice one obtains convergence in 7 iterations, with an effective reduction factor

converging to ρ
(7)
h = 0.300 and a leading frequency between k = 3 and k = 4.

This means that the projection onto the FE space introduces new frequencies
that are not present in the initial guess. The results of the test with kmin = 1
and kmax = 10 are very similar to those obtained in the case of the parabola,
with a clear leading frequency k = 1.
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2.4.4 k1 = k2 = 10

In the second set of numerical simulations, we consider in the initial guess only
the value k = 10. Thus, we set

u
(0)
2 =

√
2

RJ1(x10)
J0

(x10r

R

)
.

As a first choice, we set kmin = kmax = 10 in the optimization procedure.
Owing to the estimates (8), we obtain p− = p+ = 61.35. The numerical simu-
lation converges in 22 iterations. In Table 3 we report the reduction factors as
a function of k estimated a priori by means of (5) and the effective reduction
factors as a function of the number of the iteration n estimated by means of (9).
We report only some values in correspondance of the most significant k and n.

A priori reduction factors (5) Effective reduction factors (9)

ρ3D−3D(1) = 0.686 ρ
(3)
h = 0.078

ρ3D−3D(2) = 0.469 ρ
(4)
h = 0.351

ρ3D−3D(3) = 0.307 ρ
(5)
h = 0.416

ρ3D−3D(5) = 0.118 ρ
(8)
h = 0.658

ρ3D−3D(6) = 0.066 ρ
(10)
h = 0.682

ρ3D−3D(8) = 0.013 ρ
(15)
h = 0.687

ρ3D−3D(9) = 0.003 ρ
(20)
h = 0.687

ρ3D−3D(10) = 0.0 ρ
(22)
h = 0.687

Table 3: Left: estimated reduction factors for selected values of k. Right: effec-
tive reduction factors for selected values of the iteration n. Case k1 = k2 = 10
and kmin = kmax = 10.

As expected, in this case the a priori reduction factor is vanishing for k =
10 and assumes increasing values for k decreasing. Again, we should expect
convergence in one iteration. However, the presence of error sources due to
the low values of k slows down the convergence, which is even slower than the
previous case since the a priori reduction factors are higher. In particular, the
effective reduction factor reaches a value that is in fact equal to ρ3D−3D(1) =
0.686. Thus, the leading value is k = 1.

As a second choice, we set kmin = 1 and kmax = R/h = 10 in the optimization
procedure, i.e. we ignore that only k = 10 appears in the initial guess and
we consider all the values of k predicted by the Shannon theorem. Of course,
the estimates (8) lead again to p− = p+ = 18.79. The numerical simulation
converges in 11 iterations. The values of the a priori reduction factor coincide
by construction with those reported in Table 2, left column. The values of the
effective reduction factors are in principle different, but in practice they coincide
for n ≥ 4 with those reported in Table 2, right column.
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Again, the leading value is k = 1, but the convergence is faster with respect
to the previous case (kmin = kmax = 10) since ρ3D−3D(1) is smaller. This is a
consequence of having included all the values of k in the optimization procedure,
thus helping to dump the errors due to the small values of k introduced by the
FE error.

As a third chioice, we set kmin = 1 and kmax = (R/h)/2 = 5 in the opti-
mization procedure, i.e. we consider only the smallest values of k among those
allowed by the Shannon theorem. The estimates (8) lead to p− = p+ = 13.14.
The numerical simulation converges in 9 iterations. In Table 4 we report the
reduction factors as a function of k estimated a priori by means of (5) and the
effective reduction factors as a function of the number of the iteration n esti-
mates by means of (9). We report only some values in correspondance of the
most significant k and n.

A priori reduction factors (5) Effective reduction factors (9)

ρ3D−3D(1) = 0.153 ρ
(3)
h = 0.198

ρ3D−3D(2) = 0.004 ρ
(4)
h = 0.203

ρ3D−3D(3) = 0.021 ρ
(5)
h = 0.169

ρ3D−3D(5) = 0.153 ρ
(6)
h = 0.160

ρ3D−3D(7) = 0.279 ρ
(7)
h = 0.159

ρ3D−3D(8) = 0.331 ρ
(8)
h = 0.160

ρ3D−3D(10) = 0.419 ρ
(9)
h = 0.161

Table 4: Left: estimated reduction factors for selected values of k. Right: effec-
tive reduction factors for selected values of the iteration n. Case k1 = k2 = 10
and kmin = 1, kmax = 5.

