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Abstract

We consider the numerical approximation of geometric Partial Differential Equations (PDEs) de-

fined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from

the minimization of an energy functional by L2-gradient flow. We analyze two energy functionals:

the area, which leads to the mean curvature flow, a nonlinear second order PDE, and the Willmore

energy, leading to the Willmore flow, a nonlinear fourth order PDE. We consider surfaces repre-

sented by single-patch NURBS and discretize the PDEs by means of NURBS-based Isogeometric

Analysis in the framework of the Galerkin method. To approximate the high order geometric PDEs

we use high order continuous NURBS basis functions. Instead, for the time discretization of the

nonlinear geometric PDEs, we use Backward Differentiation Formulas (BDF) with extrapolation of

the geometric quantities involved in the weak formulation of the problem; in this manner, we solve

a linear problem at each time step. We report numerical results concerning the mean curvature

and Willmore flows on different geometries of interest and we show the accuracy and efficiency of

the proposed approximation scheme.

Keywords: Geometric Partial Differential Equation, Surface, High Order, Isogeometric Analysis,

Mean Curvature Flow, Willmore Flow

1. Introduction

Geometric Partial Differential Equations (PDEs) describe the evolution of the geometrical do-

main in which these equations are set [1]; such problems are usually defined on surfaces in 3D and

the surface itself represents the unknown of the geometric PDE. The computational domain evolves

in time, or pseudo-time, according to geometric quantities of interest, such as the curvature of the
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surface, towards the (local) minimization of the associated energy functional. Problems of this

kind arise in different applications; examples are material Science, where the crystalline structure

or the geometric properties of the materials can be described via mathematical models [2, 3, 4],

in biomembrane modeling [5, 6, 7], or, more recently, in image processing, for example for auto-

matic contours detection or image segmentation [8, 9, 10], as well as surface reconstruction and

restoration [11, 12, 13, 14, 15]. In this work, we focus on the numerical approximation of geometric

PDEs defined on 3D surfaces, and specifically on two common problems. The first one is the mean

curvature flow, for which the considered surface moves in the direction of its mean curvature vector.

This causes the surface to evolve towards the minimization of its area [16], and it is of fundamental

interest for the study of minimal surfaces. Problems of this kind arise, for example, when studying

grain boundary motion in alloys, or modeling physical systems involving surface tension, such as

biological cells and membranes, bubbles, capillarity, and others. This problem has been extensively

studied theoretically [16, 17, 18, 19] and tackled numerically with different approaches, e.g. by using

the Finite Element Method (FEM) in [20, 21], level set formulations in [22, 23], or phase field ap-

proaches in [1]. Then, we focus on the Willmore flow problem [24], which leads to the minimization

of the Willmore (or bending) energy, which appears, for example, in optimal surface modeling [25],

surface restoration [15], and in physical models for biomembranes [26, 27, 28]. Theoretical results

about the existence, uniqueness, and regularity of the solutions of the Willmore flow problem can

be found in [29, 30, 31, 32]. Regarding its numerical approximation ([1]), the seminal work in

[33] considers a general surface evolver, which has been applied to the Willmore energy using the

FEM. Approximations based on finite difference schemes for axisymmetric solutions are proposed

in [34]. In general, the numerical approximation of the Willmore flow on parametric surfaces is

based on the FEM, as e.g. in [35, 36, 37]; in [38] a formulation based on the level set method is

used, while in [39, 40] approximations of the Willmore flow for curves (also called elastic flow of

curves) are studied. For a general review on the numerical approximation of geometric PDEs we

refer the reader to [1]; instead, for approximating PDEs on evolving surfaces, we refer to the recent

review work [41]. Nevertheless, all these approaches generally involve geometric approximations of

quantities which may lead to accuracy issues or complex numerical schemes.

In this work, we focus on geometric PDEs defined on 3D parametric surfaces represented by

NURBS geometrical mappings [42]. We spatially discretize the PDEs by means of Isogeometric

Analysis (IGA) [43, 44]. Developed with the aim of filling the gap between Computer Aided

Design (CAD) and FEM, IGA is a discretization method based on the isogeometric concept for
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which the same basis functions are used for both representing the geometry and constructing the

approximation subspace of the PDEs solution. IGA facilitates the exact geometric representation

of the computational domain, even at the coarsest level of discretization; moreover, the NURBS

function spaces, in which the approximate solution lays, can be enriched by means of refinement

procedures that preserve the geometrical representation. Furthermore, NURBS-based IGA permits

a fine control over the continuity of the basis functions (over smooth surfaces), allowing the use

of globally Ck-continuous basis functions, with k ≤ p − 1, being p the polynomial degree, this

even on closed surfaces [44, 45]. Other than being particularly accurate and efficient ([46, 47, 48]),

these high order continuous NURBS bases permit the discretization of high order PDEs within the

framework of the standard Galerkin method without resorting to mixed formulations [45, 49, 50].

The advantages of NURBS-based IGA for surface PDEs both of second [51] and high order PDEs

are highlighted in [45]. Among these, we have the accurate evaluation of geometric quantities as

those arising in geometric PDEs, e.g. the normal to the surface and the mean and Gauss curvatures.

In this paper, we propose NURBS-based IGA for the spatial approximation of geometric PDEs,

as the mean curvature and Willmore flows. Moreover, we propose the time discretization of the

nonlinear problems arising from the IGA semi-discretization by means of Backward Differentiation

Formulas (BDF) [52, 53]. In particular, we treat the nonlinear terms (including the geometric ones)

through time extrapolations compatible with the BDF scheme at hand, leading to the solution at

each time step of a linear algebraic system. We provide and critically discuss several numerical re-

sults for benchmark problems described by geometric PDEs, which show the accuracy and efficiency

of the proposed numerical scheme.

This paper is organized as follows. In Section 2 we introduce the geometric representation

and notation used throughout the rest of the paper, together with the definitions of the employed

differential operators defined on surfaces. In Section 3 a generic formulation of geometric PDEs is

introduced, with further focus on the mean curvature and the Willmore flows. Our approach to the

spatial and temporal discretizations of the PDEs, based on IGA and BDF schemes, is presented

in Section 4. Numerical results for different test problems are provided and discussed in Section 5.

Conclusions follow.

2. Geometric Representation and Differential Operators on Surfaces

Let us consider a parametric domain Ω̂ ⊂ R2 of finite and positive measure with respect to

the topology of R2, together with the parametric coordinate, a vector-valued independent variable
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ξ = (ξ1, ξ2) ∈ R2. From here on we denote with Ω a compact, connected, oriented and smooth

surface in R3, with or without boundary ∂Ω, defined by the geometrical mapping X as:

X : Ω̂→ Ω ⊂ R3, ξ → X(ξ) = p. (2.1)

By assuming it exists, we denote the inverse mapping as:

X−1 : Ω→ Ω̂ ⊂ R2, p→ X−1(p) = ξ. (2.2)

In order to define PDEs on the surface Ω, we introduce surface differential operators on the manifold

Ω, e.g. the surface gradient, divergence, and Laplace-Beltrami operators; see e.g. [54, 55, 56]. We

introduce some fundamental geometrical quantities associated to the mapping (2.1): in particular,

the Jacobian F̂ : Ω̂ → R3×2 of the mapping X, defined as F̂i,α (ξ) :=
∂Xi

∂ξα
(ξ), for i = 1, 2, 3

and α = 1, 2, the first fundamental form or metric tensor Ĝ : Ω̂ → R2×2, defined as Ĝ (ξ) :=(
F̂ (ξ)

)T
F̂ (ξ), and its determinant ĝ : Ω̂ → R, defined as ĝ (ξ) :=

√
det
(
Ĝ (ξ)

)
. We consider

geometrical mappings (2.1) which are invertible a.e. in Ω̂, i.e. we allow ĝ (ξ) = 0 only in zero-

measure subsets of Ω̂, thus requiring ĝ to be positive elsewhere. The geometric quantities F̂ , Ĝ,

and ĝ are therefore expressed directly on the manifold Ω by using the inverse mapping of Eq. (2.2)

as:

F (p) := (F̂ ◦X−1)(p), G(p) := (Ĝ◦X−1)(p), and g(p) := (ĝ◦X−1)(p) for p ∈ Ω. (2.3)

Moreover, we denote with nΩ : Ω→ R3 the unit vector normal to the surface Ω. By proceeding as

in Eq. (2.3), any sufficiently regular function defined on the manifold Ω, say φ ∈ C0(Ω), is expressed

in the parametric domain Ω̂ as:

