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Abstract

Coronary artery disease, caused by the build-up of atherosclerotic
plaques in the coronary vessel wall, is one of the leading causes of death in
the world. For high-risk patients, coronary artery bypass graft is the pre-
ferred treatment. Despite overall excellent patency rates, bypasses may
fail due to restenosis. In this context, the purpose of this work is to per-
form a parametric computational study of the fluid-dynamics in patient-
specific geometries with the aim of investigating a possible relationship
between coronary stenosis degree and risk of graft failure. Firstly, we
propose a strategy to prescribe realistic boundary conditions in absence
of measured data, based on an extension of Murray’s law to provide the
flow division at bifurcations in case of stenotic vessels and non-Newtonian
blood rheology. Then, we carry out numerical simulations in three patients
affected by severe coronary stenosis and treated with a graft, in which
the stenosis degree is virtually varied in order to compare the resulting
fluid-dynamics in terms of hemodynamic indices potentially involved in
restenosis development. Our findings suggest that low degrees of coronary
stenosis produce a more disturbed fluid-dynamics in the graft, resulting
in hemodynamic conditions that may promote a higher risk of graft failure.

Keywords: coronary bypass; restenosis; Murray’s law; non-Newtonian
rheology; computational fluid-dynamics

1 Introduction

Coronary artery disease (CAD) is one of the leading causes of death in the
world, accounting for 7.2 million deaths/year, which equates to 12% of all deaths
worldwide [3]. CAD is caused by the build-up of atherosclerotic plaques in the
coronary vessel wall, resulting in a reduction of oxygen supply to the heart and
possibly leading to cardiovascular-related events such as myocardial infarction,
stroke and unstable angina.
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Depending on the characteristics of the atherosclerotic lesions (e.g. sever-
ity, number and site), several alternative treatments exist for CAD, including
medical therapy, endarterectomy, balloon angioplasty, stenting and coronary
artery bypass graft (CABG) surgery. For high-risk patients, such as those with
left main coronary artery (LMCA) disease and severe ventricular dysfunction,
CABG is the preferred treatment [16, 38]. In particular, the “gold standard”
procedure for the surgical treatment of left anterior descending (LAD) coronary
artery disease is the left internal mammary artery (LIMA) bypass, because of
its excellent long-term patency of nearly 90% at 15 years [49]. This is due to the
physiological properties of LIMA, which is able to retain its intrinsic properties
in the endothelium and smooth muscle cells and to adapt and autoregulate in
response to changes in blood flow demand and hemodynamic conditions [45].

Despite overall excellent patency rates, increasing frequency of restenosis of
the LIMA grafts has been noted, particularly in the region of the anastomosis
between LIMA and LAD [2, 46]. Different hypotheses have been formulated
to explain a possible correlation between hemodynamics and restenosis at the
LIMA anastomosis. Among them, the presence of recirculating flows, character-
ized by low and oscillatory wall shear stress (WSS), is thought to be the main
cause of intimal lipid accumulation with consequent macrophages recruitment
and inflammation, which eventually lead to plaque formation [2, 13, 17, 46].
In fact, hemodynamic patterns at CABG anastomoses exhibit flow separation,
recirculation and stagnation zones [47, 55] and several clinical studies have re-
ported the evidence that competitive flow (i.e. a relatively high flow through
LAD, compared to LIMA), arising in patients with less-than-critical stenosis of
the recipient artery, may cause particularly disturbed flow at the anastomotic
site with subsequent graft failure [4, 29, 31]. This evidence suggests that the
long-term patency of LIMA may be intrinsically related to the degree of steno-
sis in the native vessel and, in particular, it may be promoted by the presence
of non-severe stenoses. Although the possible failure of LIMA graft nowadays
represents a clinical evidence, some controversy still exists about the pertinence
of LIMA bypasses in case of moderate grades of stenosis [39].

Computational methods have been effectively employed to investigate quan-
titatively and non-invasively the fluid-dynamics in coronary artery bypass grafts
in idealized models [17, 23, 42, 47, 55], in animal geometries [26], and, more re-
cently, in human geometries [19, 41, 53]. Very few studies [10, 32, 48, 55] have
examined the possible relationship between competitive flow and risk of LIMA
restenosis at the anastomotic region. In this context, the purpose of this study
is to investigate, by means of computational tools, the interplay between the
severity of LAD stenosis and the risk of restenosis of LIMA bypass in patient-
specific geometries.

To this aim, the first goal of this work is to propose, within this context, a
possible solution to prescribe realistic boundary conditions in absence of mea-
sured data. In particular, in order to estimate the flow division between LMCA
and LAD, which is expected to be a function of the stenosis degree, we propose
an extension of the well known Murray’s law, originally proposed in Murray [30]
for non-stenotic vessels and Newtonian fluids, to the case of stenotic vessels and
non-Newtonian fluids. The resulting flow division is a function of the physical
properties of the branching vessels, i.e. dimensions, blood viscosity, degree of
stenosis.

The second aim of this work is to provide a computational study of the fluid-
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dynamics in three patients affected by LAD stenosis and treated with a LIMA
graft. In particular, we perform a parametric study based on Finite Element
Analysis and on the proposed extension of Murray’s law, in patient-specific
geometries reconstructed from CT images in which the degree of the stenosis
is virtually varied from 40% to 90%. We investigate a possible relationship
between LAD stenosis and risk of graft failure in terms of well-known WSS-based
hemodynamic indices potentially involved in plaque formation and restenosis
development.