Interestingly, in this case the number of iterations is the lowest one among
the three choices of kmin and kmax and the effective reduction factor tends to
a value which is in fact very similar to ρ3D−3D(1) (notice that in this case
by construction ρ3D−3D(1) = ρ3D−3D(5) and the optimization procedure pro-
duces higher values of the a priori reduction factor for k ≥ 6). The reason of
this improvement should be ascribed to the projection error of the initial guess

onto the FE space (P2 in this case). Indeed, if u
(0)
2 was well projected, the

error corresponding to k = 10 (the only frequency present in the initial guess)
should slow down the convergence with an effective reduction factor close to
ρ3D−3D(10) = 0.419. The same arguments hold true for the numerical errors
corresponding to 6 ≤ k ≤ 9, since the corresponding a priori reduction factors
are greater than ρ3D−3D(1). This is probably due to the projection onto the FE
space that dumps the contribution of the highest values of k, even of those char-
acterizing the initial guess. To confirm these observations, we run the same test
as above with P3 FE. In this case, we need 12 iterations to reach convergence for
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the case kmin = 1, kmax = 10, with an effective reduction factor approaching the
value 0.294, and 13 iterations for the case kmin = 1, kmax = 5, with an effective
reduction factor approaching the value 0.329. Thus, the reduction of kmax does
not produce an improvement in the convergence, suggesting that in this case
the smaller projection error does not dump the high values of k. In the latter
case, the effective reduction factor reaches a value (0.329) similar to ρ3D−3D(8),
see Table 4, left column. Again, the contribution of the initial value k = 10 is
dumped, but in this case the contribution corresponding to k = 8 is not.

2.4.5 k1 = 1, k2 = 10

In the third set of numerical simulations, we consider all the values of k com-
patible with the mesh in the initial guess, i.e. we set

u
(0)
2 =

10∑

j=1

√
2

RJ1(xj)
J0

(xjr

R

)
. (12)

As a first choice, we set kmin = 1, kmax = 10 in the optimization procedure,
i.e. p− = p+ = 18.79. The numerical simulation converges in 13 iterations.
The effective reduction factor approaches the value 0.283 which is again very
similar to ρ3D−3D(1) (see Table 2, left column). As a second choice, we set
kmin = 1, kmax = 5 in the optimization procedure, i.e. p− = p+ = 13.14. Again,
the number of iterations to reach convergence decreases (10) and the effective
reduction factor approaches a value (0.165) very similar to ρ3D−3D(1) (see Table
4, left column).

These results confirm that the projection error dumps the contribution of the
highest values of k. Accordingly, one could think to improve the convergence
by considering only k = 1 in the optimization procedure, i.e. by setting p− =
p+ = 5.75 (see Section 2.4.1). By doing so, the number of iterations to reach
convergence is 16, with an effective reduction factor reaching the value 0.37, very
similar to ρ3D−3D(4) (see Table 1, left column). This means that we cannot
reduce too much kmax since low values of k > 1 give an important contribution
to the error as a consequence of the FE error.

Once again, we run the same test with P3 FE. In this case, we need 13
iterations to reach convergence for the case kmin = 1, kmax = 10, with an effec-
tive reduction factor approaching the value 0.284, and 13 iterations for the case
kmin = 1, kmax = 5, with an effective reduction factor approaching the value
0.321, similar to ρ3D−3D(8), see Table 4, left column. Again, the contribution of
the initial value k = 10 is dumped, but the contribution corresponding to k = 8
is not. Thus, also in this case, for P3 FE the reduction of kmax does not produce
an improvement of the convergence.
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2.4.6 The case of discontinuous coefficients

We address here the case γ1 = 100, γ2 = 1 and we consider as initial guess
the function reported in (12), that is a function presenting the whole range of
frequencies from Kmin = 1 to Kmax = R/h = 10. Referring to the quantities
defined in Sect. 2.3, in Table 5 we report the results of the numerical experiments
(for the definition of p− and p+ in the case γ1 6= γ2 we refer to [22]).