φ(p) = (φ̂ ◦X−1)(p) for p ∈ Ω, (2.4)

with φ̂ (ξ) := φ(X(ξ)), for ξ ∈ Ω̂. By denoting with Ω̃ ⊂ R3 a 3D domain containing the surface Ω

(a “tubular” region) and considering a generic function φ ∈ C1(Ω), we define the surface gradient of

φ as the orthogonal projection of the gradient of its smooth prolongation φ̃ on Ω̃ onto the tangent

hyperplane of Ω:

∇Ωφ := (I− nΩ ⊗ nΩ)∇φ̃|Ω, (2.5)

with I being the second order identity tensor. In the same way, we define the surface divergence as

∇Ω · ϕ := tr(∇Ωϕ), with ϕ ∈ [C1(Ω)]3, and the Laplace-Beltrami operator as ∆Ωφ := ∇Ω · ∇Ωφ,
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provided that φ ∈ C2(Ω). Then, we exploit the geometric quantities defined in Eq. (2.3) to rewrite

the gradient and Laplace-Beltrami differential operators in the parametric domain Ω̂ as ([54, 56]):

∇Ωφ(p) =
([
F̂ Ĝ−1 ∇̂φ̂

]
◦X−1

)
(p) for p ∈ Ω, (2.6)

and

∆Ωφ(p) =

([
1

ĝ
∇̂ ·
(
ĝ Ĝ−1 ∇̂φ̂

)]
◦X−1

)
(p) for p ∈ Ω, (2.7)

respectively.

The second fundamental form associated to the geometric mapping (2.1) is the second order

tensor defined as:

H(p) := ∇ΩnΩ(p) for p ∈ Ω. (2.8)

The symmetric tensor H is also called shape operator [56]; it possesses a null eigenvalue associated

to the eigenvector nΩ and two other non zero eigenvalues (since we consider surfaces in R3) called

principal curvatures and denoted in this work as κi, with i = 1, 2. We define the total mean

curvature H as the trace of H:

H(p) := tr(H(p)) = κ1(p) + κ2(p) for p ∈ Ω. (2.9)

We consider the normal nΩ to be oriented such that H is positive for spherical surfaces with the

normal pointing away from their origin. We define also the total mean curvature vector as

H(p) := H(p)nΩ(p) for p ∈ Ω (2.10)

and we denote with K the Gauss curvature, defined as the product of the principal curvatures:

K(p) := κ1(p)κ2(p) for p ∈ Ω. (2.11)

Furthermore, we introduce the identity function x : Ω→ R3 on Ω, i.e. the map

x(X(ξ)) = X(ξ) for ξ ∈ Ω̂. (2.12)

We also recall the important relation ([56]):

(−∆Ωx)(p) = H(p) for p ∈ Ω, (2.13)

which links the surface Laplace-Beltrami operator applied to the identity function on Ω to the total

mean curvature vector.
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3. Geometric PDEs

In this section, we firstly introduce the general formulation of geometric PDEs defined on

surfaces, then we focus on the mean curvature and Willmore flow problems.

3.1. General formulation

A geometric PDE on a surface is an equation describing the evolution of the surface itself.

Starting from an initial surface Ω0, identified by the geometrical mapping X0 : Ω̂ → R3, we focus

on finding, for all the times t ∈ (0, T ), a family of surfaces identified by their geometrical mapping

X(t) : Ω̂ → R3, whose evolution obeys a differential law of the form Ẋ = F(t,X,nΩ, H,K, . . .) on

Ωt, with X(0) = X0, and possibly with boundary conditions on ∂Ωt in case the latter is not empty

(that is when Ωt is not a closed surface). From now on, we indicate with Ωt ⊂ R3 the surface

identified by the geometrical mapping X(t) at each time t ∈ [0, T ], and, if it exists, its boundary as

∂Ωt; the subscript t refers to the time dependence of the computational domain, i.e. the evolving

surface.

The law F identifies the problem at hand and potentially depends on several geometrical quan-

tities associated with the geometry. We consider geometric PDEs deriving from the minimization

of an energy functional J(Ω) under certain geometrical constraints. This functional can be seen as

the objective functional in an optimization process, where the design variable is represented by the

surface Ω itself. J usually depends on geometrical quantities associated to the geometrical mapping

of the surface Ω, as described in Section 2. In this work, we focus on L2-gradient flows [57, 58]

of energy functionals, even if other options are available. We consider the evolving surface Ωt to

be sufficiently smooth both in space and time and described by a smooth geometrical mapping

X = X(ξ, t), ξ ∈ Ω̂, for each t ∈ (0, T ), which actually depends on the form of J . Then, following

Eq. (2.12) we introduce the identity function:

x : Ωt → R3 : x(X(ξ, t)) ≡ X(ξ, t), ξ ∈ Ω̂, for all t ∈ (0, T ). (3.1)

In order to simplify the notation, henceforth we drop the arguments X(ξ, t) and t, for which we

always assume that ξ ∈ Ω̂ and t ∈ (0, T ), for quantities defined on Ωt for all t ∈ (0, T ), as e.g. x.

We remark that Ωt is a function of the mapping x(t), as Ωt = Ω(x(t)). We highlight the fact

that, in this work, we only consider geometric PDEs defined on parametrized surfaces: indeed, we

do not aim at treating changes of topology, for which we keep the parametric domain Ω̂ invariant

throughout the geometric evolution process.
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We denote with v : Ωt → R3 and with v : Ωt → R, for all t ∈ (0, T ), the velocity and the normal

velocity of the surface Ωt respectively, reading:

v :=
∂X

∂t
and v := v · nΩ, (3.2)

respectively. In general, we write the material derivative of the identity function x as ([36]):

ẋ =
∂x

∂t
+ v · ∇x, (3.3)

which simplifies into:

ẋ = v =
∂X

∂t
, (3.4)

since
∂x

∂t
≡ 0 and ∇x = I.

In order to treat the material derivative of quantities depending on volume and area integrals,

we use the transport theorem [1, 56]. Let us consider a function w ∈ C1(Ω̃t), where we have

introduced an open set Ω̃t such that Ωt ⊂ Ω̃t for all t ∈ (0, T ). Under this assumption, we compute

the material derivative of the function w integrated in Ωt as:

d

dt

∫
Ωt

w dΩt =

∫
Ωt

∂w

∂t
dΩt +

∫
Ωt

wvH dΩt +

∫
Ωt

∂w

∂nΩ
v dΩt, (3.5)

where H is the mean curvature defined in Eq. (2.9). Moreover, by assuming that each surface Ωt

is the boundary of an open bounded subset Θt ⊂ R3, we compute the material derivative of the

function w integrated in the volume Θt as:

d

dt

∫
Θt

w dΘt =

∫
Θt

∂w

∂t
dΘt +

∫
Ωt

wv dΩt. (3.6)

We denote with dJ(Ωt)(ϕ) the shape differential of J at fixed time t ∈ (0, T ), i.e. the first

variation of J corresponding to a deformation of Ωt along the direction ϕ : Ωt → R3 ([56]), as:

dJ(Ωt)(ϕ) = dJ(x)(ϕ) =
d

dε
J(x + εϕ)

∣∣∣∣
ε=0

=
〈
J ′(x),ϕ

〉
. (3.7)

By assuming t→ +∞, the stationary points
{

Ω̆∞

}
of the energy J are then identified by:

dJ(Ω̆∞)(ϕ) = 0, ∀ϕ : Ω̆∞ → R3. (3.8)

In order to find such minimizers of the energy, we consider the L2-gradient flow of the functional

J . Then, the problem becomes: given an initial surface Ω0 ⊂ R3, find, for all t ∈ (0, T ), Ωt such

that: 
ẋ = −µJ ′(x) in Ωt,

b.c.s on ∂Ωt,

x(0) = x0 in Ω0,

(3.9)
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where “b.c.s” stands for boundary conditions and µ ∈ R+ represents the mobility. Thanks to

Eq. (3.7), problem (3.9) can be expressed in weak formulation, for all t ∈ (0, T ), as:
(ẋ,ϕ)L2(Ωt)

= −µdJ(x)(ϕ) ∀ϕ : Ωt → R3 satisfying the essential b.c.s,

x(0) = x0 in Ω0,
(3.10)

with the natural boundary conditions taken into account in the term dJ(x)(ϕ). Problem (3.10) is,

in general, a highly nonlinear system of PDEs whose steady states correspond to local minima of

the energy J .

