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Abstract. In this work we introduce a new two-level preconditioner for the efficient solution of large scale
linear systems arising from the discretization of parametrized PDEs. The proposed preconditioner combines in a
multiplicative way a reduced basis solver, which plays the role of coarse component, and a "traditional" fine grid
preconditioner, such as one-level Additive Schwarz, block Gauss-Seidel or block Jacobi preconditioners. The coarse
component is built upon a new Multi Space Reduced Basis (MSRB) method that we introduce for the first time in
this paper, where a reduced basis space is built through the proper orthogonal decomposition (POD) algorithm at
each step of the iterative method at hand, like the flexible GMRES method. MSRB strategy consists in building
reduced basis (RB) spaces that are well-suited to perform a single iteration, by addressing the error components
which have not been treated yet. The Krylov iterations employed to solve the resulting preconditioned system
targets small tolerances with a very small iteration count and in a very short time, showing good optimality and
scalability properties. Simulations are carried out to evaluate the performance of the proposed preconditioner in
different large scale computational settings related to parametrized advection diffusion equations and compared
with the current state of the art algebraic multigrid preconditioners.
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1. Introduction. The repeated solution of parametric partial differential equations (PDEs),
that is, PDEs depending on a vector of parameters, is computationally challenging. When using
a high-fidelity numerical approximation method based on Galerkin or Petrov-Galerkin projection
on a subspace Vh of dimension Nh (see e.g. [41]) we end up with a parametrized linear system of
the form

Ah(µ)uh(µ) = fh(µ),(1)

where uh(µ), fh(µ) ∈ RNh are Nh-dimensional vectors and Ah(µ) ∈ RNh×Nh is the stiffness
matrix; µ ∈ D ⊂ Rp is a vector of p parameters describing physical and/or geometrical properties
of the model. Solving such a problem for a huge number of parameter instances is essential
when dealing with sensitivity analysis, uncertainty quantification for problems with random input
data or PDE-constrained optimization. However, this may become a critical issue because of the
extensive CPU time required by each query to the high-fidelity solver. The solution of the high-
fidelity problem (1) indeed depends on the dimension Nh of the high-fidelity space, which can be
of order 106 to 1010 in some extreme cases.

Problem (1) is usually solved by means of suitable preconditioned iterative methods, such as
the preconditioned conjugate gradient (CG) or the preconditioned GMRES (see e.g. [43, 52, 58])
methods, whose cost per iteration is comparable to a matrix-vector multiplication; if suitably
preconditioned, these methods provide scalable and optimal solvers. In general, a vast choice of
preconditioners is currently available for many classes of problems: notable examples are domain
decomposition (DD), see e.g. [44, 57, 55], or multilevel (ML) preconditioners, see e.g. [52, 55, 56].
However, these classical techniques do not generally take advantage of the parametric depen-
dence of the PDE. Taking advantage of storing repeated solutions to similar systems can enhance
efficiency in such a context. For instance, several Krylov-subspace recycling approaches have
been introduced [51] to handle sequences of linear systems arising, e.g., from parametrized, time-
dependent and/or nonlinear PDEs. The strategy consists in augmenting the usual Krylov subspace
with data retrieved from previous cycles (in the case of restarted algorithms) or solves (in the case
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of problems with both varying matrices and right hand sides). For instance, the first contributions
in this field made use of the whole Krylov subspaces of previous solutions of linear systems, see e.g.
[27, 46, 47, 49], yielding however a severe computational and memory effort, especially when the
problem features a large dimension and a slow convergence. Consequently, research has focused
on truncation methods that select a limited number of (significant) linear combinations of Krylov
vectors. For the solution of a single linear system of equations, in [19, 20] the authors propose
optimal truncation strategies of the GCR (generalized conjugate residual) method (GCRO), while
in [35, 14, 25] deflation techniques to find an approximation of the eigenvectors associated to the
extremal eigenvalues are employed. See, e.g., [23] for an in-depth presentation of these techniques.
These methods have been extended to the case of a sequence of linear systems with varying right
hand sides in [53], where a deflated version of the CG algorithm is presented, and in [39] where the
GCRO method is combined with deflated restarting for sequences of linear systems where both
matrices and right hand sides vary.
Krylov subspace methods have been exploited in the context of reduced order modeling (ROM)
to deal with sequences of single linear systems in [5] and in the iterative rational Krylov algorithm
(IRKA) for sequences of dual linear systems in [1]. More recently, proper orthogonal decomposition
(POD)-ROM has been successfully employed in [13] to truncate the augmented Krylov subspace
and retain only the high-energy modes. This technique, suited for linear systems with symmetric
matrices, allows to compute efficiently inexact (yet, very accurate) solutions. Although relying on
reduced order modeling, the approach we propose in this paper exploits low-dimensional subspaces
to build efficient preconditioners to speed up the solution of problems as (1), where both the matrix
and the right hand side depend on the parameter µ. More specifically, we do not augment the
Krylov subspace for the solution of any linear system; rather, we propose a new preconditioner
which exploits ROM techniques to build an accurate coarse correction to speed up the solution of
the iterative solver. Projection- and interpolatory-based ROM techniques have been extensively
used in the past decade to construct efficient and accurate low-rank solvers for the solutions of
large-scale parametrized systems, for an in-depth discussion see e.g. [42, 30, 2, 6] and references
therein. In this work we employ the Reduced Basis (RB) method as particular case of ROM
technique.

The RB method emerged as one of the most successful reduced order modeling paradigms
for parametrized PDEs, and has been employed for multi-query problems such as input/output
evaluations, sensitivity analysis, uncertainty quantification, PDE-constrained optimization, see
e.g. [31, 54] and references therein.

It has been successfully applied to elliptic problems, see e.g. [54, 40] and then extended to
saddle-point [48], nonlinear [33, 34, 21, 22, 17], optimal control problems [38, 37], just to mention
a few classes of problems in the context of time-independent PDEs. Given µ ∈ D, the RB method
seeks an approximation of the high-fidelity solution uh(µ) ≈ VuN (µ) in a reduced space VN ⊂ Vh
that is spanned by a set of N basis functions given by linear combinations of high-fidelity solutions
corresponding to different instances of parameters uh(µi), i = 1, . . . , N, where N � Nh. From
an algebraic standpoint, after orthonormalizing of the RB functions, VN can be represented by a
matrix V ∈ RNh×N , V = [ξ1| . . . |ξN ], whose columns are orthonormal with respect to a prescribed
scalar product. Finally, system (1) is replaced by a smaller one

VTAh(µ)VuN (µ) = VT fh(µ),(2)

with uN (µ) ∈ RN being the reduced solution, obtained by performing a projection onto the
subspace VN . We can introduce the reduced arrays, obtained from the corresponding high-fidelity
arrays, as

AN (µ) = VTAh(µ)V ∈ RN×N , fN (µ) = VT fh(µ) ∈ RN .(3)

Then, the reduced problem becomes

AN (µ)uN (µ) = fN (µ).(4)
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The corresponding high-fidelity representation of the RB solution uN (µ) can be expressed as

VuN (µ) = VA−1
N (µ)fN = VA−1

N (µ)VT fh(µ) ≈ uh(µ).(5)

We remark that the high-fidelity system (1) is large and sparse, whereas the reduced system
(4) is small dense; usually the latter is solved using direct methods, since N � Nh. Indeed,
it is well-known that in many situations the RB method provides an exponential decay of the
approximation error with respect to the dimension N of the RB space; however, the decay ratio
is considerably affected by the parametrization of the problem (both in terms of number and
nature of parameters), the regularity of the parameter-to-solution map, the physical nature of the
problem and, ultimately, the Kolmogorov n-width of the solution manifold, an intrisic property
of the problem. For instance, advection-diffusion problems where the advection is highly variable
because of the µ-dependence, and possibly dominant, may yield to a slower decay of the error
with respect to N .
Another key factor required for RB efficiency is the affine parameter dependence of both operators
and data (see Appendix A, equation (55)). If these assumptions are not verified, an approximated
affine decomposition, up to a certain tolerance, must be recovered through proper techniques which
could heavily limit the accuracy or the efficiency of the RB method.

The aim of this work is to present a new class of two-level preconditioners for parameter
dependent linear systems as (1) arising from the numerical approximation of second order elliptic
PDEs, with focus on advection-diffusion (AD) problems. Our preconditioners are constructed
upon the combination of the RB method, which plays the role of coarse component, and a fine
preconditioner, e.g. Gauss-Seidel, Jacobi or one-level additive Schwarz preconditioners. Very few
attempts to link RB and preconditioning techniques have been made so far: some works have
proposed ad hoc preconditioning techniques for reduced systems arising from the RB method, see
e.g. [16] in the case of the reduced collocation method when dealing with PDEs with random
input data or [24] in the case of the Galerkin RB method. Concerning the preconditioning of
parametrized linear system, remarkable efforts have been devoted to preconditioning strategies
for shifted linear system. At first, these techniques compute a preconditioner for the unshifted
high-fidelity matrix, and then they suitably modify it for the shifted matrix. This has proven to be
particularly helpful when employing time-advancing schemes with adaptively chosen time steps,
see [4, 7, 28]. More recently, techniques to deal with sequences of (not necessarily shifted) linear
systems, which compute approximate inverse (AINV) preconditioners by interpolation, have been
developed in [8]. Furthermore, in [59] a preconditioner for the parametrized high-fidelity problem
(1) which relies on an interpolation of the matrix inverse based on a pre-computed basis of matrix
inverses corresponding to selected values of the parameter has been introduced. This latter method
stores the basis of inverted matrices as exact factorizations, thus yielding a huge amount of storage
memory, and is computationally efficient only for relatively small problems. Finally, in [32], a low-
rank tensor approximation of uh(µ) has been exploited to present low-rank tensor variants of short-
recurrence Krylov subspace methods. Alternatively to the techniques above, the preconditioners
we propose in this paper combine in a multiplicative way existing preconditioners on the given
(fine) finite element mesh with a coarse RB solver. The former guarantees the nonsingularity of the
resulting preconditioner, whereas the latter can be regarded as a coarse correction built upon the
RB method meant to boost the convergence of Krylov iterations. The RB problems must be small
in order for their solution to be computationally cheap; to take the best advantage from the ROM,
we rely on a sequence of RB spaces which are iteration-dependent, thus leading to a procedure that
involves the construction of several RB spaces. In particular, the k-th space is trained on the error
equation corresponding to the k-th iteration of the iterative method, up to a prescribed tolerance
δRB,k. We refer to this (new) approach as Multi Space Reduced Basis (MSRB) preconditioning
method. We then show that an iterative method for the large-scale linear system preconditioned
with the MSRB preconditioner requires very few steps to achieve any desired target tolerance,
since at every step the error equation is solved approximately, yet with high accuracy.