FE kmin kmax M ρ0 p− p+ # iter ρ
(n0)
h

P2 1 10 -3.09 0.22 19.08 19.13 n0 = 11 0.22
P2 1 5 -3.09 0.10 12.46 12.57 n0 = 9 0.22

P3 1 10 -3.09 0.22 19.08 19.13 n0 = 11 0.22
P3 1 5 -3.09 0.10 12.46 12.57 n0 = 12 0.26

Table 5: Values of M, ρ0 and of the optimal range of p provided by the estimates
reported in Proposition 3. Case γ1 = 100, γ2 = 1.

From these results, we observe that the range of optimal p predicted by
Proposition 3 is very thin, thus in fact providing directly the optimal value of
p also in the case of discontinuous coefficients. The same type of phenomenon
described in the case of continuous coefficients can be observed here too. The
projection of the initial guess onto the Finite Element space P2 cancels the higher
frequencies, and this gives a better performance when one takes kmax = 5. On
the other hand, when the P3 Finite Elements are used, the higher frequencies
remain relevant to the problem and things behave as expected.

3 The 3D-1D splitting case

As observed in the Introduction, in some applications there is the need to couple
a 3D problem with the corresponding reduced 1D model. In particular, referring
to Figure 2 and to the notation of Section 2 and setting Ω3D = Ω1, we consider
the following coupled problem:

−△u3D + γu3D = 0 x ∈ Ω3D, (13a)

u3D|Σ = u3D|z→−∞ = 0, (13b)

1

|Γ|

∫

Γ
u3Ddγ = u1D|z=0, (13c)

1

|Γ|

∫

Γ

∂u3D

∂z
dγ =

∂u1D

∂z

∣∣∣∣
z=0

, (13d)

− ∂2u1D

∂z2
+ γu1D = 0 z > 0, (13e)

u1D|z→∞ = 0, (13f)
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Figure 2: 3D-1D coupled subdomains.

where we have located the point z = 0 at the 3D-1D interface.
For the solution of the previous problem, we consider again a generalized

Schwarz method obtained by linearly combining the interface conditions (13c)-
(13d) (notice that in this case the linear operators S3D and S1D are just mul-
tiplicative constants, and therefore coincide with their symbols σ3D and σ1D

respectively ):

Given ũ
(0)
1D, at each iteration n > 0, until convergence

1. solve the 3D problem in Ω3D:

−△u
(n)
3D + γu

(n)
3D = 0 x ∈ Ω3D,

(14a)

u
(n)
3D |Σ = u

(n)
3D |z→−∞ = 0, (14b)

S3D
1

|Γ|

∫

Γ
u

(n)
3Ddγ +

1

|Γ|

∫

Γ

∂u
(n)
3D

∂z
dγ = S3D

(
ũ

(n−1)
1D

∣∣∣
z=0

)
+

∂ũ
(n−1)
1D

∂z

∣∣∣∣∣
z=0

;

(14c)

2. solve the problem in Ω1D:

− ∂2u
(n)
1D

∂z2
+ γu

(n)
1D = 0 z > 0,

(15a)

u
(n)
1D |z→∞ = 0, (15b)

S1D

(
u

(n)
1D

∣∣∣
z=0

)
+

∂u
(n)
1D

∂z

∣∣∣∣∣
z=0

= S1D
1

|Γ|

∫

Γ
u

(n)
3Ddγ +

1

|Γ|

∫

Γ

∂u
(n)
3D

∂z
dγ; (15c)

3. relaxation step: ũ
(n)
1D = ωu

(n)
1D + (1 − ω)ũ

(n−1)
1D .
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Remark 1 We observe that the solution of the 3D problem (14) is not uniquely
defined, since condition (14c) is defective, providing only one global information
rather than one for each x ∈ Γ. The numerical solution of defective problems
has been intensively addressed e.g. in [24, 8, 39, 40, 42, 11, 12, 13, 44, 41, 34,
6, 28, 14, 15, 36], where suitable strategies to complete these conditions have
been studied. In the numerical solution reported below, we made the following
concrete choice to prescribe condition (14c):

S3Du
(n)
3D +

∂u
(n)
3D

∂z
= S3D

(
ũ

(n−1)
1D

∣∣∣
z=0

)
+

∂ũ
(n−1)
1D

∂z

∣∣∣∣∣
z=0

, x ∈ Γ. (16)

3.1 Convergence analysis

We report in what follows a convergence analysis of the 3D-1D coupled problem
(14)-(15). Again, we assume for the 3D solution independence of the angular
variable. We have the following result.