2 Materials and Methods

2.1 Patients recruitment

For this study, we consider three patients (P1, P2 and P3 in what follows) with
isolated severe LAD disease (i.e. stenosis greater than 70%) who underwent
off-pump CABG surgery with LIMA to LAD bypass graft. Myocardial revas-
cularization was achieved by standard stabilization with Octopus device and by
use of intracoronary shunt.

A Philips Brilliance CT 64-slice system was employed to perform a follow-
up study based on three-dimensional Contrast Enhanced Computed Tomogra-
phy (3D-CE-CT). The main parameters of the acquisition are: slice thickness
0.67mm, slice spacing 0.33mm, reconstruction matrix 512 × 512 pixels, final
resolution 0.45mm× 0.45mm× 0.33mm.

2.2 Computational domains and mesh generation

By using a level-set segmentation technique developed in the software VMTK
(http://www.vmtk.org), we reconstructed a surface model of the interface be-
tween the blood and the arterial wall from the CT images of the three patients,
thus defining the 3D computational domain. In particular, we reconstructed
the LMCA with its two main branches, the LAD and the left circumflex artery
(LCx), and the LIMA graft (see Figure 1, right). For each patient we also
created the following further 3D computational domains:

- a domain without stenosis and bypass in order to simulate the “healthy”
case (healthy domain, see Figure 1, left, for an example, case P1);

- six diseased domains with different degrees of LAD stenosis, from 40% to
90% (see Figure 1, middle, for an example with a stenosis of 70%, case
P1).

- six surgically-treated domains with different degrees of LAD stenosis fea-
turing a LIMA bypass (see Figure 1, right, for an example with a stenosis
of 70%, case P1);

To create these virtual geometries, we developed ad-hoc scripts in VMTK which
allowed us to virtually remove the stenosis and the bypass, and to change the
degree of stenosis, maintaining the same original eccentricity.

Then, the computational domains were turned into volumetric meshes of
tetrahedra in view of the numerical simulations. In particular, the computa-
tional meshes were obtained after a refinement study with the aim of achieving
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Figure 1: Computational domains for the numerical simulations (patient P1).
Left: healthy geometry. Middle: diseased geometry (i.e. without LIMA bypass).
Right: surgically-treated geometry (i.e. with LIMA bypass)

Figure 2: Mesh details for patient P3. Left: anastomosis between LIMA and
LAD. Right: different degrees of LAD stenosis

mesh-independent numerical solutions on the velocity and WSS up to a toler-
ance of 2%. A local mesh refinement was performed at the level of the LAD
stenosis, proportional to the degree of the stenosis. The resulting number of
tetrahedra of the surgically-treated domains were about 800,000 for P1, 750,000
for P2 and 600,000 for P3. In Figure 2, we report an example of the meshes of
P3 regarding the LIMA-LAD anastomosis and the LAD stenosis.

2.3 Extension of Murray’s law to stenotic vessels and non-
Newtonian rheology

To impose suitable boundary conditions at the outlets of our domain, we need
to quantify the flow division occurring at the LMCA bifurcation (see Figure 1).
With this aim, we start by deriving an expression of the flow rate in a stenotic
vessel as a function of the pressure gradient and of the physical parameters
characterizing the vessel.

We represent a stenotic vessel as the sequence of three cylindrical segments
Vi, i = 1, 2, 3, of length l1, l2, l3 and radius r1 = r, r2 = αr and r3 = r,
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Figure 3: Schematic representation of a vessel of radius r with a stenosis of
radius αr. Each vessel segment Vi, i = 1, 2, 3, is characterized by viscosity µi
and resistance Ri. The additional resistance due to the changes of area are
characterized by loss coefficients k12 and k23

respectively, where α, 0 < α ≤ 1, is the degree of stenosis (see Figure 3).
The total resistance of the vessel is given by the sum of the resistances Ri

of each segment (regarded as isolated segments) plus two terms which account
for the additional pressure drops, say F12 and F23, due to the changes of area
between segments V1 and V2 and between V2 and V3. The resistances of each
segment Vi are obtained under the assumption of Poiseuille flow. In particular,
the volumetric flow rate Q is linearly proportional to the pressure drop ∆Pi:

Q =
1

Ri
∆Pi,

where the resistance Ri is defined as [7]

Ri =
8µili
πr4
i

. (1)

Notice that, since we are assuming a non-Newtonian fluid, in principle the vis-
cosities µi are different in each segment. The additional pressure drops due to
the change of area are given by [7]

Fl =
w

2
ρklv̄

2
2 , l = 12, 23,

where ρ is the fluid density, v̄2 the average fluid velocity at the stenosis V2,
and kl, l = 12, 23, suitable coefficients which account for the energy related to
the area restriction and expansion, respectively, and whose expression depends
on the type of area variation. Notice that we multiplied the expression of the
additional pressure drops by the weight

w = 1− e
α−1
α ,

allowing one to obtain a null contribution of these terms for the case without
stenosis (α = 1).
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Thus, the power Wf required to maintain the flow in the vessel is given by

Wf = Q∆P = Q

(
3∑
i=1

∆Pi + F12 + F23

)
= (R1 +R2 +R3)Q2 + w

ρ

2

(
k12v̄

2
2 + k23v̄

2
2

)
Q.

(2)

By using the relation Q = v̄2A2, where A2 = πr2
2 = πα2r2 is the vessel area at

the stenosis, and substituting (1) into (2), we get

Wf =
1

r4

[
8

π

(
µ1l1 +

µ2l2
α4

+ µ3l3

)
Q2

+
wρ

2π2α4
(k12 + k23)Q3

]
.