We point out that, when dealing with parameter-dependent linear systems, classical precon-
ditioners may have performances which differ according to the value of the parameter, e.g. in
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advection-diffusion problems when, for certain values of the parameter, the model is advection-
dominated or includes a strong anisotropy effect. On the other hand, the use of RB coarse
components built upon the parametrized problem at hand (and trained on the whole parameter
range) allows to gain robustness across the whole parameter space, meaning that the precondi-
tioner efficiency is almost constant for all parameter values.

The coarse component built upon the RB method depends essentially on the underlying phys-
ical problems, and it is shown to be independent of the size of the high-fidelity discretization. For
this reason, employing a parametrized preconditioner allows to solve system (1) very rapidly for
any new parameter instance, even for problems with a large number of degrees of freedom. As it-
erative solvers for problem (1), we first employ a Richardson iteration, and then adapt the method
to the flexible GMRES (FGMRES). In particular, we employ the former to analyze the properties
of the preconditioner and show how the RB method enters into play, whereas FGMRES is meant
to provide a very efficient tool to tackle large scale problems arising from real applications.

In the numerical tests presented in this work, we compare the iteration counts and the com-
putational times provided by our MSRB preconditioner with the ones obtained by relying on an
algebraic multigrid preconditioned Krylov method and the ML-preconditioned GCRO-DR method
(both built from the Belos and ML package of Trilinos, [29]) for advection-diffusion problems. We
show that the MSRB preconditioner is a valuable option in some relevant and involved model-
ing and numerical settings, namely when the problem is advection-dominated and/or includes
anisotropy, or when the high-fidelity dimension Nh is very large, up to several millions.

The structure of the paper is as follows. In Section 2 we present the class of problems we
deal with, and how to build a MSRB preconditioner, motivating the introduction of an approach
involving several RB spaces for the Richardson method and detailing the properties of the resulting
preconditioner; then we extend the MSRB preconditioner to the case of the FGMRES methods. In
Section 3 we test the MSRB preconditioner on 3D problems governed by second-order advection-
diffusion equations, reporting results for several modeling and numerical settings; finally, in Section
4 we draw some conclusions and possible extensions. In the Appendix A we report a review of the
classic RB method, which is meant to provide a basic background to those readers less-acquainted
with this topic.

2. Multi space RB preconditioners for parametrized PDEs. In this paper we focus
on parametrized linear elliptic second-order PDEs. Let us denote by D ⊂ Rp, p ≥ 1, the parameter
space and by µ ∈ D a parameter vector encoding physical and/or geometrical properties of the
problem. Our goal is to solve a parametrized PDE which under weak form reads as: given µ ∈ D,
find u = u(µ) ∈ V = V (Ω) such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V,(6)

being Ω ⊂ Rd, d = 1, 2, 3, a regular domain and V = V (Ω) a Hilbert space. We further assume
that for any µ ∈ D, a(·, ·;µ) is a bilinear, continuous and coercive form, and f(·;µ) a linear and
continuous form. Under these hypotheses, the Lax-Milgram lemma (see e.g. [41]) ensures the
existence and uniqueness of a solution to problem (6), for any µ ∈ D.

Solving problem (6) requires the use of suitable numerical approximation techniques, here
called high-fidelity (or full order) approximations, providing a discretized solution which is close
to the exact solution up to a (controllable) discretization error. Examples are the finite element
(FE) method [10, 26, 41] and spectral methods [11, 41]. All these approaches are built upon the
use of a finite dimensional space Vh ⊂ V , with dim(Vh) = Nh, and require to find an approximate
solution uh(µ) to (6) by solving the following Galerkin problem: given µ ∈ D, find uh(µ) ∈ Vh
such that:

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Vh,(7)

which can be equivalently expressed as (1) in algebraic form.
Our goal is to exploit the RB method to build efficient preconditioners for the iterative solution

of (1) displaying uniform performance across the parameter space.
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2.1. Multi space RB preconditioners. In this section, we first detail the construction of
the preconditioner to be used for Richardson iterations; this is primarily done for methodological
and theoretical purposes, since it allows to amenably derive the method and compute theoretical
estimates. Consequently, we turn our attention to the FGMRES method in section 2.2.

2.1.1. Preconditioning the Richardson method. Given two matrices Q1 = Q1(µ),
Q2 = Q2(µ) ∈ RNh×Nh , a multiplicative Richardson iteration for the system (1) can be expressed
as {

u(k−1/2)(µ) = u(k−1)(µ) + Q1(µ)r(k−1)(µ),

u(k)(µ) = u(k−1/2)(µ) + Q2(µ)r(k−1/2)(µ), k = 1, 2, . . .
(8)

where u(k) = u(k)(µ) is the µ−dependent iterate at the step k, and r(k) = r(k)(µ) is the corre-
sponding high-fidelity residual of the Richardson method

r(k)(µ) = fh(µ)−Ah(µ)u(k)(µ), k = 1, 2, . . . .

Equations (8) can be equivalently formulated as a single iteration

u(k)(µ) = u(k−1)(µ) + Q(µ)r(k−1)(µ), k = 1, 2, . . . ,(9)

where Q(µ) in (9) is defined as

Q(µ) = Q1(µ) + Q2(µ)−Q2(µ)Ah(µ)Q1(µ).(10)

If Q(µ) is non singular, (9) can be regarded as a Richardson iteration, with acceleration constant
equal to 1, for the preconditioned system

Q(µ)Ah(µ)uh(µ) = Q(µ)fh(µ),(11)

where the preconditioner is Q−1(µ).
The main idea of our approach is to exploit a standard two level domain decomposition

approach relying on a RB solver as coarse (low-rank) component. Therefore, an intuitive choice
for the Richardson method (8) would be to take

Q1(µ) = P−1
h (µ), Q2(µ) = VA−1

N (µ)VT ,(12)

where Ph(µ) ∈ RNh×Nh is a nonsingular matrix which plays the role of fine preconditioner, which
can be chosen among all existing preconditioners, and VA−1

N (µ)VT is the RB coarse component.
However, we have experienced that the convergence rate of (8) is not faster than the one

obtained by setting Q2(µ) = 0 (i.e. just using Ph(µ) as preconditioner) and taking the RB
solution VuN (µ) as initial guess u(0)(µ). Indeed, determining

Q2(µ)r(k−1/2)(µ) = VA−1
N (µ)VT r(k−1/2)(µ)(13)

can be reinterpreted as the approximate solution of the error equation

Ah(µ)e(k−1/2)(µ) = r(k−1/2)(µ),(14)

through the RB method, where e(k−1/2) = e(k−1/2)(µ) = uh(µ)−u(k−1/2)(µ). In other words, by
computing the quantity in (13), we are implicitly seeking an approximation of e(k−1/2)(µ) in the
RB space VN , that is, expressed as a linear combination of basis functions obtained from snapshots
of the high-fidelity problem (1). The main issue related with this approach is that the employed
ROM (i.e. the RB space VN ) is tailored only for equation (1), while we are trying to use it to solve
approximately equation (14), which features the same stiffness matrix Ah(µ) but a different right
hand side. Therefore, the space VN is not well suited to approximate the solution of problem (14),
yielding a very poor numerical approximation of the error, as confirmed by numerical experiments.
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We thus introduce at each step k a new RB space that is trained on equation (14), and where a
better approximation of e(k−1/2)(µ) can be found. Since the error highly depends on the iterate k,
it makes sense to introduce a different RB space VNk

at every iteration k, generated by high-fidelity
solutions of problem (14), that is

VNk
= span

{
e(k−1/2)(µj)

}Nk

j=1
,(15)

where e(k−1/2)(µj), j = 1, . . . , Nk are the errors at the (k − 1/2)-th iteration, computed for
(properly chosen) instances of the parameters µj , j = 1, . . . , Nk. Following the standard RB
method, we can construct the matrices

Vk = [ξk1 | . . . |ξkN ], ANk
(µ) = VT

kAh(µ)Vk,(16)

where {ξkj }
Nk
j=1 denotes an orthonormalized basis for VNk

, and write the MSRB-preconditioned
Richardson iterations as{

u(k−1/2)(µ) = u(k−1)(µ) + P−1
h (µ)r(k−1)(µ)

u(k)(µ) = u(k−1/2)(µ) + QNk
(µ)r(k−1/2)(µ), k = 1, 2, . . . ,

(17)

where QNk
(µ) = VkA

−1
Nk

(µ)VT
k . The formulation (17) leads to

u(k)(µ) = u(k−1)(µ) + QMSRB,k(µ)r(k−1)(µ), k = 1, 2, . . . ,(18)

where the matrix QMSRB,k = QMSRB,k(µ) (replacing Q(µ) in (9)) is now

QMSRB,k(µ) = P−1
h (µ) + QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
,(19)

and can be regarded as a multiplicative combination of P−1
h (µ) and QNk

(µ).
Given the error e(k−1/2)(µ), its RB approximation onto VNk

is defined by e
(k−1/2)
Nk

(µ) ∈ RNk

such that

e
(k−1/2)
Nk

(µ) = A−1
Nk

(µ)VT
k r

(k−1/2)(µ),(20)

and we highlight that its high-fidelity representation Vke
(k−1/2)
Nk

(µ) ∈ RNh is computed in (17) as

QNk
(µ)r(k−1/2)(µ) = VkA

−1
Nk

(µ)VT
k r

(k−1/2)(µ) = Vke
(k−1/2)
Nk

(µ).(21)

In this setting, we take as initial guess the (standard) RB approximation u(0) = u(0)(µ) =
V0A

−1
N0

(µ)VT
0 fh(µ), and set VN0

= VN , i.e. the first RB space is the one provided by the standard
RB method. The subsequent spaces VNk

, k ≥ 1, aim at damping those components of the error
that have not been cured by the previous RB iterations and cannot be addressed by the application
of Ph(µ); they are therefore directly constructed using the error equation (14).