Proposition 4 The reduction factor related to iterations (14)-(15), in the case
ω = 1 and u3D = u3D(r, z), is given by

ρ3D−1D =
∞∑

k=1

4

x2
k

(σ1D + βk)
(
σ3D −√

γ
)

(
σ1D −√

γ
)
(σ3D + βk)

,

with

βk =

√

γ +
x2

k

R2
. (17)

Proof. Referring to Section 2.2, we have that the solution of the 3D problem
(13a)-(13b) is given by

u3D (r, z) =
+∞∑

k=1

û3D (k, z)J0

(
xk

r

R

)
,

where the Fourier-Bessel coefficient is given by

û3D (k, z) = C3D (k) eβkz,

with βk given by (17). Instead, the 1D problem (13e)-(13f) is quickly solved by

u1D (z) = C1De−
√

γz.

The application of the Fourier-Bessel expansion to the left-hand side of (16) and
to the right-hand side (15c) leads to

S3Du
(n)
3D(r, 0) +

∂u
(n)
3D

∂z
(r, 0) =

∞∑

k=1

(σ3D + βk)C
(n)
3D (k)J0

(
xk

r

R

)
(18)
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and to

S1D

|Γ|

∫

Γ
u

(n)
3Ddγ +

1

|Γ|

∫

Γ

∂u
(n)
3D

∂z
dγ

=
2

R2

+∞∑

k=1

(
σ1D

∫ R

0
C

(n)
3D (k) J0

(
xk

r

R

)
rdr +

∫ R

0
C

(n)
3D (k)

(
∂

∂z
eβkz

)∣∣∣∣
z=0

J0

(
xk

r

R

)
rdr

)

=
2

R2

+∞∑

k=1

(
(σ1D + βk) C

(n)
3D (k)

∫ R

0
J0

(
xk

r

R

)
rdr

)

=

+∞∑

k=1

(σ1D + βk)C
(n)
3D (k)

2J1 (xk)

xk
, (19)

where the last identity follows from the formula d
dx (xJ0(x)) = xJ1(x), see [27,

page 103]. For X = 1, 3 and for un
XD we obtain

SXD

(
u

(n)
1D

∣∣∣
z=0

)
+

∂u
(n)
1D

∂z

∣∣∣∣∣
z=0

= (σXD −√
γ)C

(n)
XD.

Owing to the previous identity and to (18) and (19), the Robin interface condi-
tions (16) and (15c) become

∞∑

k=1

(σ3D+βk)C
(n)
3D (k)J0

(
xk

r

R

)
= (σ3D−√

γ)C
(n−1)
1D = (σ3D−√

γ)C
(n−1)
1D

∞∑

k=1

2

J1(xk)xk
J0

(
xk

r

R

)

which becomes

(σ3D + βk)C
(n)
3D (k) = (σ3D −√

γ)C
(n−1)
1D

2

J1(xk)xk
,

and
∞∑

k=1

(σ1D + βk)C
(n)
3D (k)

2J1(xk)

xk
= (σ1D −√

γ)C
(n)
1D .

This gives

C
(n)
1D

C
(n−1)
1D

=
∞∑

k=1

4

x2
k

(σ1D + βk)(σ3D −√
γ)

(σ1D −√
γ)(σ3D + βk)

and the thesis follows. ¤

3.2 Optimization procedures

First of all, we notice that the choice σ3D = σopt
3D =

√
γ gives ρ3D−1D = 0, and

therefore convergence in two steps.
In order to fix an effective value for σ1D for all the relevant k, we propose

the following argument. Assume that, perhaps due to a measurement error, the
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optimal choice of σ3D differs from the exact value of
√

γ by a small quantity ε.
Thus assume

σ3D =
√

γ + ε.

This gives

ρ3D−1D =

∞∑

k=1

4

x2
k

σ1D + βk(
σ1D −√

γ
) (√

γ + ε + βk

)ε.

When ε → 0, each term

σ1D + βk(
σ1D −√

γ
) (√

γ + ε + βk

)ε

is asymptotic to
σ1D + βk(

σ1D −√
γ
) (√

γ + βk

)ε.

Our goal is now to search for the value of σ1D that minimizes the maximum
value

max
βk∈[βkmin

,βkmax ]

∣∣∣∣∣
σ1D + βk(

σ1D −√
γ
) (√

γ + βk

)
∣∣∣∣∣ .