(3)

Following Murray [30], we need to account for an additional power, Wm,
given by the metabolic requirement, which increases linearly with the volume
of blood and, for each of the cylindrical segment, is given by [43]

Wm,i = mπr2
i li,

where m is a metabolic coefficient accounting for the blood cells metabolism.
Thus, in our case we have that the total metabolic power is given by

Wm =

3∑
i=1

Wm,i = mπr2
(
l1 + α2l2 + l3

)
. (4)

Putting (3) and (4) together, we can evaluate the total power requirement
as

Wtot =
1

r4

(
c1Q

3 + c2Q
2
)

+ c3r
2, (5)

with c1 = wρ
2π2α4 (k12 + k23), c2 = 8

π

(
µ1l1 + µ2l2

α4 + µ3l3

)
and c3 = πm

(
l1 + α2l2 + l3

)
.

For given values of the coefficients c1, c2 and c3 (i.e. fixing the geometry, the
fluid properties and the blood metabolism characteristics) and for a specified
value of Q, Wtot depends only on r. Thus, it makes sense to look for the value
of r which minimizes Wtot. By imposing dWtot/dr = 0, we obtain

dWtot

dr
= − 4

r5

(
c1Q

3 + c2Q
2
)

+ 2c3r = 0,

which can be rearranged as

aQ3 + bQ2 + d = 0, (6)

where we set a = 4c1, b = 4c2 and d = −2c3r
6. The solutions of the previous

third-order equation are given by

Q = Qsten(r, α, µ1, µ2, µ3, l1, l2, l3)

=
3

√√√√(− b3

27a3
− d

2a

)
+

√(
− b3

27a3
− d

2a

)2

+

(
− b2

9a2

)3

+
3

√√√√(− b3

27a3
− d

2a

)
−

√(
− b3

27a3
− d

2a

)2

+

(
− b2

9a2

)3

− b

3a
.

(7)
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This is an expression of the flow rate in a stenotic vessel of degree α which
depends on the geometrical parameters of the vessel, the fluid properties and
the blood metabolic characteristics.

In case there is no stenosis (i.e. α = 1), then c1 = 0 and (6) reduces to

bQ2 + d = 0,

leading to

Q =

√
−d
b

=

√
c3
2c2

=

√
π2m

16µ
r3. (8)

Equations (7) and (8) can be used to estimate the flow division between
a healthy parent vessel (with flow rate Qp, radius rp and viscosity µp) and a
stenotic daughter vessel (with flow rate Qd and parameters rd, µ1,d, µ2,d ,µ3,d,
l1,d, l2,d, l3,d), leading to

Qd
Qp

=
Qsten(rd, α, µ1,d, µ2,d, µ3,d, l1,d, l2,d, l3,d)√

π2m
16µp

r3
p

. (9)

In the particular case where also the daughter vessel is not stenotic, from the
previous expression we obtain the following flow division

Qd
Qp

=

√
µp
µd

(
rd
rp

)3

, (10)

where rd and µd are the radius and the viscosity of the daughter vessel. Notice
that, in case of Newtonian fluid (i.e. µp = µd), the original Murray’s law,

Qd
Qp

=

(
rd
rp

)3

, (11)

is recovered.
In practice, the metabolic coefficient m is needed to compute c3 and thus d

in (7). However, this value is hardly achievable from clinical measures. For this
reason, we propose here to use the value of the flow rate of the parent vessel
given by (8) to provide a suitable estimate of m:

m(t) =
16µp(t)Qp(t)

2

π2r6
p

. (12)

This is the value used in our numerical simulations, as Qp was known.

2.4 Numerical simulations and boundary conditions

We consider blood as a homogeneous and incompressible fluid described by the
Navier-Stokes equations [12] and we assume a non-Newtonian rheology model
(see Discussion). In particular, we choose the Carreau-Yasuda model, with
viscosity given by [9, 53]

µ(x, t) = µ∞ + (µ0 − µ∞) (1 + (λγ̇(x, t)a)
n−1
a , (13)
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where λ = 1.902s, n = 0.22, a = 1.25, µ0 = 0.56P , µ∞ = 0.0345P and the
shear rate given by γ̇ = 2

√
DII , where DII denotes the second invariant of the

rate of deformation tensor D = 1
2

(
∇u+ (∇u)T

)
, with u = u(x, t) being the

velocity of the fluid. For blood modelled as an incompressible fluid, the second
invariant is DII = 1

2

∑3
i,j=1DijDij . Notice that in fact the viscosity given by

(13) is a function of the velocity, i.e. we can write µ = µ(u).
We perform unsteady numerical simulations using the Finite Element library

LifeV (http://www.lifev.org). The vessel walls are considered rigid. We use
P1bubble − P1 finite elements for the space discretization and the backward
Euler method with a semi-implicit treatment of the convective term for the
time discretization, setting the time discretization parameter ∆t = 0.01s [36].
The non-linearity arising from the non-Newtonian model (13) is treated semi-
implicitly. This means that, indicating with zn the approximation of a generic
function z(t) evaluated at tn = n∆t, n = 1, . . ., at each time-step tn we have the
following discretized-in-time problem to be solved in the computational domain
Ω: 

ρf
un − un−1

∆t
− µ(un−1)∇ ·

(
∇un + (∇un)

T
)