3.2. Mean curvature flow

Let us consider the energy functional J = JA defined as:

JA(Ω) :=

∫
Ω

1 dΩ, (3.11)

which corresponds to the area of the surface Ω. Under suitable hypotheses (e.g. X ∈ C2(Ω̂)), the

first variation of JA at Ω along the direction ϕ : Ω→ R3 reads ([16, 36]):

dJA(Ω)(ϕ) =

∫
Ω

H ·ϕ dΩ ∀ϕ : Ω→ R3, (3.12)

where H is the total mean curvature vector defined in Eq. (2.10). The mean curvature flow is the

problem associated with the minimization of the area functional JA by means of a L2-gradient flow.

Following the prototype Eq. (3.9), the problem reads: given an initial surface Ω0 ⊂ R3 parametrized

by the mapping X0 : Ω̂→ R3, find Ωt parametrized by x : Ωt → R3, for all t ∈ (0, T ), such that:
ẋ = −µH(x) in Ωt,

b.c.s on ∂Ωt,

x(0) = x0 in Ω0,

(3.13)

where Ωt = Ω(x(t)), as usual. Problem (3.13) models the evolution of the surface towards the local

minimization of its area, as can be verified by using the transport theorem of Eq. (3.5) with w = 1

and the normal velocity v = −H, thus obtaining:

d

dt
|Ωt| = −

1

µ

∫
Ωt

v2 dΩt, (3.14)

where |Ωt| is the area of Ωt.

The mean curvature flow problem has been extensively studied both from the theoretical and

numerical points of view. Specifically, in [18] existence of a solution is studied for the parametric

8
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evolution of an initial smooth convex surface without boundary. In [19], the evolution of nonpara-

metric surfaces with boundary is analyzed. The problem has been tackled numerically initially

with FEM using linear Lagrange polynomials in [20]; then, more advanced schemes, taking also

into account the tangential motion of the mesh, have been considered, as e.g. in [21]. For a general

overview of the approximation of the mean curvature flow of curves, surfaces, graphs, level sets,

and with phase-field approach, we refer the interested reader to [1].

3.3. Willmore flow

Let us consider the Willmore energy functional J = JW , defined as:

JW (Ω) :=
1

2

∫
Ω
H2dΩ, (3.15)

which expresses the bending energy associated to a surface; for more details and properties about

the Willmore energy, we refer to [24]. The Willmore flow is the L2-gradient flow of JW . Under

suitable hypotheses, the first variation of JW at Ω along ϕ : Ω→ R3 is given by ([24]):

dJW (Ω)(ϕ) = −
∫

Ω

(
∆ΩH −

1

2
H3 +H|H|2

)
nΩ ·ϕ dΩ ∀ϕ : Ω→ R3. (3.16)

We now consider closed surfaces for this specific problem, for which ∂Ω = ∅. Following the prototype

Eq. (3.9), the Willmore flow problem reads: given an initial surface Ω0 ⊂ R3 parametrized by the

mapping X0 : Ω̂→ R3, find Ωt parametrized by x : Ωt → R3, for all t ∈ (0, T ), such that:
ẋ = µ

(
∆ΩtH(x)− 1

2
H3(x) +H(x)|H(x)|2

)
nΩt in Ωt,

x(0) = x0 in Ω0,

(3.17)

with Ωt = Ω(x(t)). In the specific case of 3D closed surfaces, we can conveniently use the relation

|H|2 = κ2
1 + κ2

2 = H2 − 2K, for which we rewrite problem (3.17), for all t ∈ (0, T ), as:
ẋ = µ

(
∆ΩtH(x) +

1

2
H3(x)− 2H(x)K(x)

)
nΩt in Ωt,

x(0) = x0 in Ω0.

(3.18)

When the parametric domain is mono-dimensional, Ωt represents a curve and problem (3.17) cor-

responds to the elastic flow of curves; global existence in time of a solution for curves in Rn was

studied in [59] and [39], for n = 2 and n ≥ 3 respectively. For surfaces, which represent the focus

of this paper, the Willmore flow problem has been studied analytically mainly on closed surfaces.

Existence of a solution up to the finite time T < +∞ for two-dimensional surfaces in Rn, with

9
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n ≥ 3, is proven in [29], with T depending on the curvature of the initial surface Ω0. Existence and

uniqueness of the local solution of problem (3.18) under the hypothesis that the initial geometry

Ω0 is a compact, closed, immersed, and orientable C2,α-surface in R3 is proven in [32], together

with the global existence of the solution in time where Ω0 is “sufficiently” close to a sphere. In [30]

global existence of solutions is shown under the assumption that

∫
Ω0

|H̊|2 is sufficiently small, being

H̊ the trace-free part of the second fundamental form H. In [31] the authors proved that if Ω0 is a

smooth immersion of a sphere in R3 and it is such that its Willmore energy JW (Ω0) ≤ 16π, then its

Willmore flow smoothly exists for all times and converges to a sphere. This result is numerically

verified in [34], where results show that the flow develops singularities in finite time when Ω0 is

associated to a Willmore energy JW (Ω0) > 16π.

4. Space and Time Discretizations

In this section, we describe our approach to the numerical approximation of the mean curvature

and Willmore flow problems of Section 3. Let us consider the general gradient flow problem (3.9)

derived from the minimization of an energy functional J(Ω). Then, we can write the problem in

weak form as follows:

find, for all t ∈ (0, T ), x ∈ Vg,t :


m(ẋ,ϕ) + a(x)(ϕ) = 0 ∀ϕ ∈ V0,t

x(0) = x0,
(4.1)

where a(·)(·) is a form which defines the problem under consideration and m(·, ·) is the mass form

m(ẋ,ϕ) =

∫
Ωt

ẋ · ϕ dΩt. The Hilbert spaces Vg,t and V0,t depend on the order of the spatial

differential operators involved in the form a(·)(·); in case the surface Ωt is open, Vg,t accounts for

the non-homogeneous essential boundary conditions and V0,t is its homogeneous counterpart. If the

problem is defined on closed surfaces, then ∂Ωt ≡ ∅ for all t ∈ (0, T ) and the spaces V0,t and Vg,t

coincide and are identified with the Hilbert space Vt. We remark that the forms a(·)(·) and m(·, ·)

and the function spaces depend on the current computational domain Ωt, which itself depends on

x(t), as well as the geometric quantities in the form a(·)(·). In Sections 4.1 and 4.2 we introduce

the spatial and time discretization techniques adopted to approximate problem (4.1), respectively.

4.1. Isogeometric Analysis

We spatially discretize problem (4.1) by means of NURBS-based Isogeometric Analysis (IGA)

in the framework of the Galerkin method ([44]).
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(a) p = 1 (b) p = 2 (c) p = 3

Figure 1: Univariate B-spline basis functions of polynomial degrees p = 1, 2, and 3 obtained from the knot vectors

Ξ =

{
{0}p+1 ,

1

5
,

2

5
,

3

5
,

4

5
, {1}p+1

}
; the basis functions are globally Cp−1-continuous in Ω̂ = (0, 1).

4.1.1. NURBS

In this work, we specifically consider surfaces represented by NURBS, as in [45]; for further

details and properties of NURBS, see [42, 43]. The geometrical mapping (2.1) in the case of

NURBS surfaces reads:

X (ξ) =

nbf∑
i=1

R̂i (ξ) Pi, R̂i (ξ) :=
wi

nbf∑
j=1

wjN̂j (ξ)

N̂i (ξ) for i = 1, . . . , nbf , (4.2)

with Pi ∈ R3, for i = 1, . . . , nbf , being the control points in the physical space where the surface Ω is

defined and nbf the number of basis functions. The NURBS basis functions R̂i (ξ), for i = 1, . . . , nbf ,

are obtained from the B-spline basis functions N̂i (ξ) by projective transformations, with weights

wi ∈ R, for i = 1, . . . , nbf . This allows the NURBS mapping to exactly represent surfaces such as

conic sections, e.g. spheres and tori, which are geometrical entities often considered with geometric

PDEs. Univariate B-spline basis functions are built using the Cox-de Boor recursion formula [42]

with the knot vectors Ξ := {ξj}
nbf+p+1
j=1 , where p is the polynomial degree, ξj ∈ R are the knots, and

the intervals between the knots are called knot spans. The multiplicity of a knot inside the knot

vector controls the continuity of the basis functions across that knot. In practice, repeating a knot

k times makes the basis functions to be Cp−k-continuous across that knot. In Figure 1, we report

examples of B-spline basis functions with different polynomial degrees and order of continuities.