2.1.2. Nonsingularity of the resulting preconditioner. We show in this section that
the matrix QMSRB,k(µ) is invertible. Given a subspace W ⊂ RNh such that dim(W ) = M
and a basis {wj}Mj=1 such that W = span{wj , j = 1, . . . ,M}, we denote by W⊥ the orthogonal
complement ofW and byW ∈ RNh×M , W = [w1, . . . ,wM ], the matrix of basis vectors. Moreover,
given any nonsingular matrix B ∈ RNh×Nh , we define the following spaces

BW =
{
x ∈ RNh : B−1x ∈W

}
=
{
x ∈ RNh : x = Bz, z ∈W

}
,

BW⊥ =
{
x ∈ RNh : B−1x ∈W⊥

}
=
{
x ∈ RNh : x = Bz, z ∈W⊥

}
.

We remark that RNh = BW ⊕BW⊥, because of the nonsingularity of B.
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Lemma 1. Let W be a M -dimensional subspace of RNh , {wj}Mj=1 a basis thereof and W =

[w1, . . . ,wM ] ∈ RNh×M . Moreover, let B be a nonsingular Nh × Nh matrix and assume that
WTBW is nonsingular. Then the following implication holds:

x ∈ BW and WTx = 0 ⇒ x = 0.(22)

Proof. We take x ∈ BW such that WTx = 0 and show that it must be x = 0. By definition
of BW , B−1x = WzM for some zM ∈ RM . Thanks to the nonsingularity of B, we obtain

0 = WTx = WTBB−1x = WTBWzM .

As WTBW ∈ RM×M is invertible, zM = 0. Finally, we have

0 = WzM = B−1x,

which implies x = 0 thanks to the nonsingularity of B.

In the following we employ Lemma 1 by taking W = VNk
, B = Ph(µ), W = Vk in order to

prove that QMSRB,k(µ) is nonsingular. To this aim, we define

V
Ph//
Nk

=
{
x ∈ RNh : P−1

h (µ)x ∈ VNk

}
, V Ph⊥

Nk
=
{
x ∈ RNh : P−1

h (µ)x ∈ V ⊥Nk

}
.

Theorem 2.1. For any µ ∈ D, assume that Ph(µ) ∈ RNh×Nh is a nonsingular matrix such
that the matrix VT

kPh(µ)Vk is nonsingular. Then the matrix QMSRB,k(µ) is nonsingular.

Proof. We want to prove that if QMSRB,k(µ)x = 0, then it must be x = 0. Since any x ∈ RNh

can be expressed as x = x//+ x⊥, where x// ∈ V
Ph//
Nk

, x⊥ ∈ V Ph⊥
Nk

, we first compute the result of
the application of QMSRB,k(µ) on x//:

QMSRB,k(µ)x//= P−1
h (µ)x//+ QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
x//

Being x//∈ V
Ph//
Nk

, we can write P−1
h (µ)x//= VkzN (µ) for some zNk

(µ) ∈ RNk , yielding

QMSRB,k(µ)x//= VkzN (µ) + QNk
(µ)x//−QNk

(µ)Ah(µ)VkzN (µ) = QNk
(µ)x//,(23)

since QNk
(µ)Ah(µ)VkzN = VkA

−1
Nk

(µ)VT
kAh(µ)VkzN = VkzN . As of the component x⊥, we

have

QMSRB,k(µ)x⊥ = P−1
h (µ)x⊥ + QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
x⊥,

which leads to

0 = QMSRB,k(µ)x = QNk
(µ)x//+ P−1

h (µ)x⊥ + QNk
(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
x⊥.(24)

By rewriting equation (24) as follows

QNk
(µ)
(
x//+ x⊥ + Ah(µ)P−1

h (µ)x⊥

)
= −P−1

h (µ)x⊥,(25)

we can notice that the left hand side is an element of the space VNk
, whereas the right hand side is

an element of its orthogonal complement V ⊥Nk
, so that the only way these two elements are equal

is when they are both zero. Being P−1
h (µ)x⊥ = 0, the nonsingularity of Ph(µ) yields x⊥ = 0,

allowing us to rewrite equation (25) as

0 = QNk
(µ)x//= VkA

−1
Nk

(µ)VT
k x//.(26)
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The columns of Vk being linearly independent, equation (26) yields

0 = A−1
Nk

(µ)VT
k x//,(27)

which, thanks to the non singularity of the RB matrix ANk
(µ), see Appendix A, implies

VT
k x//= 0.(28)

Finally, by applying Lemma 1 with W = VNk
, W = Vk and B = Ph(µ), we obtain that x// = 0,

and thus the thesis.

Now, since the matrix QMSRB,k(µ) is invertible, we can define the MSRB preconditioner as

PMSRB,k(µ) = Q−1
MSRB,k(µ).(29)

The MSRB preconditioner PMSRB,k(µ) resulting from the combination of Ph(µ) and QNk
(µ),

leads to the generation of a k-dependent RB space (hereon also called level) VNk
. At each iteration

k, we seek an approximation of the error e(k−1/2)(µ) in VNk
. Each VNk

, k = 0, 1, . . . is associated
to a pair (Nk, δRB,k); Nk identifies the number of basis functions in the space VNk

(and therefore
its dimension) and δRB,k is the tolerance prescribed to construct the space VNk

, e.g. with a greedy
algorithm or the POD method, see e.g. [42]. In particular, in this work we employ the POD
for the purpose of space construction, see Appendix A for further details. In analogy with the
standard RB method, the MSRB preconditioner can be split in an offline and an online stage. In
the former we construct the reduced structures that are needed by the algorithm (17), which is
then employed in the latter to solve problem (1) for any new parameter instance.

Remark 2.1. The assumption that the matrix VT
kPh(µ)Vk to be nonsingular is fairly mild.

For example it is satisfied for any matrix Ph(µ) such that xTPh(µ)x 6= 0 for any x 6= 0. This
is indeed the case for the classical preconditioners, like Jacobi, Gauss-Seidel or Additive Schwarz
preconditioners.

2.1.3. Convergence results. In this section we prove a priori estimates of the error and
the residual decay for the Richardson method (17). For the ease of notation, hereon we omit the
µ−dependence and denote by INh

the identity Nh ×Nh matrix.

Proposition 2.1. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy the

following relation

‖e(k−1/2) −Vke
(k−1/2)
Nk

‖ ≤ δk‖e(k−1/2)‖ k = 1, . . . , L, ∀µ ∈ D,(30)

for given tolerances δk for k = 1, . . . , L. Moreover, let the assumption of Theorem 2.1 be satisfied.
Then the following estimate holds:

‖e(k)‖ ≤ Ckδ‖e(0)‖, k = 1, . . . , L, ∀µ ∈ D,(31)

with C =
∥∥∥INh

−P−1
h (µ)Ah(µ)

∥∥∥ and δ =
∏k
j=1 δj.

Proof. We consider equations (17). The error e(k) = uh−u(k) at iteration k can be computed
as

e(k) =
(
INh
−QNk

Ah

)
e(k−1/2) = e(k−1/2) −Vke

(k−1/2)
Nk

,

where the equation (21) has been used. Then∥∥∥e(k)
∥∥∥ =

∥∥∥(INh
−QNk

Ah

)
e(k−1/2)

∥∥∥ ≤ δk∥∥∥e(k−1/2)
∥∥∥

= δk

∥∥∥(INh
−P−1

h Ah

)
e(k−1)

∥∥∥ ≤ δk∥∥∥INh
−P−1

h Ah

∥∥∥∥∥∥e(k−1)
∥∥∥.

By proceeding recursively we obtain (31).
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A similar result holds for the residuals of the Richardson method.

Proposition 2.2. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy the

following relation

‖r(k−1/2) −AhVke
(k−1/2)
Nk

‖ ≤ δk‖r(k−1/2)‖ k = 1, . . . , L, ∀µ ∈ D.(32)

and given tolerances δk for k = 1, . . . , L. Moreover, let the assumption of Theorem 2.1 be satisfied.
Then the following estimate holds:

‖r(k)‖ ≤ Ckδ‖r(0)‖, k = 1, . . . , L, ∀µ ∈ D,(33)

with C =
∥∥∥INh

−P−1
h Ah

∥∥∥ and δ =
∏k
j=1 δj.

Proof. We consider equations (17). The residual at iteration k can be computed as

r(k) =
(
INh
−AhQNk

)
r(k−1/2) =

(
INh
−AhVkA

−1
Nk

VT
k

)
r(k−1/2)(34)

= r(k−1/2) −AhVke
(k−1/2)
Nk

.

Thanks to (32) we obtain∥∥∥r(k)
∥∥∥ =

∥∥∥(INh
−AhQNk

)
r(k−1/2)

∥∥∥ ≤ δk∥∥∥r(k−1/2)
∥∥∥

= δk

∥∥∥(INh
−AhP

−1
h

)
r(k−1)

∥∥∥ ≤ δk∥∥∥INh
−AhP

−1
h

∥∥∥∥∥∥r(k−1)
∥∥∥.