+ρfu
n−1 · ∇un +∇pn = 0 in Ω,

∇ · un = 0 in Ω,

equipped with suitable initial and boundary conditions, where ρf = 1.06g/cm3

is the fluid density and p the fluid pressure.
Referring to Figure 1, right, that depicts one representative geometry with

stenosis and bypass included in our study, we observe that we need to prescribe
boundary conditions at the two inlets, ΓinLIMA and ΓinLMCA, and at the two
outlets, ΓoutLAD and ΓoutLCx. Since neither patient-specific velocity nor pressure

data are available, we select two representative flow rate waveforms Q̃LMCA(t)

and Q̃LIMA(t) for the inlets reported in the literature for proximal LMCA and
LIMA, see Keegan et al [20] and Sakuma et al [40]. We depict these waveforms
in Figure 4 where the peak values are set to 1 cm3/s, so that the effective flow
rates prescribed are

QLMCA(t) = γLMCAQ̃LMCA(t) (14)

andQXLIMA(t) = γXLIMAQ̃LIMA(t), for suitable constants γLMCA and γXLIMA, X =
40, . . . , 90, to be determined, X representing the degree of stenosis. Notice that
the flow rate at ΓinLMCA does not depend on X, whereas the one at ΓinLIMA does
since the body supplies the decreased flow rate in LAD due to the stenosis by
increasing the flow rate in LIMA. The value of γLMCA is set for each patient so
as to adapt it to the dimensions of LMCA and to obtain physiological velocity
values, see Table 1.

In order to find reasonable values of γXLIMA, we make the following hypoth-
esis, which is supported by several clinical and exprimental evidence [29, 33, 34]:

Hp) In presence of a LIMA bypass, assuming that the latter works properly,
the blood flow rate feeding the myocardium through ΓoutLAD remains constant
regardless of the degree of LAD stenosis, i.e.

QXLAD(t) +QXLIMA(t) = K(t), (15)
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Figure 4: Representative flow rate waveforms Q̃LMCA(t) and Q̃LIMA(t), where
the peak values were set to 1 cm3/s

P1 P2 P3

1.021 0.692 0.769

Table 1: Values of γLMCA for each patient needed to obtain the patient-specific
flow rate QLMCA(t) = γLMCAQ̃LMCA(t) to be imposed as inflow boundary
condition at ΓinLMCA

for a suitable function of time K that does not depend on X (QXLAD being the
flow rate flowing in LAD with degree of stenosis X). Moreover, the flow rate
feeding the myocardium K(t) is the same we have in absence of stenosis and
bypass, i.e. in a healthy scenario.

Accordingly, we firstly solve for each patient an auxiliary problem in the corre-
sponding healthy geometry, reported in Figure 1, left, in order to estimate the
flow rate QHLAD(t) at ΓoutLAD (see Auxiliary problem 1 below). This allows us to
determine K(t), since in this case (15) reduces to

QHLAD(t) = K(t). (16)

Then, we perform for each patient six more auxiliary numerical simulations
(one for each degree of stenosis) in the diseased geometry reported in Figure 1,
middle (see Auxiliary problems 2 below). This allows us to estimate the flow
rates in the LAD for the diseased cases, QXdis,LAD, X = 40, 50, . . . , 90. Assuming
that the flow rate at LMCA is independent of the presence of the bypass and of
the degree of stenosis, from the extended Murray’s law (9) we have that these
flow rates are the same also in the surgically-treated cases (QXdis,LAD = QXLAD).

Thus, owing to (15) and (16), we have that the flow rate at ΓinLIMA for each
degree of stenosis is given by

QXLIMA(t) = QHLAD(t)−QXdis,LAD(t). (17)

However, we notice that the LAD flow rate is diastolic, whereas the LIMA flow
rate is systolic. In order to avoid non-realistic waveforms due to this offset,
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(17) is to be intended as a time-averaged relation. This allows us to compute
the values of γXLIMA for each degree of stenosis and for each patient, see Final
problems below.

Summarising, for each patient we need to solve, at each discrete time tn, the
following discretized-in-time Navier-Stokes problems:

Auxiliary problem 1. Healthy geometry (see Figure 1, left) with the following
boundary conditions:

- Flow rate condition at ΓinLMCA:∫
ΓinLMCA

un · n dγ = QLMCA(tn), (18)

where n is the outward unit normal and QLMCA is given by (14);

- Flow rate condition at ΓoutLAD. Relation (10) can be used for the flow
division between LMCA and LAD (p = LMCA, d = LAD), yielding∫

ΓoutLAD

un · n dγ = QHLAD(tn) =√
µnLMCA

µnLAD

(
rLAD
rLMCA

)3

QLMCA(tn),

where rLAD and rLMCA are representative radii of LAD and LMCA dis-
tricts. As an approximation of LMCA and LAD viscosities, we use a
spatial average of µ(un−1) over the LMCA and LAD domains ΩLMCA

and ΩLAD, respectively:

µnLMCA =
1

|ΩLMCA|

∫
ΩLMCA

µ(un−1(x))dω,

µnLAD =
1

|ΩLAD|

∫
ΩLAD

µ(un−1(x))dω.

- A zero-traction condition at ΓoutLCx:

−pnn+ µ
(
un−1

) (
∇un + (∇un)

T
)
n = 0. (19)

After solving the Auxiliary problem 1, we are able to compute the averaged-in-
time flow rate

Q
H

LAD =
1

N

N∑
n=1

QHLAD(tn),

where N is the number of discrete time instants within a heartbeat.

Auxiliary problems 2. Diseased geometries (one for each degree of stenosis,
see Figure 1, middle) with the following boundary conditions:

- Flow rate condition (18) on ΓinLMCA;
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- Flow rate condition at ΓoutLAD:∫
ΓoutLAD

un · n dγ = QXdis,LAD(tn) X = 40, . . . , 90,

where QXdis,LAD is computed owing to (7).

The metabolic coefficient m in (7) is estimated by means of formula (12)
with p = LMCA, while the loss coefficients k12 and k23, associated with
the area contraction/expansion due to the stenosis, are set equal to 0.5 and
1, respectively [7].