By considering a bidimensional parametric domain and denoting with α = 1, 2 the parametric

directions, the multivariate B-spline basis functions N̂i (ξ) are built from the tensor product of the

univariate B-spline basis functions N̂i,α, for i = 1, . . . , nbf,α, built using the knot vectors Ξα, for

α = 1, 2. The tensor product of knot vectors also defines a partition of the parametric domain Ω̂

11
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into regions defined by the knot spans, also called mesh elements.

4.1.2. NURBS-based IGA

IGA is an approximation method for PDEs based on the isoparametric concept, for which the

same basis functions used for the geometric representation are then also used for the numerical

approximation of the PDEs [43, 44].

The NURBS computational domain, i.e. the surface Ω, at a prescribed time instance is repre-

sented at the coarsest level of discretization. From Eq. (4.2) we define the NURBS function space

N̂h over the parametric domain Ω̂, and the function space Nh over the physical domain Ω, as:

N̂h := span
{
R̂i, i = 1, . . . , nbf

}
and Nh := span

{
R̂i (ξ) ◦X−1 (ξ) , i = 1, . . . , nbf

}
,

(4.3)

respectively. These spaces are used to build the trial function spaces for the approximation of

PDEs and, since we consider a Galerkin method, also the test function spaces. We denote with the

subscript h the mesh elements’ characteristic size, being usually defined as the maximum diameter

of the elements in the physical space [51]. The function spaces of Eq. (4.3) can be enriched with

several refinement procedures [43], which maintain the geometrical representation unaffected. In

particular, with the knot insertion new knots are introduced into the knot vectors, creating possibly

new knot spans and increasing the total number of mesh elements and basis functions. If during

the knot insertion the continuity of the basis functions is preserved, this procedure is analogous

to the h-refinement of the FEM. The order elevation procedure increases the polynomial degree

p of the NURBS basis functions while preserving the existing continuity of the basis functions, in

a way analogous to the p-refinement of the FEM. Finally, k-refinement consists in the sequential

application of order elevation and knot insertion procedures in order to increase the polynomial

degree p while maintaining the highest possible degree of continuity of the basis functions across

the mesh elements, a procedure which does not have an analogous counterpart in the FEM. For

more details, see e.g. [42, 43, 44].

Let us consider the general gradient flow problem in weak form of Eq. (4.1). Since we deal with

surfaces defined by geometrical mappings in the form (2.1), which are invertible a.e., we pull-back

problem (4.1) into the parametric domain Ω̂, thus obtaining:

find, for all t ∈ (0, T ),X ∈ V̂g :


m̂(Ẋ, ϕ̂) + â(X)(ϕ̂) = 0 ∀ϕ̂ ∈ V̂0,

X(0) = X0,
(4.4)

12
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where V̂g and V̂0 correspond to the “pull-back” of the function spaces Vg,t and V0,t on the parametric

domain Ω̂, respectively; the forms m̂(·, ·) and â(·)(·) result from the pull-back operation applied to

m(·, ·) and a(·)(·), respectively. In particular, we have:

m̂(Ẋ, ϕ̂) =

∫
Ω̂

Ẋ · ϕ̂ ĝ dΩ̂ (4.5)

for ϕ̂ ∈ V̂0, where ĝ is the determinant of the first fundamental form of the mapping defined

in Section 2. The form a(·)(·) is pulled-back in a similar fashion, using the geometric quantities

introduced in Section 2 and will be specified for the gradient flow problem under consideration.

Then, we proceed with the spatial discretization of problem (4.4). We choose suitable NURBS

function spaces for the trial and test functions, accordingly with the NURBS mapping, for which,

for all t ∈ (0, T ), we seek solutions in the form:

xh(t) =

nbf∑
i=1

(
R̂i ◦X−1

)
Pi(t) (4.6)

in the physical space, where Pi(t), for i = 1, . . . , nbf , are the control points introduced in Section 2

which describe the geometry and, in this context of geometric PDEs, also play the role of vector-

valued control variables. The semi-discretized problem reads:

find, for all t ∈ (0, T ), xh ∈ Vg,t,h :


m(ẋh,ϕh) + a(xh)(ϕh) = 0 ∀ϕh ∈ V0,t,h,

xh(0) = x0,h,
(4.7)

which can be pulled-back into the parametric domain Ω̂, thus obtaining:

find, for all t ∈ (0, T ), Xh ∈ V̂g,h :


m̂(Ẋh, ϕ̂h) + â(Xh)(ϕ̂h) = 0 ∀ϕ̂h ∈ V̂0,h,

Xh(0) = X0,h;
(4.8)

the finite-dimensional function spaces Vg,t,h, V0,t,h, V̂g,h and V̂0,h are subsets of NURBS function

spaces defined as Vg,t,h := Vg,t∩ [Nh]3, V0,t,h := V0,t∩ [Nh]3, V̂g,h := V̂g∩ [N̂h]3 and V̂0,h := V̂0∩ [N̂h]3,

respectively.

While simple surfaces can straightforwardly be represented by using Cp−1-continuous NURBS

basis functions in a single patch, this may be not the case of more complex surfaces, as the closed

ones, for which the single patch NURBS representation involves bases which are only globally

C0-continuous in Ω and Ω̂. Since we are interested in the approximation of geometric PDEs of

order equal or eventually higher than two (as the Willmore flow), we need to use trial and test

function spaces with the Galerkin method which guarantee high order (at least 1) global continuity

13
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of the basis functions over the whole surface. Therefore, when dealing with closed surfaces, we

consider the construction of periodic NURBS function spaces N per
h , built from the original NURBS

function space Nh, defining Ω, through element-wise linear transformations of the basis functions

and suitable constraints among the degrees of freedom [49, 45]. In particular, we apply the linear

operator Tper ∈ Rnbf×nbf to the basis functions R̂ :=
{
R̂i

}nbf

i=1
defining the NURBS function space

N̂h, thus obtaining R̂per := TperR̂ (ξ) and the periodic spaces N̂ per
h and N per

h :

N̂ per
h := span

{
R̂peri , i = 1, . . . , nbf

}
,

N per
h := span

{
R̂peri (ξ) ◦ x−1 (ξ) , i = 1, . . . , nbf

}
.

(4.9)

For more details on the periodic NURBS function spaces and error analysis about the IGA approx-

imation of high order PDEs defined on closed surfaces, we refer the interested reader to [45]. We

remark that, since the control points {Pi}
nbf

i=1 describe the geometry but at the same time represent

the unknown of the problem, we cannot use a subparametric approach as in [45]. Indeed, we also

need to apply the same transformations to the control points in order to use the same NURBS

function space for both the solution and the geometrical representation, i.e. a pure isoparamet-

ric approach. Being Pper
i ∈ R3, i = 1, . . . , nbf the transformed control points, obtained with the

following relation ([49]):

Pper := (Tper)−TP, (4.10)

we stress the fact that the representation of Ω given by the periodic NURBS basis functions R̂per

together with the control points Pper is equivalent to the one given by the original NURBS basis

functions R̂ with the control points P, i.e. xh =

nbf∑
i=1

R̂peri Pper
i =

nbf∑
i=1

R̂iPi. Therefore, when dealing

with closed or partially closed geometries, the quantities R̂per, Pper and N per
h are substituted into

the original ones in the definition of the problem to be approximated, as in Eqs. (4.6), (4.7), and

(4.8). In order to simplify the notations, from now on we will drop the superscript “per”, referring

indifferently to both the non-transformed or the transformed NURBS function space and control

points depending on the situation at hand (open or closed surfaces).

4.1.3. IGA for mean curvature flow

Let us consider the mean curvature flow problem of Eq. (3.13). By assuming sufficient regularity

for all the geometric quantities involved, by using the relation of Eq. (2.13) and integrating by

parts the Laplace-Beltrami operator, we recast the mean curvature problem (3.13) in the general
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formulation of Eq. (4.1) with the form a(·)(·) being defined as ([20]):

aMCF (x)(ϕ) := µ

∫
Ω
∇Ωx : ∇Ωϕ dΩ (4.11)

for ϕ ∈ V0, with V0 being subset of
[
H1(Ω)

]3
. The semi-discretized problem obtained by the

NURBS-based IGA approximation of the mean curvature flow problem is in the form of Eq. (4.7),

with the function spaces Vg,t,h and V0,t,h being subsets of Vt,h := [H1(Ωt)]
3 ∩ Nh. When the semi-

discretized problem is rewritten into the parametric domain Ω̂ after the pull-back operation, the

form of Eq. (4.8) becomes:

â(Xh)(ϕ̂h) := µ

∫
Ω̂

(
F̂ Ĝ−1∇̂Xh

)
:
(
F̂ Ĝ−1∇̂ϕ̂h

)
ĝ dΩ̂ (4.12)

for ϕ̂h ∈ V̂0,h, having used the relation in Eq. (2.6), with the function spaces V̂g,h and V̂0,h being

subsets of V̂h := [H1(Ω̂)]3 ∩ [N̂h]3.