By proceeding recursively we end up with (33).

Remark 2.2. We underline that the hypothesis (30) of Proposition 2.1 holds only for a train-
ing set Ξtrain ⊂ D when the space VNk

are constructed, for instance, relying upon a greedy algo-
rithm with a prescribed tolerance δk = δRB,k on the error and ‖·‖ = ‖·‖Yh

, where Yh is a symmet-
ric positive definite matrix used to orthonormalize the reduced basis functions. On the other hand,
the hypothesis (32) holds for Ξtrain ⊂ D if we build the spaces VNk

upon a weak greedy algorithm
with a prescribed tolerance δk = δRB,k on the residual and ‖ · ‖ = ‖ · ‖Y−1

h
. If we employ POD with

a prescribed tolerance δRB,k and the norm ‖ · ‖Yh
for the sake of space construction (see Appendix

A), neither hypothesis (30) or (32) hold, even if they are assessed from a numerical standpoint.
In fact, by solving the reduced problem relying on these reduced space provides an approximate
solution e

(k−1/2)
Nk

whose corresponding relative error ‖e(k−1/2)−Vke
(k−1/2)
Nk

‖Yh
/‖e(k−1/2)‖Yh

and
residual ‖r(k−1/2) −AhVke

(k−1/2)
Nk

‖Y−1
h
‖/r(k−1/2)‖Y−1

h
are of the order of δRB,k.

Propositions 2.1 and 2.2 state that the error e(k)(µ) and the residual r(k)(µ) of the Richardson
method decay as the product of the tolerances δRB,j , j = 0, 1, . . . used to build the reduced spaces.
If we employ a stopping criterion based on the relative residual for the Richardson method

• this means that, given a tolerance εr, it reaches convergence at iteration m such that

‖rm(µ)‖2
‖fh(µ)‖2

≤ εr,(35)

• we must build the RB spaces VN0 , . . . , VNk
, such that

δ =

k∏
j=0

δRB,j ≤ εr.(36)

In other words, we require that the combination of all RB spaces yields an error which is lower
than or equal to the target tolerance εr of the Richardson method.

In the algorithm we propose, we employ POD to build the basis for each reduced space. The
construction of the spaces is performed recursively: at first we choose ns values of the parameter
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µi
}ns

i=1
and compute the snapshots

{
uh(µi)

}ns

i=1
as the high-fidelity solutions of (1) for µ =

µi, i = 1, . . . , ns. Following the standard RB method, we build VN0
by using POD on this set of

snapshots, where N0 is chosen as 5% to 20% of ns, depending on the problem at hand. With the
aim of building the subsequent spaces, we express the solution of problem (14) as follows:

e(k−1/2)(µi) = uh(µi)− u(k−1/2)(µi) = e(k−1)(µi)−P−1
h (µi)r

(k−1)(µi) ∀ i = 1, . . . , ns.(37)

Then, given the spaces VN0
, . . . , VNk

, we compute the snapshots errors
{
e(k+1/2)(µi)

}ns

i=1
through

the relation (37), and construct the space VNk+1
space by performing POD on those snapshots.

We highlight that the construction of the k-th space, employing equation (37), does not require
to solve any additional linear system. In order to design our algorithm, a POD approach has been
preferred to a (weak) greedy approach because of the intrinsic nonaffinity of P−1

h (µ), that appears
in relation (37). Indeed, a (weak) greedy algorithm would build the reduced space relying on a
fast evaluation of the error (or a residual-based a posteriori error bound) for a large number of
offline parameters in a training set Ξtrain, typically computed with Nh-independent routines. On
the other hand, computing the error or the residual for the equation (37) requires Nh-dependent
operations, which would yield extremely huge offline costs for each µ ∈ Ξtrain. Relying on a POD
approach makes the proposed technique also feasible in view of more involved applications (e.g.
nonlinear problems) where residual-based a posteriori error bounds are not available.

Regarding the choice of the tolerances δRB,k, k = 0, 1, . . . , (and, consequently, of the number
Nk, k = 0, 1, . . . , of basis functions) for each RB space, we can follow two approaches:

• fixed space accuracy: we build each RB space prescribing the same tolerance δRB , i.e.
δRB,k = δRB , k = 0, 1, . . . ;

• fixed space dimension: we build each RB space prescribing the same space dimension N ,
i.e. Nk = N, k = 0, 1, . . . .

Since we need to construct a sufficiently large number of spaces such that inequality (36) is satisfied,
in the former approach we shall implicitly fix the number of spaces larger than dlog(εr)/ log(δRB)e,
which however may lead to a huge number of RB functions employed at each RB space. In the
latter, instead, we are not limiting the number of spaces. The detailed algorithms corresponding
to these two approaches are reported in Alg. 1 and 2, respectively. In Section 3 we report results
for both these approaches. Once the spaces VNk

, k = 0, 1, . . . , L − 1 have been generated, it is
possible to solve the high-fidelity system (1) by Richardson iterations (17), which are expected
to converge in less than L iterations. However, since POD does not explicitly provide any error
bound depending on δRB,k, the number of iterations may in practice exceed L, in which case one
can choose either to reuse the space VNL−1

, or to drop the second step of (17) for the remaining
iterations.

Algorithm 1 MSRB - Fixed Accuracy

1: procedure MSRB-fixedAccuracy(
{
µi
}ns

i=1
, εr, δRB)

2: Set the number of RB spaces L = dlog(εr)/ log(δRB)e
3: Compute the high-fidelity solutions

{
uh(µi)

}ns

i=1
and set S = [uh(µ1), . . . ,uh(µns

)]
4: Build the basis V0 = POD(S, δRB)
5: for k = 1, . . . , L− 1 do
6: Compute new snapshots e(k−1/2)(µi) = e(k−1)(µi)−P−1

h (µi)r
(k−1)(µi)

7: Set S = [e(k−1/2)(µ1), . . . , e(k−1/2)(µns
)]

8: Build the new basis Vk = POD(S, δRB)
9: end for

10: end procedure

2.2. Multispace RB preconditioners for flexible GMRES. In the previous Section, our
MSRB preconditioner has been built over a Richardson iteration mainly for illustrative reasons.
In order to use a more efficient Krylov iterative method, we opt instead for the flexible GMRES
method, FGMRES [50], since the MSRB preconditioner changes at each iteration. Indeed, the
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Algorithm 2 MSRB - Fixed Dimension

1: procedure MSRB-fixedDimension(
{
µi
}ns

i=1
, εr, N)

2: Compute the high-fidelity solutions
{
uh(µi)

}ns

i=1
and set S = [uh(µ1), . . . ,uh(µns

)], k = 0
3: while

∏
k

δRB,k > εr do

4: Build the new basis Vk = POD(S, N) and set k = k + 1
5: Compute new snapshots e(k−1/2)(µi) = e(k−1)(µi)−P−1

h (µi)r
(k−1)(µi)

6: Set S = [e(k−1/2)(µ1), . . . , e(k−1/2)(µns
)]

7: end while
8: end procedure

(classical) preconditioned GMRES algorithm does not ensure convergence in the case the precon-
ditioner changes at every iteration, while its flexible variant allows to precondition the system with
an iteration-dependent operator. For ease of presentation, we report in Alg. 3 the version of this
method taken from [52]. In the practical implementation, we use as stopping criterion the norm of
the relative residual computed in the obtained iterative solution to be smaller than a prescribed
tolerance εr.

Algorithm 3 Flexible GMRES (as formulated in [52])

1: procedure FGMRES(A, b, u0,
{
Mk

}
k
,m)

2: Compute r0 = b−Au0, β = ‖r0‖2, and v1 = r0/β
3: for k = 1, . . . ,m do
4: Compute zk = M−1

k vk
5: Compute w = Azk
6: for j = 1, . . . , k do
7: hj,k = (w,vj)
8: w = w − hj,kvj
9: end for

10: Compute hk+1,k = ‖w‖ and vk+1 = w/hk+1,k

11: Define Zm = [z1, . . . , zm], H̃m = {hj,k}1≤j≤k+1; 1≤k≤m
12: end for
13: Compute ym = arg min

y∈Rm
‖βe1 − H̃my‖2 and um = u0 + Zmym

14: If satisfied Stop, else set u0 ← um and GoTo 2.
15: end procedure

In Alg. 3, the preconditioner employed at iteration k is denoted by Mk. Since its inverse is
applied to the k-th element of the Krylov basis vk, we infer that Mk is generally used to find an
approximation of ck, which is defined as the solution of the following problem:

Ack = vk.(38)

Indeed, if by any chance M−1
k vk = A−1vk, we have that FGMRES yields the exact solution. In

the MSRB case, we have Mk = Mk(µ) = PMSRB,k(µ), meaning that the action of its inverse on
vk can be computed as

M−1
k (µ)vk = P−1

h (µ)vk + QNk
(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
vk, k = 1, 2, . . . .(39)

To find the right problem for training the k-th RB space, we note that in equation (39) the
reduced component of PMSRB,k is applied to the vector

(
INh
−Ah(µ)P−1

h (µ)
)
vk. In order to

suitably precondition the FGMRES method, the k-th RB space must therefore be trained to solve
the following problem

Ah(µ)y(k)(µ) =
(
INh
−Ah(µ)P−1

h (µ)
)
vk, k = 1, 2, . . . ,(40)



12 N. DAL SANTO, S. DEPARIS, A. MANZONI, A. QUARTERONI

yielding a RB space of the form

VNk
= span

{
y(k)(µi)

}Nk

i=1
, k = 1, 2, . . . ,(41)

where y(k)(µi) is the solution of equation (40) with µ = µi.
Following a similar argument to the one used for the Richardson method in Section 2.1, and

exploiting the expressions of the Krylov basis given in Alg. 3, we can find an explicit formula for
the basis of the RB space k. The most suitable initial guess is the solution of the reduced basis
system, we therefore set u(0)(µ) = V0A

−1
N0

(µ)VT
0 fh(µ), which yields

r0(µ) = fh(µ)−Ah(µ)u(0)(µ), βµ = ‖r0(µ)‖2, v1 = r0(µ)/βµ.(42)

Following (40), the first preconditioner M−1
1 (µ) must effectively precondition the problem

Ah(µ)y(1)(µ) =
(
INh
−Ah(µ)P−1

h (µ)
)
v1 =

1

βµ

(
INh
−Ah(µ)P−1

h (µ)
)
r0(µ),

whose true high-fidelity solution y1(µ) has the following form:

y(1)(µ) = A−1
h (µ)

(
INh
−Ah(µ)P−1

h (µ)
)
v1 =

1

βµ
A−1
h (µ)r0(µ)−P−1

h (µ)v1

=
1

βµ
A−1
h (µ)

(
fh(µ)−Ah(µ)u(0)(µ)

)
−P−1

h (µ)v1

=
1

βµ
A−1
h (µ)

(
Ah(µ)uh(µ)−Ah(µ)u(0)(µ)

)
−P−1

h (µ)v1

=
1

βµ

(
uh(µ)− u(0)(µ)

)
−P−1

h (µ)v1.