- Zero-traction condition (19) at ΓoutLCx.

Owing to the Auxiliary problems 2, we are able to compute the averaged-in-time
flow rates

Q
X

dis,LAD =
1

N

N∑
n=1

QXdis,LAD(tn).

Final problems. Surgically-treated geometries (one for each degree of stenosis,
see Figure 1, right) with the following boundary conditions:

- Flow rate condition (18) on ΓinLMCA;

- Flow rate condition at ΓinLIMA:∫
ΓinLIMA

un · n dγ = QXLIMA(tn) X = 40, . . . , 90,

where
QXLIMA(tn) = γXLIMAQ̃LIMA(tn), (20)

with

γXLIMA =
Q
H

LAD −Q
X

dis,LAD

1
N

∑N
n=1 Q̃LIMA(tn)

. (21)

This choice allows us to satisfy

Q
X

LIMA = Q
H

LAD −Q
X

dis,LAD,

that is, the average in time of condition (17).

- Flow rate condition at ΓoutLAD:∫
ΓoutLAD

un · n dγ = QXLAD(tn) X = 40, . . . , 90,

where QXLAD is computed owing to (17) and remembering that QXLAD =
QXdis,LAD;

- Zero-traction condition (19) at ΓoutLCx.
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In order to prescribe the flow rate conditions established above, we use the
Augmented Formulation proposed in Formaggia et al [11] and Veneziani and
Vergara [50]. This formulation is based on augmenting the Navier-Stokes equa-
tions with further unknowns (the Lagrange multipliers, one for each flow rate
condition) and of corresponding scalar equations that implicitly enforce the flow
rate conditions.

Each simulation is run for two cardiac cycles in order to eliminate transient
effects, and only the data retrieved from the final cardiac cycle are used for the
post-processing so as to obtain solutions independent of the initial conditions.

3 Results

For the three patients under investigation and for each degree of stenosis, we
report in Figure 5, left, the flow division between LMCA and LAD, representing
the ratio between LAD and LMCA flow rates computed with (9). We also
report the flow division computed with the original Murray’s law (equation
(11)), which of course is independent of the degree of stenosis and it is constant
in time since it is based on the Newtonian assumption. In particular, these
values are equal to 0.6, 0.65 and 0.66 for patients P1, P2 and P3, respectively.
On the right, we report the LIMA flow rate QXLIMA computed for each degree of
stenosis by means of (20)-(21). From these figures, it is clear that the original
Murray’s law overestimates the flow division computed with (9) in the case of
a stenotic daughter vessel. As we might expect, the flow division estimated by
(9) decreases for increasing degrees of LAD stenosis. Accordingly, the LIMA
flow rate increases for increasing degrees of LAD stenosis, in order to maintain
the distal flow rate constant.

For a more quantitative comparison between the flow division computed with
the original and the extended Murray’s laws, we report in Table 2, columns N-
N, the time-averaged flow division between LMCA and LAD computed with
(9) in the case of non-Newtonian rheology, for each patient and each degree
of stenosis. For the sake of comparison, the averaging is performed starting
from time instant 0.3s to the end of the cardiac cycle, that is, the time interval
where the flow division is nearly constant. Comparing these values with the ones
computed with the original Murray’s law (11), we obtain percentage differences
ranging in 30.2%− 99.5% for P1, 47.8%− 99.7% for P2, and 47.4%− 99.7% for
P3, which confirm the increasing overestimation of the flow division computed
with the original Murray’s law (11) for increasing degrees of the daughter vessel
stenosis.

In order to investigate also the influence of the non-Newtonian blood rhe-
ology on the proposed flow division law, we report in Table 2, columns N, the
time-averaged flow division between LMCA and LAD computed with (9) for
each patient and each degree of stenosis, by considering a Newtonian rheology,
i.e. by assuming a constant prescribed viscosity. The percentage differences
between the Newtonian and non-Newtonian flow divisions range in 9.6%− 85%
for P1, 18%− 85.7% for P2, and 16.2%− 85.7% for P3. We notice that the per-
centage difference increases for increasing degree of stenosis, consistently with
the fact that the hypothesis of Newtonian blood rheology is less and less valid
for decreasing shear rates, i.e. for increasing degree of stenosis.

To better analyze the flow distribution in LIMA and LAD, in Figures 6,
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Figure 5: Left: flow division between LMCA and LAD for different degrees of
stenosis computed with (9), together with the flow division computed with the
original Murray’s law (equation (11)). Right: LIMA flow rate QXLIMA for each
degree of stenosis
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Table 2: Time-averaged flow division computed with (9) for Newtonian (N) and
non-Newtonian (N-N) rheology, for each patient and for each degree of stenosis.
The values of the flow division in the non-stenotic Newtonian case (Murray’s
law) computed with (11) are 0.6, 0.65, and 0.66 for P1, P2, and P3, respectively

40% 50% 60% 70% 80% 90%
N N-N N N-N N N-N N N-N N N-N N N-N

P1 0.464 0.419 0.383 0.325 0.280 0.212 0.171 0.100 0.079 0.031 0.020 0.003
P2 0.413 0.339 0.316 0.251 0.215 0.144 0.125 0.062 0.056 0.015 0.014 0.002
P3 0.414 0.347 0.315 0.248 0.214 0.142 0.124 0.062 0.056 0.015 0.014 0.002

7 and 8 we report the diastolic velocity field for P1, P2 and P3, respectively.
In particular, for each degree of stenosis, we plot the velocity vectors (color-
coded by the velocity magnitude) in the whole geometry, in the stenosis and
in the anastomotic region. These results confirm that the flow field is greatly
influenced by the degree of LAD stenosis: the higher the degree of LAD stenosis,
the lower the LAD blood flow velocity (and, hence, the lower the LAD blood
flow rate). On the other hand, high degrees of LAD stenosis feature higher
blood flow rates in LIMA bypass in order to contrast the diminished LAD flow
rate.