4.1.4. IGA for Willmore flow

The Willmore flow problem of Eq. (3.18) is a nonlinear time dependent high order PDE. For

spatial discretizations based on the standard FEM with C0-continuous basis functions, mixed for-

mulations to decrease the order of the PDE are commonly used [5, 35, 36]. In addition, the term

HK, which involves both the mean (H) and the Gauss (K) curvatures, nonlinearly depends on

the principal curvatures and it is difficult to treat with variational methods [36]; therefore, terms

as K or the normal to the surface nΩ are usually avoided through suitable manipulations in the

weak formulation of the problem. Regardless of the order of the differential problem, these con-

siderations lead to the adoption of mixed formulations where additional unknowns are introduced,

usually being the velocity v, the normal component of the velocity v along nΩ, the mean curvature

H, or the mean curvature vector H [5, 35, 36, 37], for which the resulting PDEs are of the second

order.

In the framework of NURBS-based IGA, one benefits both from the exact representation of the

geometry Ω, with the possibility of calculating the geometrical quantities directly from the NURBS

representation, and the ability to treat high order surface PDE in a straightforward manner [45].

We therefore propose the following weak formulation of the Willmore flow problem:
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find, for all t ∈ (0, T ), x ∈ Vt and v ∈Wt :

∫
Ωt

v ψ dΩt + µ

∫
Ωt

(∆Ωtx · nΩt)∆Ωtψ dΩt

+ µ

∫
Ωt

(
1

2
H2 − 2K

)
(∆Ωtx · nΩt)ψ dΩt = 0 ∀ψ ∈Wt,∫

Ωt

ẋ ·ϕ dΩt −
∫

Ωt

v nΩt ·ϕ dΩt = 0 ∀ϕ ∈ Vt,

x(0) = x0,

v(0) = v0,

(4.13)

where Vt :=
[
H2(Ωt)

]3
, while Wt := H2(Ωt); the normal velocity v (defined in Eq. (3.2)) is also

an unknown of the problem. We consider NURBS-based IGA for the approximation of (4.13). We

therefore discretize the equations following the same procedure described in Section 4.1.2, seeking

the trial and test functions for the unknowns xh and vh in the function spaces Vt,h := Vt∩ [Nh]3 and

Wt,h := Wt ∩ Nh, respectively. We remark that, with IGA, the evaluation of the terms involving

H and K is straightforward, since the curvatures can be computed directly and “exactly” from

the NURBS mapping xh. Problem (4.13) is rewritten into the parametric domain Ω̂ through a

pull-back operation as described in Section 4.1.2 and similarly to the approximation of the mean

curvature flow problem of Section 4.1.3; in this case, we also use the relation of Eq. (2.7) for the

treatment of the surface Laplace-Beltrami operator in the parametric domain Ω̂. We remark that,

since we need to ensure that the test and trial function spaces are subsets of H2, we consider NURBS

function spaces with basis functions at least globally C1-continuous a.e. in Ωt, for all t ∈ (0, T ).

Moreover, since Ω is a closed surface, we consider NURBS periodic function spaces, as mentioned

in Section 4.1.2.

4.2. Time discretization

Problems governed by geometric PDEs are generally nonlinear. Indeed, all the geometric quan-

tities and differential operators involved in problem (4.1) defined in Ω depend themselves on x. In

literature [5, 20, 36], such problems are typically discretized in time with a semi-implicit first order

scheme with an explicit treatment of the geometric nonlinear terms; in this manner, at any given

time step, all the geometric quantities and differential operators are evaluated using the solution

obtained at the previous time steps. In this paper, we propose the time discretization of geometric

PDEs with high order implicit Backward Differentiation Formulas (BDF) [52]. We address the

16



Isogeometric Analysis of Geometric PDEs 17

circular dependence between the solution and the geometric quantities by treating the geometry

explicitly, using the solution extrapolated from the previous time steps; see e.g. [60, 61].

Let us consider the time discretization of the spatially discretized problem (4.7) in the time

interval [0, T ], with n as time step index and tn the n-th time step, such that t0 = 0 and tN = T .

We introduce the approximate surface Ωn+1 as the surface defined by the NURBS mapping:

Xn+1
h (ξ) =

nbf∑
i=1

R̂i (ξ) Pn+1
i (4.14)

from Eq. (4.2), where
{
Pn+1
i

}nbf

i=1
are the control points computed at the time instance tn+1. In

general, when considering a fixed time step size ∆t, the time discretization using a k-th order

BDF scheme consists in approximating the time derivative Ẋh at time step n+ 1 through a linear

combination of the mappings Xh at the time step n+ 1 and the k previous time steps, as:

Ẋn+1
h ' 1

∆t

(
α0X

n+1
h −

k∑
i=1

αiX
n+1−i
h

)
, (4.15)

for n ≥ k − 1, with the coefficients αi ∈ R, for i = 0, . . . , k, being chosen in a way to guarantee

that the approximation is of order k. Moreover, Ω∗, which we refer as the extrapolated surface, is

defined by the NURBS mapping:

X∗h (ξ) =

nbf∑
i=1

R̂i (ξ) P∗i , (4.16)

where {P∗i }
nbf

i=1 are the control points obtained from the sets
{

Pn+1−k
i

}nbf

i=1
, . . . , {Pn

i }
nbf

i=1 with a

k-th order extrapolation, as ([60]):

P∗i :=
k∑
j=1

βjP
n+1−j
i , (4.17)

for i = 1, . . . , nbf , with appropriate coefficients βj ∈ R, for j = 1, . . . , k. By referring now to the

time derivative ẋh at time step n+ 1 of the identity function xh, following Eqs. (4.14), (4.15), and

(4.16), we approximate it with the k-th order BDF scheme as:

ẋn+1
h ' 1

∆t

[
α0x

n+1
h −

k∑
i=1

αi
(
xn+1−i
h ◦Xn+1−i

h

)
◦ (X∗h)−1

]
, (4.18)

for n ≥ k − 1. For notational convenience, we define xbdfh : Ω∗ → R3 as:

xbdfh :=

k∑
i=1

αi
α0

(
xn+1−i
h ◦Xn+1−i

h

)
◦ (X∗h)−1 (4.19)
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and vn+1
h : Ω∗ → R3 as:

vn+1
h := α0

xn+1
h − xbdfh

∆t
, (4.20)

as well as the extrapolated solution x∗h : Ω∗ → R3 at time tn+1 following Eqs. (4.16) and (4.17):

x∗h :=

k∑
j=1

βj

(
xn+1−j
h ◦Xn+1−j

h

)
◦ (X∗h)−1, (4.21)

for n ≥ k − 1.

We can therefore rewrite problem (4.7) with respect to the unknown velocity vn+1
h as follows:

find, for n = 0, . . . , N − 1, xn+1
h ∈ V ∗g,h :

m∗h(vn+1
h ,ϕh) +

∆t

α0
a∗h(vn+1

h ,ϕh) = −a∗h(xbdfh ,ϕh) ∀ϕh ∈ V ∗0,h,

v0
h = v0,h,

(4.22)

where V ∗g,h and V ∗0,h are function spaces defined in the extrapolated surface Ω∗, which correspond

to Vg,t,h and V0,t,h onto Ω∗, respectively, and m∗h(·, ·) and a∗h(·, ·) are bilinear forms in which the

differential operators and domain of integrations are defined in Ω∗. For example, the form m∗h(·, ·)

reads:

m∗h(vn+1
h ,ϕh) :=

∫
Ω∗

vn+1
h ·ϕh dΩ∗. (4.23)

The new mapping xn+1
h : Ω∗ → R3 is then obtained as:

xn+1
h = xbdfh +

∆t

α0
vn+1
h , (4.24)

corresponding to the new geometrical mapping Xn+1
h , which defines the new surface Ωn+1 as in

Eq. (4.14) and approximating Ωtn+1 .