We now proceed by induction, supposing to have built our preconditioner up to step k, and show
how to build the (k + 1)-th step. Following (40), y(k+1)(µ) must have the form

y(k+1)(µ) = A−1
h (µ)vk+1 −P−1

h (µ)vk+1,(43)

where vk+1 is the (k + 1)-th Krylov basis, that we can express through Alg. 3 as

vk+1 =
1

hk+1,k

(
Ah(µ)M−1

k vk −
k∑
j=1

hj,kvj

)
k = 1, 2, . . . ,

thus yielding

y(k+1)(µ) =
1

hk+1,k

(
M−1

k (µ)vk −
k∑
j=1

hj,kA
−1
h (µ)vj

)
−P−1

h (µ)vk+1 k = 1, 2, . . . .

Finally, recalling that zk = M−1
k vk, and expressing A−1

h (µ)vk = y(k)(µ) +P−1
h (µ)vk from Equa-

tion (43) computed at step k, we generate the recursive formula
βµ = ‖fh(µ)−Ah(µ)u(0)(µ)‖2,
y(1)(µ) = 1

βµ

(
uh(µ)− u(0)(µ)

)
−P−1

h (µ)v1,

y(k+1)(µ) = 1
hk+1,k

[
zk(µ)−

k∑
j=1

hj,k
(
y(j)(µ) + P−1

h (µ)vj
)]
−P−1

h (µ)vk+1, k ≥ 1.

(44)

The practical construction of the spaces (41) is handled similarly to the case of the Richardson
method: we first compute the high-fidelity solutions for a set of parameters

{
µi
}ns

i=1
, then we

iteratively build the snapshots of the errors {y(k)(µi)}ns
i=1 following relations (44) and then perform

POD on this set of snapshots. Again, we highlight that the construction of the snapshots only
involves the solution of the high-fidelity problem for the step k = 0. Compared to the Richardson
case, the snapshots of the k-th step depend on the snapshots obtained at all the previous steps,
hence requiring a (slightly) higher data storage during the offline stage.
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3. Numerical experiments. In this section we present the results of numerical experiments
related to several test cases governed by advection-diffusion (AD) equations to investigate the
performance of the preconditioner developed so far. We first focus on a pure diffusion problem
showing piecewise constant, parameter dependent diffusivities modeling a heat conduction problem
across different materials. In the second test case we turn our attention to a parametrized advection
diffusion equation describing the dynamics of a solute in a blood flow. We show results for the
FGMRES method, for which we take into account both the fixed accuracy and fixed dimension
approaches for constructing the RB spaces. On the other hand, results with the Richardson method
are not reported for the sake of information synthesis, since similar conclusions can be drawn. In
all the tests POD is performed with respect to the scalar product induced by the symmetric
positive definite matrix Yh, that represents the H1

0 (Ω) scalar product on Vh, see Appendix A.
In each case, we use a stopping criterion for FGMRES based on the Euclidean norm of the FE
vector of the residual, rescaled with respect to the Euclidean norm of the right hand side, with a
tolerance that has been set to εr = 10−7 for all test cases. On the other hand, we compute the RB
spaces to fulfill (36) with δ = 10−9. This is necessary because the optimality of POD is recovered
only on the sum of the snapshots, see Appendix A. Moreover, since each RB space is suited for
a particular iteration up to iteration L − 1, when the number of iterations required to reach the
prescribed tolerance εr exceeds the number of RB spaces, the final iterations employ the last RB
space as coarse correction, i.e. PMSRB,k(µ) = PMSRB,L−1 ∀k ≥ L.

As fine preconditioner, we employ Ph(µ) = PBJ(µ), a Block Jacobi preconditioner, where
each block represents the restrictions to the degrees of freedom of a subdomain. The subdomains
are selected by Parmetis1 at the mesh level. This allows to reduce communication costs for the
preconditioner both in the construction and the application phases.

For all the simulations we report the number of RB spaces L and RB functionsNk, k = 0, 1, . . .
produced by either Alg. 1 or 2, the results obtained online with the MSRB preconditioner averaging
on Nonl = 250 parameters chosen randomly and different from the ones used to construct the RB
spaces. Finally, the number of snapshots ns and the computational time toff required by the offline
phase are reported for each simulation.

All our experiments have been carried out using LifeV2 [9] on the cluster Piz-Daint provided
by the Swiss National Supercomputing Center (CSCS) on a Cray XC40 machine.

3.1. Test case 1: diffusion in a blockwise cubic domain. We consider a parametrized
diffusion problem in a blockwise cubic domain, including anisotropy effects in the diffusion tensor.
This class of problems represents a challenge for the standard RB method when the problem
features a nonaffine dependence on the parameter µ; as a matter of fact, in this case it is necessary
to recover an approximated affine dependence, which may however hamper the efficiency and/or
the accuracy of the RB method.

3.1.1. Problem setting. Given consider Ω = (0, 1)3 ⊂ R3, such that ∂Ω = ΓD ∪ ΓN

with
◦
ΓD ∩

◦
ΓN = ∅, we subdivide it into J subregions Ωj , j = 1, . . .J s.t. Ω̄ = ∪Jj=1Ω̄j and

◦
Ωi∩

◦
Ωj , i 6= j. More precisely we set J = 4 and subdivide Ω such that

◦
Ω1 = (0, 1)×(0, 0.5)×(0, 0.5),

◦
Ω2 = (0, 1)× (0, 0.5)× (0.5, 1),

◦
Ω3 = (0, 1)× (0.5, 1)× (0, 0.5),

◦
Ω4 = (0, 1)× (0.5, 1)× (0.5, 1). Let

us consider the following parametrized PDE:


−∇ · (K(µ)∇u(µ)) = f(µ) in Ω

u(µ) = 0 on ΓD,
∂u(µ)
∂n = 0 on ΓN ,

(45)

1http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
2www.lifev.org

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.lifev.org
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where the diffusion tensor is K(µ) = K(x;µ) = ν(x)diag(1, 1, 10−2), ν(x) > 0 is the piecewise
constant material property on each Ωj :

ν(x) =

{
νj if x ∈ Ωj , j = 1, . . . ,J − 1

1 if x ∈ ΩJ ,

and

ΓN =
{
x = (x1, x2, x3) ∈ Ω̄ : x1 = 1

}
, ΓD = ∂Ω\ΓN .

We consider as source term the following parameter dependent function

f(µ) = f(x;µ) = σ +
1

σ
exp

(‖x− y0‖2

σ

)
,(46)

a Gaussian rescaled function centered in y0 ∈ Ω, shifted and squeezed of a factor σ > 0.
Problem (45) is parametrized with respect to the diffusion coefficients νj , j = 1, . . . ,J − 1,

the coordinates y0 and the scaling factor σ, leading to the 7-dimensional parameter vector:

µ = (ν1, . . . , νJ−1,y0, σ) ∈ D = [0.1, 1]J−1 × [0.4, 0.6]3 × [σmin, 0.5] ⊂ R7,(47)

where σmin > 0. The localized (in space) parametrized nature of f(µ), together with the varying
diffusion coefficients yield a problem which is challenging from the parameter viewpoint, as it is
hardly solvable accurately by the standard RB method.

For the sake of simplicity, we consider homogeneous Dirichlet and Neumann boundary con-
ditions, although the whole framework can be easily adapted to the case of nonhomogeneous
(parametrized) boundary conditions in a straightforward way. Moreover, in all simulations, we
employ linear piecewise continuous FE tetrahedra on structured meshes as high-fidelity discretiza-
tion. Examples of solutions obtained for different values of parameters, are reported in Fig. 1.

(a) µ = (0.1, 0.1, 0.1, 0.4, 0.4, 0.4, 0.05) (b) µ = (1, 1, 1, 0.6, 0.6, 0.6, 0.5) (c) µ = (1, 0.5, 1, 0.5, 0.5, 0.5, 0.2)

Figure 1: Example of solutions with a null Neumann condition on x = 1.