In order to evaluate the risk of restenosis at the anastomosis between LIMA
and LAD, we report in Figure 9 the Relative Residence Time (RRT) distribution
for each patient and for each degree of stenosis. RRT is a function of space
defined on the lumen boundary which is known to be related to the risk of
plaque formation in carotids [24] and in coronaries [22], and it is considered as
a robust and single metric of low and/or oscillatory WSS. In particular, it is
defined as

RRT (x) =
1

(1− 2OSI(x))TAWSS(x)
,

where OSI is the Oscillatory Shear Index

OSI(x) =
1

2

1−

∥∥∥∫ T0 τw(t,x)dt
∥∥∥∫ T

0
‖τw(t,x)‖ dt


and TAWSS is the Time-Averaged Wall Shear Stress

TAWSS(x) =
1

T

∫ T

0

‖τw(t,x)‖ dt,

τw = t− (t ·n)n being the Wall Shear Stress vector and t = 2µDn the traction
vector acting on a surface with normal n. These quantities are computed in
a region of interest located at the level of the anastomosis (see Figure 9), i.e.
where a new plaque may in principle develop. By looking at this figure, we
notice that RRT values are higher in the cases with lower degree of stenosis for
all the three patients. This general trend is also confirmed by the averaged-
in-space RRT values reported in Table 3. We notice that for P2 and P3 the
region with high RRT values extend to all the bypass. For P1, the values far
from the anastomosis are comparable to those of P2 and P3, whereas increased
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Figure 6: Velocity field at diastole, case P1. For each degree of stenosis, the ve-
locity vectors (color-coded by velocity magnitude) in the whole geometry (left),
in the stenosis (middle) and in the anastomotic region (right) are shown
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Figure 7: Velocity field at diastole, case P2. For each degree of stenosis, the ve-
locity vectors (color-coded by velocity magnitude) in the whole geometry (left),
in the stenosis (middle) and in the anastomotic region (right) are shown
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Figure 8: Velocity field at diastole, case P3. For each degree of stenosis, the ve-
locity vectors (color-coded by velocity magnitude) in the whole geometry (left),
in the stenosis (middle) and in the anastomotic region (right) are shown
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Figure 9: RRT distributions for the three patients and for each degree of stenosis
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Table 3: Averaged-in-space RRT values (in Pa−1) for each patient with different
degrees of stenosis

40% 50% 60% 70% 80% 90%

P1 4.65 3.77 3.28 3.13 3.07 3.05
P2 4.57 3.90 3.47 3.19 3.09 3.06
P3 4.29 3.77 3.43 3.23 3.17 3.12

Table 4: Percentage of area exposed to RRT values greater than 4Pa−1 for each
patient with different degrees of stenosis

40% 50% 60% 70% 80% 90%

P1 60.2% 29.4% 15.6% 12.9% 12.7% 12.6%
P2 59.9% 45.4% 9.5% 0.5% 0.0% 0.0%
P3 57.4% 42.9% 1.4% 0.2% 0.1% 0.0%

RRT values are observed at the anastomosis. This is probably due to the visible
enlargement of the region of the anastomosis in patient P1, which may cause a
more disturbed fluid dynamics, thus leading to recirculation zones and, hence,
higher values of RRT.

In Table 4 we report the percentage of area of interest with RRT values
greater than 4Pa−1 for each patient and for each degree of stenosis. This
threshold value is chosen as a representative value to separate low and high
RRT regions and is in accordance with other studies on coronaries, see e.g.
Zhang et al [56]. These results clearly highlight that the regions with high RRT
values become wider for decreasing degrees of stenosis, reaching values greater
than 50% for all cases when the stenosis is 40%. We observe that the region of
high RRT is in general more extended for patient P1, in particular for stenoses
greater than 70%. Again, this is probably due to the accentuated recirculation
zones caused by the enlarged anastomosis.

4 Discussion

4.1 State of the art and choice of the computational model

Many computational studies have focused their attention on blood flow char-
acteristics at the anastomotic region of coronary bypasses, mainly in rigid do-
mains [41, 42, 47, 55]. Regarding fluid-structure interaction (FSI) simulations
in CABGs, some studies showed that the velocity patterns and qualitative dis-
tribution of WSS parameters are not significantly affected by wall compliance
[19, 26]. Nevertheless, from clinical and in-vivo observations, it is known that
the mismatch between the compliance of the native artery and the graft at
the anastomosis can lead to graft failure [2, 46]. In particular, it is assumed
that the occurrence of intimal hyperplasia around the suture line is caused by
the tissue remodeling as a response to mechanical injury brought about by the
artery-graft compliance mismatch. In this case, an FSI analysis is mandatory
in order to describe the remodeling at the anastomotic region. However, in this
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work we were interested in hemodynamic quantities, focusing on the compar-
isons between configurations with different degrees of stenosis, rather than on
the influence of the compliance mismatch, so that we assumed rigid walls, be-
lieving that the results of these comparisons should not be influenced so much
by the wall assumption.