Observe that

max
βk∈[βkmin

,βkmax ]

∣∣∣∣∣
σ1D + βk(

σ1D −√
γ
) (√

γ + βk

)
∣∣∣∣∣ = max

βk∈[βkmin
,βkmax ]

∣∣∣∣
1√

γ + βk
− 1√

γ − σ1D

∣∣∣∣

= max
y∈

»

1

βkmax
+
√

γ
, 1

βkmin
+
√

γ

–

∣∣∣∣y − 1√
γ − σ1D

∣∣∣∣

=





1

βkmin
+
√

γ
− 1√

γ − σ1D
if 1√

γ−σ1D
≤ 1

2

(
1

βkmax+
√

γ + 1
βkmin

+
√

γ

)

− 1

βkmax
+
√

γ
+

1√
γ − σ1D

if 1√
γ−σ1D

≥ 1
2

(
1

βkmax+
√

γ + 1
βkmin

+
√

γ

)
.

Clearly, the value of σ1D that minimizes the above quantiy is the one for which

1√
γ − σ1D

=
1

2

(
1

βkmax
+
√

γ
+

1

βkmin
+
√

γ

)
=

βkmin
+ βkmax

+ 2
√

γ

2
(
βkmax

+
√

γ
) (

βkmin
+
√

γ
) ,

that is

σopt
1D =

√
γ − 2

(
βkmax

+
√

γ
) (

βkmin
+
√

γ
)

βkmin
+ βkmax

+ 2
√

γ
. (20)

This gives the asymptotic (when βkmin
6= βkmax

), as ε → 0,

ρ3D−1D ∼
(

1

βkmin
+
√

γ
− 1

βkmax
+
√

γ

) 


kmax∑

k=kmin

2

x2
k


 ε =
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βkmax
− βkmin(

βkmin
+
√

γ
) (

βkmax
+
√

γ
)




kmax∑

k=kmin

2

x2
k


 ε.

Notice that if only one frequency is involved (i.e. βkmin
= βkmax

= β), the
optimal value (20) reduces to σopt

1D = −β and from the previous estimate of the
reduction factor, we have ρ3D−1D = 0.

3.3 Numerical results

The numerical results for the 3D part have been obtained by means of FreeFem++,
whereas the 1D ones with Matlab.

We have considered Ω3D = {(r, ϕ, z) : 0 ≤ r < R, 0 ≤ ϕ < 2π, −L < z < 0},
with R = 1.0 and L = 2.5, and Ω1D = (0, L). The numerical solution in
the 3D geometry has been obtained by solving a two-dimensional axi-symmetric
problem in a rectangle. The corresponding meshes were formed by triangles. The
stopping criterion corresponds to the residual of a block Gauss-Seidel scheme and
it is given by (see [1]):

(
1

|Γ|

∫

Γ

(
σ3Du

(n)
3D +

∂u
(n)
3D

∂z

)
dγ − σ3Du

(n)
1D − ∂u

(n)
1D

∂z

)2

≤ ε2,

where ε = 10−5. We used P1 Finite Elements and we chose as initial guess

ũ
(0)
1D = 1.

The value of the space discretization parameter was h = 0.05, so that the
number of samples along the interface Γ was N = 20 and, according to Sect.
2.4, we set kmin = 1 and kmax = 10 (i.e. we account for the dumping of the
projection). We considered two values of the reaction parameter, namely γ = 1
and γ = 10.

Referring to the quantities defined in Sect. 3.2, in Table 6 we report the
results of the numerical experiments. In particular, for each scenario, we have
considered four schemes: the Dirichlet-Neumann (DN, σ3D = +∞, σ1D = 0),
the Neumann-Dirichlet (ND, σ3D = 0, σ1D = +∞), the Robin-Neumann (RN,
σ3D = σopt

3D , σ1D = 0), and the Robin-Robin (RR, σ3D = σopt
3D , σ1D = σopt

1D)
schemes.

γ σopt
3D σopt

1D # iter DN # iter ND # iter RN # iter RR

1 1.00 -5.47 X 11 3 2
10 3.16 -8.63 X 19 4 3

Table 6: Values of σopt
3D and σopt

1D and number of iterations for the four schemes
considered. X means no convergence achieved.

We observe an excellent behavior of the Robin-based schemes in compari-
son with the classical ones. Moreover, the estimate provided by (20) seems to
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improve the convergence properties of the optimized Robin-Robin scheme with
respect to the Robin-Neumann one.
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