3.1.2. Analysis with respect to the mesh size. We carry out a first analysis with re-
spect to three different grids whose characteristic dimensions are h = 0.05, 0.025, 0.0125, leading
to dimensions Nh = 365′254, 2′887′193 and 22′767′295, respectively, for the high-fidelity FE ap-
proximation. We choose σ ∈ [0.25, 0.5] and construct the RB spaces by POD with ns = 750
snapshots. These simulations have been carried out with 96, 768, 6144 processors, respectively,
in order to maintain a constant number of degrees of freedom (about 3800) per processor. The
meshes have been partitioned in subdomains (independently from the subregions identifying the
material properties) by using Parmetis3. We compare the results with those obtained using an

3http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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algebraic multigrid preconditioner PML(µ) from the Trilinos ML package [29], which exploits an
exact coarse component and 2-sweeps Gauss-Seidel smoother and with the GCRO-DR Krylov
subspace recycling method proposed in [39], where PML(µ) is again used as preconditioner, for
sequences of linear systems with varying matrices and right hand sides. The latter method com-
bines the optimal truncation strategy of GCRO [20] with deflation employed in GMRES with
deflated restarting, GMRES-DR [35]. Both techniques are used with default settings relying on
the Trilinos library.

The results obtained with the fixed dimension approach are detailed in Tab. 1. The compu-
tational time employed online to solve the linear system (1) using PMSRB,k as preconditioner for
any new instance of the parameter is not highly impacted by the FE dimension, since the number
of RB coarse components are not significantly affected by changing the FE dimension. Indeed, the
online computational time tMSRB and the number of iterations It are lower than the ones obtained
either by PML(µ) (tGML) or GCRO-DR (tGCRO-DR). In Tab. 1 the break-even point (BEP), quan-
tifying the number of online evaluation needed to repay the offline phase, is also reported. This
criterion is based on the wall time comparison, where:

BEP =
toff

min{tGML, tGCRO-DR} − tMSRB
.

toff denotes the wall time required by the offline computation, i.e. the construction of the RB
coarse components, and is given by the sum of tns

, the time for the snapshots computation, and
the time tPOD for building the basis with POD; as a matter of fact, toff = tns

+ tPOD. On the
other hand, tGML, tGCRO-DR and tMSRB denote the wall times needed to solve the FE linear
system (1) for any new instance of µ during the online phase using the preconditioner PML(µ),
the GCRO-DR method and the preconditioner QMSRB,k, respectively.

The larger the FE dimension, the lower the BEP (up to 1240 in the case of the finest grid);
indeed, by increasing Nh, the use of the MSRB preconditioner is more convenient compared to
the use of PML(µ) or the GCRO-DR method, even though a more demanding offline phase must
be performed. In Fig. 2a and 2b the speedup obtained with respect to the most convenient
choice between PML(µ) and GCRO-DR technique and the BEP are reported as function of the
FE dimension. By comparing these quantities for both the fixed dimension and the fixed accu-
racy approaches, we conclude that the larger the FE dimension, the higher the speedup and the
lower the break-even point for both approaches. In the case with Nh = 22′767′295, both PML(µ)
and GCRO-DR perform very poorly due to the very large FE dimension and the corresponding
huge communication costs; in particular the latter succeeds in reducing the time of about 10%
by recycling the Krylov subspace. On the other hand, the MSRB preconditioner relies on embar-
rassingly parallel fine and coarse components, and the linear system (1) is solved by the MSRB
preconditioned FGMRES up to 70 (resp. 50) faster than either PML(µ) or GCRO-DR and 1067
(resp. 1240) online evaluations are required to reach the break-even point for the fixed accuracy
(resp. fixed dimension) approach. In terms of memory requirements, the fixed accuracy approach
(entailing the storage of about 1050 FE vectors to build the RB spaces for the problem at hand) is
less demanding than the fixed dimension approach (about 1400 FE vectors). These requirements
make data storage related to our preconditioners heavier than the one required by the ML pre-
conditioner, although this latter is used only for a single-instance of the parameter, if no updating
or recycling techniques are employed. Nevertheless, compared to the standard RB method, the
number of FE vectors stored by our preconditioners is comparable.

Table 1: Grid analysis FGMRES fixed dimension, Nk = 100 ∀k, ∼ 3800 dofs per CPU.

Ncpu L tMSRB(It) tGML(It) tGCRO-DR(It) toff tns tPOD BEP
96 15 0.43 (13) 0.59 (28) 0.48 (28) 4546.21 4390.47 155.74 28448
768 14 0.68 (25) 1.91 (41) 2.29 (38) 6775.94 6597.13 178.81 5517
6144 13 1.19 (40) 55.73 (54) 49.98 (53) 65437.90 64951.30 486.60 1240
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Figure 2: Test case 1: Speed up and break-even point (BEP) as function of Nh.

3.1.3. Comparison with the RB-DEIM method. A natural question arising in this
context is about the comparison, in terms of both accuracy and efficiency, between the proposed
approach (MSRB preconditioning) and the classical RB method. In this latter case, the solution
of system (1) is approximated by the one of the RB problem (4). In this section we compare the
results obtained with the standard RB method with the ones computed with the FGMRES Krylov
method preconditioned with the proposed MSRB preconditioner, showing results for the FE grid
with Nh = 2′887′193.

At first, we notice that the function (46) nonaffinely depends on the parameter µ, leading to
a nonaffine right hand side fh(µ) in (1). The nonaffine dependence of the operators is one of the
most limiting bottleneck of the standard RB method, as it does not allow to assemble the RB
arrays independently from the FE dimension and gain the maximum speed up with respect to
the high-fidelity simulation. Consequently, the Empirical Interpolation Method (EIM) [3], or its
discrete variants DEIM and MDEIM [15, 36], should be used to construct an approximated affine
decomposition. In our case, we employ the DEIM algorithm [15], see Appendix A, to deal with the
nonaffine right hand side. This latter is approximated as a linear combination of properly chosen
DEIM basis functions up to a certain tolerance δdeim, which is plugged in the DEIM algorithm.
We use the shorthand notation RB-DEIM to indicate the RB method which exploits the DEIM
algorithm to compute an affine approximation of the right hand side. It is well known that on one
hand the tolerance δdeim limits the accuracy of the RB-DEIM approximation and, on the other
hand, it may yield a huge overhead in the online phase due to a (possibly) large number of DEIM
basis functions. This is indeed the case of the data in (46) due to the localized (in space) nature
of the source term, and particularly related to the value of σ (the smaller σ, the more localized
the source term).

We employ RB-DEIM with different DEIM tolerances δdeim = 10−1, 10−3, 10−5, 10−7 and
values of σmin = 0.1, 0.05, 0.01, such that the parameter σ ∈ [σmin, 0.5]. The RB spaces are
built through POD algorithm by setting a tolerance of εPOD = 10−9 for all the tests; we choose a
number of snapshots equal to ns = 1000 for σmin = 0.1, ns = 2000 for σmin = 0.05 and ns = 3500
for σmin = 0.01, respectively. To assess the accuracy of the RB solution, the average FE relative
residual computed in the RB solution, which is defined as

rRB =
‖fh(µ)−Ah(µ)VuN (µ)‖2

‖fh(µ)‖2
,(48)

is evaluated over Nonl = 250 online parameters.
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Figure 3: Test case 1: relative residual and average wall time as function of δdeim.

In Fig. 3a the average rRB is reported for different DEIM tolerances δdeim. The results show
that the accuracy of RB-DEIM is strongly hampered by the tolerance δdeim; not only it is com-
pulsory to use a small value of δdeim to obtain a very accurate solution. Moreover, we observe
that from a certain point the residual stagnates to the value 10−5 even if a smaller δdeim has
been provided. In Fig. 3b the wall time tonl

RB employed to assemble and solve the RB problem
for a new instance of µ is reported for different values of σmin as function of δdeim. The total
time is largely affected by the value of σmin and by δdeim: the smaller the tolerance of the DEIM
algorithm, the bigger the wall time required to compute the RB solution (even up to 19.87 seconds
for σ ∈ [0.01, 0.5] and δdeim = 10−7). In particular, the large wall time required when using a
small DEIM tolerance is caused by assembling the RB right hand side, which depends on the
huge number of DEIM basis functions and the communication needed to compute the coefficients
Θ̃q
f , q = 1, . . . , Qf in (56). In Tab. 2 the details of the experiment are reported for the different

ranges of σ: the average relative residual rRB and the wall time tonl
RB needed to compute the RB

solution online, the number Qf of computed DEIM basis functions, the wall time toff of the offline
phase and the number of snapshots ns. By contrast, in the FGMRES preconditioned with the
MSRB preconditioner, an approximated affine decomposition of the right hand side is not needed,
since we solve the full FE problem, therefore the use of DEIM is not required. In Tab. 3 the
results obtained by setting a final relative tolerance for the FGMRES equal to εr = 10−7 are
shown for the fixed dimension approach. In particular, we report, together with the number L
of coarse corrections, the number of RB functions N defining each coarse correction, the wall
time tonl

MSRB and the iterations It required to compute the solution with the MSRB-preconditioned
FGMRES, the computational time toff of the offline phase and the number of snapshots ns. For
σmin = 0.1, 0.05, 0.01, we have set N = Nk = 180, 300, 600 for any k, respectively. In all cases,
Alg. 2 has built L = 13 RB spaces, and compared with the results obtained with the RB-DEIM
method, we highlight that:

• the MSRB preconditioner is more insensitive to the range of parameters (and particularly
of σ), whereas the performance of the RB-DEIM method significantly depends on it;

• as a matter of fact, the wall time for each online solution ranges from 1.37 to 19.87 seconds
for RB-DEIM (tonl

RB) and from 1.05 to 1.59 seconds in the MSRB case (tonl
MSRB);

• the relative residual of the RB-DEIM approximation stagnates at the value of 10−5, even
though a smaller tolerance δdeim, equal to 10−7, is employed; the MSRB preconditioning
method allows instead to obtain a relative residual lower than the tolerance εr = 10−7,
which is fixed as stopping criterion in the FGMRES algorithm.