As for blood rheology, although the assumption of Newtonian flow is gen-
erally accepted for blood flow in medium-sized arteries, as are the coronaries,
some authors [8, 19, 53] demonstrated that arterial flow and WSS distribution
in CABGs may be affected by the rheological properties of blood. In particular,
Chen et al [8] reported significant differences in velocity profiles, secondary flow
patterns and WSS distributions between the Newtonian and non-Newtonian
flows, especially in the region of the graft anastomosis. For this reason, we
considered a non-Newtonian model to describe blood rheology in the numer-
ical simulations, namely the Carreau-Yasuda model, which is commonly used
in hemodynamics since it is able to correctly describe the physiological shear-
thinning behavior of blood (i.e. featuring decreasing viscosity for increasing
shear rates) [44].

Regarding the prescription of the boundary conditions in the numerical sim-
ulations, the use of patient-specific data is a critical issue in order to obtain
realistic and accurate solutions. However, clinical measurements (e.g. Doppler
velocity measures or pressure measures) may be sometimes difficult to obtain, es-
pecially for deep arteries, such as the coronaries. When patient-specific data are
not available, complex multiscale lumped parameters [21, 41] or impedance mod-
els [18] may for instance be used. Nevertheless, these models need a fine tuning
of several parameters (e.g. resistances, conductances, inductances, impedances),
which is a challenging task, especially in case of diseased vessels. For this rea-
sons, we proposed the alternative methodology described in Section 2.4 for a
realistic estimation of the flow rates to be prescribed as boundary conditions at
the sections of the computational domain in absence of any clinical data. This
technique is based on the computation of the flow division between LMCA and
LAD arteries thanks to the proposed extended Murray’s law (see below) and on
the assumption that the flow rate perfusing the myocardium is independent of
the presence of the LIMA bypass and the degree of LAD stenosis.

The choice of the Augmented Formulation for the prescription of the flow
rate conditions allowed avoiding the introduction of any bias due to the a-priori
choice of the spatial velocity profile. Indeed, this formulation was shown to be
accurate to recover analytical solution and was successfully applied for clinical
applications, such as for the case of aortic bicuspid valves [51, 54], abdominal
aortic aneurysms [35] and carotid arteries [15].

Concerning the analysis of the association between the degree of proximal
LAD stenosis and graft patency, we cite, among the computational studies, the
pioneering work by Noorgard et al [32], were 3D porcine CABG models with
high, partial and no competitive flows were studied; the work by Ding et al [10],
who studied the impact of competitive flow on idealized LIMA-LAD models; the
work by Swillens et al [48], who performed numerical simulations in geometries
obtained from porcine coronaries. At the best of the authors’ knowledge, the
present work is the first attempt at finding, by means of computational tools,
a possible relationship between different degrees of LAD stenosis and risk of
LIMA restenosis in human patient-specific geometries.
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4.2 On the extension of Murray’s law to stenotic vessels
and non-Newtonian rheology

In order to estimate the flow division between LMCA and LAD, we developed
an extension of Murray’s law to the case of stenotic vessels and non-Newtonian
rheology, described in Section 2.3. This was necessary because in our geome-
tries one of the daughter vessel (LAD) was stenotic. In fact, Murray’s law is
neither valid for stenotic vessels, as shown e.g. by Groen et al [14], nor for
non-Newtonian flows [30], thus implying the need of either patient-specific data
(not available in our case) or appropriate choices of outflow boundary condi-
tions. Revellin et al [37] first generalized Murray’s law to a non-Newtonian
model of blood for the power-law model. Instead, the extended Murray’s law
here proposed can be potentially used for any non-Newtonian model. Further-
more, as far as we know, this is the first attempt at generalizing Murray’s law
to the stenotic case. Lindström [27] extended Murray’s law to non-linear wall
mechanics, an aspect we do not need to exploit here as we performed rigid-wall
numerical simulations.

By inspecting Figure 5, left, we notice that the original Murray’s law clearly
overestimated the flow division in presence of a stenotic daughter vessel with
respect to the proposed extended law. As expected, the latter was very sensi-
ble to the degree of the stenosis, providing a flow division that decreased for
increasing values of the stenosis. The percentage differences between the values
computed with the original and the extended Murray’s laws were very relevant
also in the case of 40% stenosis degree (difference greater than 47% for P2 and
P3). The inappropriateness of the original Murray’s law in presence of a stenosis
is also highlighted by noticing that it would produce a flow rate in LAD which
is independent of the degree of stenosis. Thus, this flow rate would result the
same of the healthy case, i.e QHLAD = QXdis,LAD. This means that, owing to

(17), we would obtain QXLIMA = 0 for each X, suggesting that the use of the
proposed extended Murray’s law is in this case fundamental to obtain realistic
boundary conditions.

In order to analyze the effects of including non-Newtonian models in the
computation of the flow division, we also compared our modified Murray’s law
in the cases of Newtonian and non-Newtonian rheology. Looking at Table 2, it
is evident that the non-Newtonian cases featured lower values of the flow divi-
sion, and that the percentage difference between Newtonian and non-Newtonian
models increased for increasing degrees of LAD stenosis. This is in accordance
with the shear-thinning behavior of blood, taken into account by the Carreau-
Yasuda model, in that higher degrees of stenosis feature higher resistances to
blood flow, hence resulting in decreased flow divisions and lower shear rates and,
eventually, higher blood viscosity. Based on our results, we can claim that not
only is the use of a non-Newtonian model important in order to obtain more
realistic solutions in the numerical simulations themselves, as already discovered
e.g. by Chen at al [8], but it is also important when estimating the flow division
in a bifurcation and, hence, when estimating the flow rates to be prescribed in
the numerical simulations.
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4.3 On the influence of LAD stenosis on the risk of anas-
tomotic restenosis