Regarding the mean curvature flow, the full discrete problem is the same of Eq. (4.22), with

the form a∗h(·, ·) defined as:

a∗h(znh,ϕh) = µ

∫
Ω∗

∇Ω∗z
n
h : ∇Ω∗ϕh dΩ∗ (4.25)
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for ϕh ∈ V ∗0,h. Instead, for the Willmore flow problem (4.13), the full discrete problem reads:

find, for n = 0, . . . , N − 1, vn+1
h ∈ V ∗h and vn+1

h ∈W ∗h :

∫
Ω∗

vn+1
h ψh dΩ∗ + µ

∆t

α0

∫
Ω∗

(∆Ω∗v
n+1
h · nΩ∗)∆Ω∗ψh dΩ∗

+ µ
∆t

α0

∫
Ω∗

[
1

2
(H∗)2 − 2K∗

] (
∆Ω∗v

n+1
h · nΩ∗

)
ψh dΩ∗

= −µ
∫

Ω∗

(
∆Ω∗x

bdf
h · nΩ∗

)
∆Ω∗ψh dΩ∗

− µ
∫

Ω∗

[
1

2
(H∗)2 − 2K∗

](
∆Ω∗x

bdf
h · nΩ∗

)
ψh dΩ∗ ∀ψh ∈W ∗h ,∫

Ω∗

vn+1
h ·ϕh dΩ∗ −

∫
Ω∗

vn+1
h nΩ∗ ·ϕh dΩ∗ = 0 ∀ϕh ∈ V ∗h ,

v0
h = v0,h,

v0
h = v0,h,

(4.26)

where V ∗h and W ∗h are the function spaces Vt,h and Wt,h built on Ω∗, respectively. We remark that

the problems (4.22) and (4.26) are solved by recasting them into the parametric domain Ω̂.

5. Numerical Results

In this section, we present several results on the numerical approximation of the mean curvature

and the Willmore flow problems on different geometries.

5.1. Mean curvature flow

We consider the numerical approximation of the mean curvature flow problem of Eq. (3.13)

using the numerical scheme (4.22) proposed in Section 4.1.3. For all the tests we set µ = 1 (see

Eq. (3.13)).

Test 5.1.1. We consider the mean curvature flow of an initial unit sphere Ω0. By recalling

Eq. (3.13) and by exploiting the radial symmetry of the sphere, the geometry Ωt remains a sphere

for each t ∈ (0, T ) with evolution in spherical coordinates described by the following ordinary

differential equation [34]: 
ṙ = −2

r
for t ∈ (0, T ),

r(0) = r0,

(5.1)
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(a) t = 0 (b) t = 0.062 (c) t = 0.125 (d) t = 0.187 (e) t = 0.249

Figure 2: Test 5.1.1. Mean curvature flow of a sphere. Solution at different time instances.

Figure 3: Test 5.1.1. Mean curvature flow of a sphere. Evolution of the approximated area |Ωn| and exact area |Ωtn |

vs. time t; NURBS of degree p = 2 and C1-continuous a.e. with 220 mesh elements are used.

where r(t) is the radius of the sphere at time t and r0 the radius of Ω0. This equation has analytical

solution:

r(t) =
√
r2

0 − 4t for t ∈ [0, T ], (5.2)

from which it is evident that the sphere degenerates for t =
r2

0

4
. Thus, considering an initial sphere

Ω0 of radius r0 = 1, we expect the solution of problem (3.13) to be represented by a shrinking

sphere with radius described by Eq. (5.2) and collapsing into a single point at time T = 0.25.

Figure 2 shows the evolution of the sphere Ωn obtained by the numerical approximation of

problem (4.22), at different time instances; the evolution of the area |Ωn| is reported in Figure 3,

together with the evolution of the exact area |Ωtn | computed with Eq. (5.2). The sphere is rep-

resented by NURBS of degree p = 2 and C1-continuous a.e., for a total of 220 elements, yielding

384 DOFs1. Time advancement is performed employing a BDF scheme of order k = 2 with fixed

1The amount of DOFs reported corresponds to the size of the linear system solved at each time step; therefore, it

takes into account for the constraints set to build the periodic basis functions and the fact that the solution is vector

valued (the velocity v ∈ R3 for each control point).
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(a) p = 2, C1-continuous a.e., 32 quad. pts. (b) p = 3, C2-continuous a.e., 42 quad. pts.

(c) p = 2, C1-continuous a.e., 72 quad. pts. (d) p = 3, C2-continuous a.e., 72 quad. pts.

Figure 4: Test 5.1.1. Mean curvature flow of a sphere. Evolution of the errors on the area errn vs time t for meshes

with different NURBS basis functions (ref. 1 with 384 DOFs and ref. 2 with 6,144 DOFs) and using (p+1)2

(in (a) and (b)) and 72 (in (c) and (d)) quadrature points per mesh element.

time step size ∆t = 0.001. The linear systems arising from the full discretization of the PDEs at

each time step are solved by using the GMRES method with the ILUT preconditioner [52], with

the stopping criterion being the relative residual (in Euclidean norm) below a tolerance of 10−9.

We report in Figure 4 the behavior of the errors on the numerically approximated area vs time,

say errn := |Ωtn − Ωn|, obtained by solving problem (4.22) with NURBS of degree p = 2 and 3,

which are Cp−1-continuous a.e., respectively. We compare the errors obtained using meshes of 220

and 2,380 elements for the p = 2, C1-continuous NURBS basis, while 275 and 2,555 elements for

the p = 3, C2-continuous basis (yielding 384 and 6,144 DOF for both p = 2 and 3). In particular,

Figures 4a and 4b show the errors obtained using the standard Gauss-Legendre quadrature rule

with (p + 1)2 points per mesh element for the approximation of the integrals, while Figures 4c

and 4d show the errors obtained using 72 quadrature points per element, thus with a significantly
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(a) p = 2, C1-continuous a.e. (b) p = 3, C2-continuous a.e.

(c) Evolution of the condition number vs. time t

Figure 5: Test 5.1.1. Mean curvature flow of a sphere. Sparsity patterns (a) and (b) and evolution of the condition

number κ(A) of the matrix associated to the full discrete problem (4.22) vs. time t ((c)), using NURBS

basis functions of degrees p = 2 and 3, C1- and C2-continuous a.e., respectively, and two refinement levels

yielding 384 and 6,144 DOFs, respectively.

increased accuracy of the numerical integration. We observe that the errors are very small in all

the cases, and only increase when the geometry tends to degenerate in a point, as expected from

the exact solution of Eq. (5.2). In addition, a smoother behavior of the error errn is observed

when using a large number of quadrature nodes. Nevertheless, the errors remain very small, even

for the standard Gauss-Legendre quadrature formulas with (p + 1)2 points typically used in IGA

and employed in the rest of this work. We report in Figures 5a and 5b the sparsity patterns of

the matrices A arising from the full discrete problem (4.22) with NURBS of degree p = 2 and 3,

respectively, with 384 DOFs in both the cases. In Figure 5c the evolutions of the condition number

of the matrices associated to problem (4.22) at each time step are reported for the NURBS already
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(a) p = 2, C1-continuous a.e. (b) p = 3, C2-continuous a.e.

(c) p = 2, C0-continuous a.e. (d) p = 3, C0-continuous a.e.

Figure 6: Test 5.1.1. Mean curvature flow of a sphere. Absolute errors on the area at time tñ = 0.016 errñ vs. ∆t,

for different BDF schemes (BDF of orders k = 1, 2, and 3) and NURBS basis functions (p = 2 and 3, which

are C0- and Cp−1-continuous a.e.).

considered for the results in Figure 4; the condition number κ(A) is actually a lower bound of

the 1-norm condition number of the matrix A. The condition numbers κ increase with the degree

of the NURBS basis functions and when the mesh is refined. We remark that, for this specific

problem, the NURBS mapping is singular at the poles of the sphere, which leads to high values

of the condition number. Moreover, the sphere shrinks according to the mean curvature flow, and

eventually degenerates in a point. Nevertheless, in the case under consideration, the condition

numbers κ(A) are never high enough to significantly interfere with the accuracy of the GMRES

solver (for the chosen tolerance).