This remarkable gain in both accuracy and efficiency is achieved at the expense of a significantly
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Table 2: RB-DEIM results with δdeim = 10−7.

rRB N Qf tonl
RB toff ns

σ ∈ [0.1, 0.5] 3.03e-05 670 196 1.37 7913.75 1000
σ ∈ [0.05, 0.5] 2.22e-05 1055 341 3.65 17562.31 2000
σ ∈ [0.01, 0.5] 6.52e-05 2143 1060 19.87 30804.32 3500

Table 3: MSRB results Fixed dimension, with Nk = N, k = 0, 1, . . . , L− 1.

εr L N tonl
MSRB(It) toff ns

σ ∈ [0.1, 0.5] 1.e-7 13 180 1.05 (22) 13820.00 1000
σ ∈ [0.05, 0.5] 1.e-7 13 300 1.00 (15) 26406.40 2000
σ ∈ [0.01, 0.5] 1.e-7 13 600 1.59 (17) 50973.70 3500

higher offline time toff , equal to 50973.70 seconds in the MSRB case and 30804.32 seconds in the
RB-DEIM case (for σ ∈ [0.01, 0.5]). This overhead is caused by the larger number of PODs and
the necessity to build the snapshots errors with (44), however, it is well repaid during the online
phase, when the FGMRES with the MSRB preconditioner reaches a much more accurate (100
times) result with a relevant speedup, up to almost 12 times faster of the standard RB method
(for σ ∈ [0.01, 0.5]).

For problems involving a nonaffine (left and/or) right hand side, the RB method must rely
on hyper-reduction like DEIM to compute an approximated affine decomposition of fh(µ). In
the considered case, the use of DEIM strongly limits the accuracy of the RB approximation and
entails a huge overhead, see Tab. 2. On the other hand, the MSRB-preconditioned FGMRES
method does not require any approximated affine representation of fh(µ), therefore this limitation
in accuracy and efficiency does not occur. As a matter of fact, the proposed preconditioning
strategy is well-suited when dealing with challenging nonaffine problems, since it allows to exploit
the parameter dependence overcoming the need to have an accurate affine decomposition of the
parameter dependent FE arrays.

3.2. Test case 2: solute dynamics in blood flow and arterial walls. We investigate
here the dynamics of a solute by focusing on the solution of a fluid-wall mass-transport model
which describes the exchange of substances between blood in the lumen and arterial wall. In
this context, the solute is regarded as a passive scalar transported along the artery by the blood,
which is modeled as a Newtonian fluid and governs the exchange of the solute through the stress
produced on the arterial wall. We take into account the so-called steady wall-free model for the
absorption of the solute, [45], which couples the steady Navier-Stokes equations, which describe
the velocity and pressure fields, with an advection diffusion equation governing the concentration
of the solute. This model is parametrized with respect to the permeability of the arterial wall and
the diffusion coefficient of the solute in the blood, whereas the concentration of the solute in the
wall is considered to be constant. This problem has been largely addressed and studied in the
literature, see e.g. [12, 45] and the references therein for an extensive description.

3.2.1. The physical model and its FE discretization. We consider an open bounded
domain Ωf ∈ R3, such that ∂Ωf = Γw ∪ Γout ∪ Γin. Here, Γw, Γout and Γin denote the artery
wall, the outlet and the inlet, respectively, see Fig. 4a. The physical domain Ωf describes the
carotid bifurcation with an average section radius r = 0.3 cm. We define Cf ∈ [0, 1] as the
normalized concentration of the solute, whose dynamics is governed by the following advection
diffusion equation: 

−∇ · (νf∇Cf ) + ũ · ∇Cf = 0, x ∈ Ωf

n · (νf∇Cf ) + ξCf = ξkw on Γw

Cf = 1 on Γin

n · (νf∇Cf ) = 0 on Γout,

(49)
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where νf is the diffusivity coefficient of the solute, ξ and kw are the permeability and the concen-
tration in the arterial wall, respectively. We model the permeability of the wall as ξ = ξ(ũ) =
β(1+τw(ũ)), being τw(ũ) the wall shear stress (WSS) distribution on Γw, and we choose as vector
of parameters µ = (νf , β) ∈ [5 · 10−5, 5 · 10−2] × [10−4, 10−3]. On the other hand, we fix the
value of kw = 0.5 for all the simulations. The advection field ũ = ũ(x) describes the velocity of
the blood flow, and it is governed by the steady Navier-Stokes (NS) equations corresponding to
the systolic peak. As boundary conditions for the NS equations we set a no-slip condition on Γw,
homogeneous Neumann conditions on Γout and a parabolic inlet velocity, with a peak 22.5 cm s−1,
on Γin. Finally we consider a constant kinematic viscosity of the blood ν = 0.035 cm2s−1. We
remark that in our model the NS equations are not parametrized, their solution only representing
a datum for problem (49).

Here we consider the solution of problem (49) for very small values of νf which yield huge
Péclet numbers Pe = |ũ|r

2νf
, and since the standard FE method may lead to oscillations for such

convective dominant problems, we employ a stabilized FE formulation. Hence, in contrast to
the Test case 1 described in Section 3.1, where the weak formulation yielding the high-fidelity
approximation (1) is straightforward, we report the weak formulation of problem (49), which
reads: find Cf ∈ V = V (Ωf ) =

{
v ∈ H1(Ωf ) : v|Γin

= 1
}
such that∫

Ωf

(νf∇Cf∇w + ũ · ∇Cfw) +

∫
Γw

ξCfw =

∫
Γw

ξkww, ∀w ∈ H1
Γin

(Ωf ),(50)

where H1
Γin

(Ωf ) =
{
v ∈ H1(Ωf ) : v|Γin = 0

}
. As high-fidelity discretization, we employ a

streamline-upwind/Petrov-Galerkin (SUPG) stabilized FE formulation. To this aim, we introduce
a conforming partition Th of Ωf and the FE space

Xr
h =

{
wh ∈ C0(Ω̄f ) : wh|K ∈ Pr(K)∀K ∈ Th

}
,(51)

where Pr(K) denotes the space of polynomials with degree lower than or equal to r on the element
K. Then, the SUPG-FE formulation reads: find Cf,h ∈ Vh = Xr

h ∩ V such that

∫
Ωf

(νf∇Cf,h∇wh+ũ · ∇Cf,hwh) +

∫
Γw

ξCf,hwh +
∑
K∈Th

(
ũ · ∇Cf,h −∇ · (νf∇Cf )τK ũ · ∇wh

)
K

(52)

=

∫
Γw

ξkwwh, ∀wh ∈Wh = Xr
h ∩H1

Γin
(Ωf );

here (·, ·)K denotes the L2(K) scalar product on K ∈ Th, whereas

τK = δS
hK
|ũ|

,(53)

being δS a positive constant, which in the numerical experiments is set to 1, and hK the diameter
of the element K ∈ Th.

A quantity of interest to be evaluated for different values of the parameters is the Sherwood
number, which measures the non-dimensional mass flux through the vessel wall, see e.g. [18], and
is defined as

Sh =
−2r(∇Cf · n)

Cf,in − kw
,

where r = 0.3 cm is the reference radius of the artery and Cf,in = 1 is the inlet concentration.
Concerning the numerical setting, we employ a mesh with boundary layer, and a P2 − P1

FE discretization for the NS equations, whose resulting velocity field is reported in Figure 4c.
Concerning the discretization of equation (52), we analyze the performance of PMSRB,k(µ) with
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respect to the employment of P1 and P2 FE, resulting in 429’892 and 3’467’673 degrees of freedom,
respectively. We are particularly interested in the case of quadratic (P2) FE because the evaluation
of quantities involving the gradient of the concentration, as the Sherwood number, need a very
accurate computation of the derivatives of the unknown. In Fig.
reffig:sherwood we report the Sherwood number obtained for different instances of the parameter:
we notice that employing quadratic FE polynomials can yield significantly more precise values.
As in the previous test case, we use a stopping criterion based on the euclidean norm of the FE
residual rescaled with respect to the right hand side for the iterative method, with a tolerance
equal to εr = 10−7.

(a) Physical domain Ωf . (b) Velocity inlet and grid. (c) Velocity field.

Figure 4: Physical domain and inlet velocity profile with mesh and velocity field.

3.2.2. Numerical results with the MSRB preconditioner. We now assess the compu-
tational performance of the MSRB preconditioner for the test case 2. We first remark that very
similar outcomes are obtained either with the fixed accuracy or the fixed dimension approach. In
Tab. 4 we show detailed results for the fixed dimension (with Nk = 20, k = 0, 1, . . . ) approach
employing a number of processor Ncpu = 96, 192, 384. The FGMRES method with the MSRB
preconditioner converges in 3 iterations (or even less), both for P1 and P2 finite elements: employ-
ing different FE degrees does not impact on the dimension of the reduced spaces, and consequently
on the time needed for the solution online of the reduced problems. On the other hand, employing
P2 FE has a huge impact on the performances of the PML(µ) preconditioner: the iteration count
is three times higher and the overall computational times largely increase. Moreover, thanks to
the small sizes of the RB spaces, the computational times obtained with PMSRB,k(µ) in the online
phase are due to the construction of the fine preconditioner PBJ(µ), which is embarrassingly par-
allel, thus yielding a very good overall scalability, see Fig. 6a for both fixed dimension and fixed
accuracy approach. Indeed, the computational time is mainly governed by the LU factorizations
of the local matrices in PBJ(µ). On the other hand, solving the linear system with PML(µ) (and
consequently the offline phase as it mainly involves snapshots computation) results in a larger time
when using 384 CPUs due to the communication costs of the ML preconditioner. In Fig. 6b we
report the speedup in computational time obtained by employing PML(µ) and PMSRB,k(µ): by
increasing the number of processors we solve the problem online up to 14 times faster than ML
in the case of P1 elements and 35 in the case of P2 elements. In this case the break-even point
(BEP) of online evaluations decreases with the number of processors up to about 450 (resp. about
500) for P2 (resp. P1) elements.