According to Berger et al [4], the degree of stenosis is one of the most impor-
tant factor affecting the incidence of LIMA graft occlusion. In particular, they
reported an incidence of LIMA graft occlusion up to 79% when the native coro-
nary stenosis is less than 50%. Although the aetiology of graft failure due to
competitive flow has not been thoroughly investigated, most clinical studies on
graft patency and competitive flow show a better long-term patency of grafts
when coronaries with severe stenosis are bypassed, compared with grafts placed
distal to non-significant stenosis [4, 5, 52]. Meng et al [29] studied the influence
of competitive flow on LIMA graft flow using a swine model by varying the de-
gree of stenosis in the proximal LAD with a flow occluder. They observed that
the higher the degree of stenosis in the proximal LAD, the lower the competitive
flow in LAD and the higher the mean flow in LIMA. The same trend is also
confirmed, for instance, in the works by Pagni et al [33, 34]. Similar results were
also reported in Noorgard et al [31], who measured transit-time flow patterns
at four different flow conditions in a LIMA-to-LAD bypass of a porcine model
and concluded that the LIMA graft is much influenced by competitive flow, as
both full and partial competitive flow conditions significantly altered the flow
patterns.

Looking at Figures 6, 7 and 8, we observe that our results are in accordance
with these findings. In particular, the degree of LAD stenosis greatly influenced
the flow pattern at the anastomosis, as low degrees of stenosis resulted in high
competitive flow between LIMA and LAD. Consequently, competitive flow may
cause particularly “disturbed” flow at the region of the anastomosis, possibly
resulting in recirculation and stagnation zones. Such flow features typically cor-
respond to low and oscillating WSS and long particle residence times, which
are the main hemodynamic features that have been correlated with atherogen-
esis and intimal hyperplasia [25, 28]. Indeed, as we can see from Figure 9 and
Tables 3 and 4, higher competitive flows due to lower degrees of LAD stenosis
resulted in higher values of RRT at the anastomosis and in the LIMA graft. Ac-
cording to Caro’s “shear-dependent mass transfer” theory [6], these high RRT
values may influence the endothelial function allowing for an increase of the
permeability to lipo-proteins, resulting in intimal thickening and hence causing
LIMA graft failure.

Besides the possible risk of restenosis at the anastomosis site, some authors
have also noted a possible diffuse narrowing of LIMA grafts along its whole
length, the so-called “string-phenomenon” [1, 52]. This is particularly evident
in patients with less-than-critical stenosis of the recipient artery, suggesting
that competitive flow may cause the string phenomenon and subsequent graft
failure [57]. Looking at Figure 9, we notice that the regions of high RRT values
extended in fact also to the LIMA bypass. This is particularly evident for
patients P2 and P3, but we can still appreciate higher and higher RRT values
for increasing degrees of stenosis in the LIMA bypass of patient P1. These high
values of RRT may explain the string phenomenon occurring in the LIMA bypass
when the LAD stenosis is not critical. In particular, high competitive flow due
to the presence of a non-critical stenosis, which means lower and disturbed graft
flow characterized by low and oscillatory WSS, may induce the LIMA graft to
narrow its lumen in order to maintain WSS within certain limits.
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5 Conclusions and limitations

The purpose of this study was to investigate the effects of competitive flow on
the hemodynamics in LIMA-to-LAD bypass grafts. In particular, we considered
three patients in which the degree of LAD stenosis was virtually varied in order
to produce different degrees of competitive flow. For the prescription of the
boundary conditions in the numerical simulations, and in particular to compute
the flow division between LMCA and LAD, we proposed an extension of Mur-
ray’s law to stenotic vessels and non-Newtonian rheology. The main results of
our numerical investigation can be summarised as follows:

1. The original Murray’s law overestimates the flow division when one of
the daughter vessels is stenotic, whereas the proposed extended Murray’s
law is able to correctly detect different degrees of LAD stenosis, providing
decreasing values of the flow rate in the daughter vessel for increasing
values of the stenosis;

2. When using the extended Murray’s law, the non-Newtonian rheology of
blood should be taken into account, since the differences in the compu-
tation of the flow division using the (less-realistic) Newtonian and the
non-Newtonian models are significant, even for low degrees of the daugh-
ter vessel stenosis;

3. Lower degrees of LAD stenosis cause higher competitive flow between
LIMA and LAD, possibly resulting in disturbed flow at the anastomosis;

4. Disturbed flow at the anastomosis causes recirculation and stagnation
zones with low and oscillating WSS and, hence, high RRT values. As a
result, endothelial function and mass transport may be influenced, hence
possibly leading to intimal thickening and subsequent graft failure.

The proposed extended Murray’s law used in combination with the method-
ology developed for the estimation of the flow rates, may be a suitable alternative
to the prescription of realistic boundary conditions in the numerical simulations
when such data are unavailable.

From a clinical perspective, these results confirm the evidence that the long-
term patency of LIMA graft may be greatly affected by the stenosis degree of the
native LAD, as low degrees of LAD stenosis may result in higher hemodynamic
indices related to the risk of restenosis in the anastomosis.

A potential limitation of this study is the assumption of rigid walls. How-
ever, as already pointed out in the Discussion (Section 4.1), we do not expect
the dynamics of the vessel walls to substantially affect the results of our compar-
ison. Analyzing the effects of compliance mismatch between LIMA and LAD
on the risk of anastomotic restenosis is nonetheless worth being investigated.
Secondly, a clinical validation of the proposed extended Murray’s law is needed
to understand its real applicability. Fluid-structure interaction and clinical ex-
periments for the validation of the extended Murray’s law will be the focus of
our future works.
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