In order to compare the performance of the proposed scheme with BDFs of different orders

with respect to the time step size ∆t, simulations with BDFs of orders k = 1, 2, and 3 have been

performed, for meshes composed by NURBS basis functions of degrees p = 2 and 3, which are C0-
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and Cp−1-continuous a.e. on the surface. Errors on the area with respect to the exact solution are

reported in Figure 6 in logarithmic scale; the reported errors are computed as errñ := |Ωtñ − Ωñ|

at fixed time tñ = 0.016, with ñ =
tñ
∆t

. The BDF schemes are initialized with the corresponding

numbers of exact time steps in order to bootstrap the time integration method correctly, such

that order of convergence of k is maintained for each BDF used. The meshes considered are built

out of NURBS basis functions of degrees p = 2 and 3, with 220 and 275 elements, respectively;

for the degree p = 2, meshes with basis functions C1-continuous a.e. and C0-continuous a.e. are

considered, with 384 and 600 DOFs, respectively; for the degree p = 3, meshes with basis functions

C2-continuous a.e. and C0-continuous a.e. are considered, with 384 and 864 DOFs respectively.

We remark that the errors corresponding to the spatial discretization are significantly small, even

when approximating the problem with a low amount of mesh elements; this fact permits us to

employ high order temporal discretizations and recover the full rate of convergence. Also, since the

smooth Cp−1-continuous basis functions lead to a smaller number of DOFs than their C0-continuous

counterpart, the former generally lead to more efficient and accurate discretizations.

Test 5.1.2. Next, we study the evolution of a torus subject to mean curvature flow. We

consider a family of toric surfaces Ω0 described by the relation:(
R0 −

√
x2 + y2

)2
+ z2 = r2

0 (5.3)

in a standard Cartesian coordinate system, where R0 and r0 are the torus’ major and minor radii,

respectively, being R0 > 0 and r0 ∈ (0, R0), of the initial configuration corresponding to Ω0.

Depending on the ratio between the two radii R0/r0, the torus is evolving either to collapse into a

circle or to self-penetrate and merge into a disk. Figures 7 and 8 show the evolution of tori with

R0 = 1, r0 = 0.5 and R0 = 1, r0 = 0.7, respectively, subject to mean curvature flow. The first

torus has an aspect ratio R0/r0 such that it collapses into a circle, while the second one tends to

merge into an ellipsoid; since we adopt a parametric representation of the geometry and we do

not support topology changes, we let the geometry evolve until a self-intersection of the surface

occurs. The evolution of the toric areas is plotted in Figures 9a and 9b, respectively. We consider

NURBS with basis functions of degree p = 2 and globally C1-continuous, with 836 elements and

1,536 DOFs for both the cases; we used a BDF scheme of order k = 2 for integration in time with

time step size ∆t = 0.001.

Test 5.1.3. Now we consider the mean curvature flow of an open surface, in particular a

cylindrical shell. We parametrize the cylinder by its radius R0 and height L0. The bottom and
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t = 0 t = 0.034 t = 0.080 t = 0.120 t = 0.137

Figure 7: Test 5.1.2. Mean curvature flow of a torus with R0 = 1 and r0 = 0.5. Solution at different time instances.

t = 0 t = 0.024 t = 0.048 t = 0.072 t = 0.095

Figure 8: Test 5.1.2. Mean curvature flow of a torus with R0 = 1 and r0 = 0.7. Solution at different time instances.

top bases of the cylinder (two circles of radius R0) are fixed (i.e. we set xh = x0,h on ∂Ω), while

the lateral surface (Ωt) is free to evolve according to the mean curvature flow. The geometry

minimizing the area depends on the aspect ratio L0/R0 of the initial cylinder Ω0. In particular,

the solution may either be discontinuous, consisting in two circles at the bases of the cylinder, and

thus involving a topology change (known as Goldschmidt solution [62]), or exhibit a catenoid as

local minimum, generated by rotating the catenary of equation x = a cosh
(y
a

)
along the y-axis,

with a ∈ R being solution of the nonlinear relation cosh

(
L0

2a

)
− R0

a
= 0. Such catenoid has area

equal to:

Acat = πa2

[
sinh

(
L0

a

)
+
L0

a

]
. (5.4)

Figures 10 and 11 show the evolution of two cylinders, the first with radius R0 = 1 and height
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(a) Torus with R = 1 and r = 0.5 (b) Torus with R = 1 and r = 0.7

Figure 9: Test 5.1.2. Mean curvature flow of tori. Evolution of the approximated area |Ωn| vs. time t for a torus with

R0 = 1 and r0 = 0.5 (a) and a torus with R0 = 1 and r0 = 0.7 (b); NURBS of degree p = 2 and globally

C1-continuous with 836 mesh elements, yielding 1,536 DOFs, are used.

L0 = 1, while the second one with R0 = 1 and L0 = 2. The meshes considered in the spatial

approximation are both NURBS built of basis functions of degree p = 2 and globally C1-continuous,

with 456 elements, for a total of 1,152 DOFs; time integration is performed employing a BDF

scheme of order 2, with time step size ∆t = 0.001. The evolutions of the areas |Ωt| are plotted

in Figures 12a and 12b, respectively. The first cylinder has aspect ratio L0/R0 = 1 such that a

catenoid is a local minimum and the numerical solution effectively converges to such geometry.

The second cylinder (for L0/R0 = 2) does not present a catenoid as local minimum, therefore the

minimization process continues towards the solution with topology changes, which we stop when

a singularity in the geometrical mapping is reached, as indicator of a topology change. In both

the cases, we obtain accurate solutions even by employing spatial discretizations involving a small

amounts of mesh elements and DOFs.

5.2. Willmore flow

We now consider the numerical approximation of the Willmore flow problem defined in Eq. (3.18)

on closed surfaces using the numerical scheme (4.13) proposed in Section 4.1.4. For all the tests we

set µ = 1 (see Eq. (3.17)).

Test 5.2.1. As initial geometry Ω0 we consider ellipsoids described by the following relation:

x2

a2
0

+
y2

b20
+
z2

c2
0

= 1 {x, y, z} ∈ R3, (5.5)
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(a) t = 0 (b) t = 0.05 (c) t = 0.10 (d) t = 0.15 (e) t = 0.20

Figure 10: Test 5.1.3. Mean curvature flow of a cylinder with R0 = 1 and L0 = 1. Solution at different time instances.

(a) t = 0 (b) t = 0.015 (c) t = 0.090 (d) t = 0.180 (e) t = 0.270

Figure 11: Test 5.1.3. Mean curvature flow of a cylinder with R0 = 1 and L0 = 2. Solution at different time instances.

(a) Cylinder with R0 = 1 and L0 = 1 (b) Cylinder with R0 = 1 and L0 = 2

Figure 12: Test 5.1.3. Mean curvature flow of cylinders. Evolution of the approximated area |Ωn| vs. time t for a

cylinder with R0 = 1 and L0 = 1 (a) and with R0 = 1 and L0 = 2 (b); NURBS of degree p = 2 and

globally C1-continuous with 456 mesh elements, yielding 1,152 DOFs, are used.
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t = 0 t = 0.49 t = 1.22 t = 3.66 t = 12.21

Figure 13: Test 5.2.1. Willmore flow of an ellipsoid with a0 = 4, b0 = 4 and c0 = 1. Solution at different time

instances.

where a0, b0, c0 ∈ R are positive constants denoting its aspect ratio. It is known that an ellipsoid

should converge to a sphere under Willmore flow [31], which has Willmore energy JW equal to 8π.

For our numerical test, we consider the approximation of the Willmore flow applied to an initial

ellipsoid Ω0 with parameters a0 = 4, b0 = 4, and c0 = 1. The geometry Ω0 is represented as a

NURBS surface with basis functions of degrees p = 2 and 3, being C1- and C2-continuous a.e.,

respectively, with two h-refinement levels for each degree. The considered meshes with NURBS of

degree p = 2 are made of 684 and 2,380 elements, respectively for the two refinement levels; the

meshes with basis functions of degree p = 3 are instead made of 779 and 2,555 elements, respectively.