4. Conclusions. In this paper we have proposed and analyzed a new two-level preconditioner
based on the combination of a RB coarse component and a fine preconditioner for large-scale FE
problems. In order to gain the maximum efficiency from the reduced order model, instead of
employing the standard RB method we have introduced an iteration-dependent coarse component,
which at the k-th step of the iterative method is tailored to solve the k-th error equation. By
employing such a strategy, we are able to tune the decay of the error at each step of the iterative
method. We have first proposed the preconditioner and analyzed its properties in the amenable
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(a) µ = (5 · 10−5, 10−4) (b) µ = (5 · 10−2, 10−3)

Figure 5: Sherwood number distribution for values of the parameter vector.

Table 4: Test case 2: results for FGMRES, fixed dimension approach, ns = 300.

Ncpu L Nk tMSRB (It) tGML (It) toff tns tPOD BEP
P1 96 4 20 0.12868 (2) 0.35 (57) 314.01 307.74 6.27 1419
P1 192 4 20 0.04576 (2) 0.34 (62) 208.85 205.67 3.18 698
P1 384 4 20 0.02896 (2) 0.42 (67) 201.1 198.05 3.05 515
P2 96 4 20 3.2818 (3) 15.86 (177) 10391.4 10370.12 21.28 827
P2 192 4 20 1.1689 (3) 9.13 (195) 5363.1 5350.8 12.3 674
P2 384 4 20 0.4264 (3) 14.12 (401) 6095.57 6087.78 7.79 446

case of Richardson method; then, we have suitably modified it to accelerate the convergence rate
of FGMRES iterations. We have proposed two approaches for constructing the RB spaces: i) a
fixed accuracy approach, which ensures a constant decay of the error, and ii) a fixed dimension
approach, which instead guarantees a limited number of basis functions for each RB space. We
carried out several numerical tests to verify the performance of the MSRB preconditioner in the
case of parametrized advection diffusion equations, showing that the proposed preconditioner,
which is based on the parametrized physical model, enhances significantly the convergence of the
preconditioned iterative method.
We have extensively investigated the performance of the MSRB preconditioner with respect to
the grid size and the FE degree, highlighting a numerical independence of the dimension of the
high-fidelity space, due to the use of RB coarse components that are indeed independent of the
latter. We have carried out a comparison with the standard RB method for a problem featuring
a nonaffine parameter dependence, for which the MSRB preconditioner has given better results
in less computational time than the standard RB method. Finally, results show that the MSRB
preconditioner is a promising technique, overcoming a severe computational bottleneck of the RB
method, which requires the use of hyper-reduction techniques, and competitive with AMG and
Krylov subspace recycling methods for challenging modeling and numerical scenarios.

Appendix A. The reduced basis method for parametrized PDEs. The reduced
basis (RB) method relies on the idea that the µ-dependent solution of the Nh ×Nh high-fidelity
problem (1) can be well approximated by a linear combination of N � Nh high-fidelity solutions
corresponding to (suitably chosen) parameter values. We report a a brief overview of the method
to make the paper self-contained and fully understandable to those readers less acquainted with
reduced order modeling.

The RB method is based on an offline/online splitting: in the former phase a reduced space
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Figure 6: Test case 2: Scalability and speedup as function of the number of processors Ncpu.

VN ⊂ Vh, whose dimension is N � Nh, is built, algebraically represented by the matrix V ∈
RNh×N , V = [ξ1| . . . |ξN ]; in the latter, the high-fidelity problem (1) is replaced by the reduced
problem (4) for any new instance of the parameter µ. For an extensive introduction to the RB
method see, e.g., [42, 30]; here we limit ourselves to recall its most remarkable points.

The construction of the RB space VN can be performed by means of a (weak) greedy al-
gorithm or proper orthogonal decomposition (POD). In particular, we recall the definitions and
basic principles of the latter, since it is employed in the algorithms we propose. We start by
computing ns high-fidelity solutions {uh(µi)}ns

i=1 (called snapshots) corresponding to selected pa-
rameter values {µi}ns

i=1. POD then aims at compressing the snapshots data by finding the best
N -dimensional subspace, with N ≤ ns, that approximates the space Vns

= span{uh(µi), i =
1, . . . , ns}. This is pursued by performing a singular value decomposition of the snapshot matrix
S = [uh(µ1),uh(µ2), . . . ,uh(µns)], such that Vns = Col(S), and resulting in a factorization

S = UΣZT ,

where U ∈ RNh×Nh , Z ∈ Rns×ns and Σ ∈ RNh×ns , such that Σii = σi, i = 1, . . . ns, Σij = 0, i 6= j.
Then, the first N columns of the matrix U, V = U(:, 1 : N), form an orthonormal basis of a N -
dimensional subspace of Vh, that is, Col(V) = VN . This space results as the best N -dimensional
approximation subspace, that is, VN , among all possible N -dimensional subspaces of Vh minimizes
the projection error of the snapshots. This result can be stated in a general form by considering
any matrix-induced norm4 as follows.

Proposition A.1. Let VN = {W ∈ RNh×N : WTYhW = IN} be the set of all N-dimensional
Yh-orthonormal bases. Then

ns∑
i=1

‖uh(µi)−VVTYhuh(µi)‖2Yh
= min

W∈VN

ns∑
i=1

‖uh(µi)−WWTYhuh(µi)‖2Yh
=

ns∑
i=N+1

σ2
i .

In other words, the POD method allows to compute the space of dimension N , that minimizes
the Yh-projection error of the snapshots in the Yh-norm. Typically, in the Galerkin RB (G-RB)
method for second-order elliptic PDEs, Yh encodes the H1(Ω) scalar product on the space Vh,
that is, (Yh)ij = (φj , φi)H1(Ω), i, j = 1, . . . , Nh, where

{
φi
}Nh

i=1
denote the FE basis.

From a practical standpoint, POD is performed by solving an eigenvalue problem associated to
the correlation matrix C = STYhS, whose eigenvalues directly provide the singular values squared

4Given a symmetric positive definite matrix Yh ∈ RNh×Nh , we can define the scalar product (x,y)Yh
=

(Yhx,y)2, x,y ∈ RNh , inducing the norm ‖x‖2Yh
= (x,x)Yh

, and consider the SVD decomposition of Y1/2
h S.
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σ2
i , i = 1, . . . , ns. Through the eigenvectors wi, i = 1, . . . , ns of C one can build a Yh-orthonormal

basis
{
ξi
}ns

i=1
of the snapshots subspace Vns

ξi =
1

σi
Swi, i = 1, . . . , ns.(54)

Finally, the reduced space VN ⊂ Vns is built selecting the first N eigenvectors, given by the
SVD, see [42] for the details. According to Proposition A.1, constructing the RB space with
the first N eigenvectors yields a relative approximation accuracy on the snapshots equal to

δ2
RB =

ns∑
i=N+1

σ2
i /

ns∑
i=1

σ2
i .

Therefore, if we aim at building a RB space relying on POD we can follow two approaches:
• POD(S,Yh, δRB): given a target accuracy δRB , we choose the first N = N(δRB) columns

of U as basis for the RB space VN , where N is such that
N∑
i=1

σ2
i /

ns∑
i=1

σ2
i ≥ 1− δ2

RB ;

• POD(S,Yh, N): given a fixed dimension N > 0, we select the first N vectors.
Depending on the reducibility of the problem at hand, the relation between N and δRB can
significantly vary. Once the RB space has been built, for any new instance of the parameter µ, the
high-fidelity problem (1) is replaced by the reduced problem (4) which can be easily assembled and
solved inexpensively, usually with direct methods. We underline that the matrix AN (µ) inherits
the properties of Ah(µ), being positive-definite for coercive problems, and therefore nonsingular.
We point out that the matrixVA−1

N (µ)VT is the pseudoinverse matrix ofAh(µ), and approximates
exactly A−1

h (µ) on the subspace VN . Indeed, should the high-fidelity solution uh(µ) belong to
the reduced space, that is uh(µ) = VuN (µ), it can be recovered as A−1

h (µ)fh(µ) = uh(µ) =
VuN (µ) = VA−1

N (µ)VT fh(µ). However, we generally have uh(µ) ≈ VuN (µ), that is, uh(µ) does
not belong to VN .

A vital assumption that allows to speed up the RB method is made by requiring that Ah(µ)
and fh(µ) depend affinely on the parameter µ, i.e. that they can be expressed as

Ah(µ) =

Qa∑
q=1

Θq
a(µ)Aq

h, fh(µ) =

Qf∑
q=1

Θq
f (µ)fqh,(55)

where Θq
a : D → R, q = 1, . . . , Qa and Θq

f : D → R, q = 1, . . . , Qf are µ-dependent functions,
while the matrices Aq

h ∈ RNh×Nh and the vectors fqh ∈ RNh are µ-independent. This property is
crucial to achieve the full independence of the assembling of the RB arrays from the size Nh of
the high-fidelity problem. In the case (55) is not automatically satisfied, such affine parametric
dependence can be recovered by using the empirical interpolation method (EIM) and its discrete
variants DEIM and M-DEIM, see [3, 15, 36]. Consequently, instead of equations (55), we have

Ah(µ) ≈
Qa∑
q=1

Θ̃q
a(µ)Aq

h, fh(µ) ≈
Qf∑
q=1

Θ̃q
f (µ)fqh,(56)

up to a certain tolerance δdeim, with Qa and Qf the number of selected basis computed by the
corresponding algorithms. In the case of DEIM, the basis functions

{
fqh
}Qf

q=1
are built through

POD on a set of vector snapshots
{
fh(µi)

}ns

i=1
, that is

[f1
h , . . . , f

Qf

h ] = POD(Λ, INh
, δdeim), Λ = [fh(µ1), . . . , fh(µns)];

for any value of µ the coefficients Θ̃q
f (µ) are computed through an interpolation problem.
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