With respect to the two h-refinement levels, the total number of DOFs amounts to 2,048 and 8,192,

independently of the degree p of the NURBS basis functions2. Integration in time is performed

employing the BDF scheme of order k = 2 with a fixed time step size ∆t = 0.01. Figure 13

shows the solution obtained at different time steps, with the mesh composed of 779 elements. The

evolution in time of the Willmore energy, together with the Willmore energy associated to a sphere

(indicated as Exact final energy), is reported in Figure 14, together with the evolution in time of

the area and the volume of the approximated geometry Ωn. We remark that problem (3.18) does

not involve any constraint on the area and the volume of the surface, which are in principle free

to evolve while the Willmore energy JW is being minimized; as a matter of fact, we notice that

2The number of DOFs accounts for both a vector valued unknown (the velocity v) and a scalar unknown (the

normal velocity v).
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Figure 14: Test 5.2.1. Willmore flow of an ellipsoid with a0 = 4, b0 = 4 and c0 = 1. Evolution of the Willmore

energy JW , area and volume vs. time t (zoom) for NURBS of degrees p = 2 and C1-continuous a.e. with

684 and 2,380 elements, yielding 2,048 and 8,192 DOFs, respectively, and p = 3 and C2-continuous

a.e. with 779 and 2,555 elements, again yielding 2,048 and 8,192 DOFs, respectively.

the evolutions of the area and the volume are sensitive to the discretization under consideration.

By using as stopping criterion for the Willmore flow the difference between the Willmore energy

at two consecutive time steps, which should be under the threshold 10−5, we obtain, with the

coarsest mesh built of NURBS of degree p = 2 a final error on the Willmore energy equal to 0.6496

(2.585%); when refining the mesh, we obtain a significant reduction of such error, being equal to

0.1696 (0.675%). Instead, using NURBS of degree p = 3 yields better results, with errors equal

to 0.0237 (0.094%) and 0.0055 (0.022%) for the first and second h-refinement levels, respectively.

Finally, we report in Figures 15a and 15b the sparsity patterns of the matrices associated to the full

discrete problem (4.26) with NURBS of degrees p = 2 and 3, with 2,048 DOFs for both the cases.

In Figure 15c the evolution of the condition number κ(A) of the matrices involved in problem (4.26)

is reported at each time step, for each NURBS considered for the results of Figure 14. The behavior

of κ(A) is similar to what experienced for Test 5.1.1, in the sense that, the higher degree of the
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(a) p = 2, C1-continuous a.e. (b) p = 3, C2-continuous a.e.

(c) Evolution of the condition number vs. time t

Figure 15: Test 5.2.1. Willmore flow of an ellipsoid with a0 = 4, b0 = 4 and c0 = 1. Sparsity patterns in (a) and (b)

and evolution of the condition number κ(A) of the matrix associated to the full discrete problem (4.26)

vs. time t ((c)), using NURBS basis functions of degrees p = 2 and 3, C1- and C2-continuous a.e.,

respectively, and two refinement levels yielding 2,048 and 8,192 DOFs, respectively, both for p = 2 and

p = 3.

NURBS basis functions and the finer the mesh, the higher the condition number. With respect to

Test 5.1.1, the condition number is generally higher, due to the high order derivatives involved in

the Willmore flow problem.

Test 5.2.2. Now, we consider the numerical approximation of the Willmore flow of a torus,

described by Eq. (5.3). In particular, Clifford tori, which are defined as having the ratio between

the outer R0 and inner r0 radii equal to R0/r0 =
√

2, are stationary geometries for the Willmore

flow, with Willmore energy JW equal to 4π2; tori with different aspect ratios tend to converge to

the Clifford torus. We numerically simulate the Willmore flow of a initial torus Ω0 with R0 = 1
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t = 0 t = 0.003 t = 0.010 t = 0.030 t = 0.100

Figure 16: Test 5.2.2 Willmore flow of a torus with R0 = 1 and r0 = 0.2. Solution at different time instances.

and r0 = 0.2 (i.e. for which R0/r0 = 5), represented as a NURBS surface with basis functions of

degrees p = 2 and 3, being globally C1- and C2-continuous, and two h-refinement levels. Solutions

at different time steps are reported in Figure 16. Time discretization uses the BDF scheme of

order k = 2 and time step size ∆t = 0.001. We employed NURBS meshes built with 836 elements,

yielding 2,048 DOFs, and 2,660 elements, yielding 8,192 DOFs, with NURBS basis functions of

degree p = 2 and globally C1-continuous, and meshes with 1,025 elements, yielding 2,880 DOFs,

and 2,993 elements, yielding 9,792 DOFs, with NURBS basis functions of degree p = 3 and globally

C2-continuous. In Figure 17 the evolution of the Willmore energy is reported, together with the

Willmore energy of the Clifford torus (indicated as Exact final energy). If we compare the final

Willmore energy of the approximated solution with the Willmore energy of the Clifford torus we

obtain the following errors with the above mentioned meshes, in order: 0.1146 (0.290%), 0.1130

(0.286%), 0.0114 (0.029%), and 0.0010 (0.003%). Therefore, the best compromise between accuracy

and number of DOFs employed is obtained for NURBS basis functions of degree p = 3 and globally

C2-continuous, which guarantee a good accuracy even with a small amount of DOFs. Finally, we

report in Figures 18a and 18b the sparsity patterns of the matrices associated to the full discrete

problem (4.26) with NURBS of degrees p = 2 and 3, with 2,048 and 2,880 DOFs, respectively. We

report in Figure 18c the evolution of the condition number κ(A) at each time step, for each NURBS

already considered in Figure 17. As usual, the condition numbers increase with the degree of the

NURBS basis functions and with the refinement of the mesh, but, for each discretization, these

follow the same overall behavior in time. With respect to Test 5.2.1, the condition number tends

to be smaller, since the mapping does not present any singularity.
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Figure 17: Test 5.2.2. Willmore flow of a torus with R0 = 1 and r0 = 0.2. Evolution of the Willmore energy JW , area

and volume vs. time t (zoom) for meshes of two refinement levels built of NURBS of degrees p = 2 (for 836

and 2,660 elements) and p = 3 (for 1,025 and 2,993 elements), C1- and C2-continuous a.e., respectively.

6. Conclusions

In this work, we considered the numerical approximation of geometric PDEs defined on surfaces

by means of NURBS-based IGA in the framework of the Galerkin method. In particular, we focused

on two problems: the mean curvature flow, leading to a nonlinear second order PDE deriving from

the minimization of the area functional, and the Willmore flow, leading to a nonlinear fourth order

PDE deriving from the minimization of the Willmore energy. We spatially approximated these

problems with IGA, considering NURBS function spaces for representing both the geometry and

the trial and test spaces for the spatial approximation of the PDEs, according with the isogeometric

concept. In particular, we employed NURBS function spaces with basis functions featuring high

order global continuity, necessary for the direct treatment of high order differential operators. For

the time discretization, we considered high order BDF schemes, with extrapolation (of the same

order of the BDF scheme) of geometric quantities from the solutions (the geometry) at the previous

time steps. We reported results of the numerical approximation of the mean curvature flow on
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(a) p = 2, C1-continuous a.e. (b) p = 3, C2-continuous a.e.

(c) Evolution of the condition number vs. time t

Figure 18: Test 5.2.2. Willmore flow of a torus with R0 = 1 and r0 = 0.2. Sparsity patterns in (a) and (b) and

evolution of the condition number κ(A) of the matrix associated to the full discrete problem (4.26) vs. time

t ((c)), using NURBS basis functions of degrees p = 2 and 3, C1- and C2-continuous a.e., respectively,

and two refinement levels yielding 2,048 and 8,192 DOFs for p = 2, and 2,880 and 9,792 DOFs for p = 3,

respectively.

spheres, tori and cylinders, with error convergence analysis for BDF schemes of different orders and

NURBS meshes with basis functions of different degrees and continuity, and of the Willmore flow

on ellipsoids and tori, computed with different NURBS meshes. The numerical tests highlight that

NURBS-based IGA is an efficient, accurate, and natural framework for the spatial approximation of

geometric PDEs, including high order PDEs. The exact representation of the geometry, occurring

even with a small amount of DOFs, together with the straightforward and accurate treatment of

geometric quantities, proves to be extremely handful in this context. Moreover, the high degree of

global continuity of the NURBS basis functions allows an efficient treatment of geometric PDEs,
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with high accuracy of the approximated solution using a smaller amount of DOFs. Furthermore,

we reported the evolution of the condition numbers of the matrices associated with the full discrete

problems, for which we highlighted that these may grow with the number of DOFs and the degree

of the NURBS basis functions, especially in the presence of singularities of the geometrical mapping

and the possible degeneration of the surface. Nevertheless, the approximate solution is very accurate

already when few DOFs are involved in the discretization, i.e. for problems in which the condition

number of the matrix is relatively small. As a matter of fact, the errors on the solution of the

geometric PDEs associated to our numerical schemes are mainly driven by the time discretization

errors, with the spatial ones basically annihilated by the IGA discretization.
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