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Abstract

We propose a new methodology for the analysis of spatial fields of object data
distributed over complex domains. Our approach enables to jointly handle both
data and domain complexities, through a divide et impera approach. As a key ele-
ment of innovation, we propose to use a Random Domain Decomposition, whose
realizations define sets of homogeneous sub-regions where to perform simple, in-
dependent, weak local analyses (divide), eventually aggregated into a final strong
one (impera). In this broad framework, the complexity of the domain (e.g., strong
concavities, holes or barriers) can be accounted for by defining its partitions on
the basis of a suitable metric, which allows to properly represent the adjacency
relationships among the complex data (such as scalar, functional or constrained
data) over the domain. As an insightful illustration of the potential of the method-
ology, we consider the analysis and spatial prediction (Kriging) of the probability
density function of dissolved oxygen in the Chesapeake Bay.

Keywords: Object Oriented Data Analysis, Spatial dependence, Local stationarity, Var-
iogram kernel estimator, Bayes spaces

1 Introduction

The analysis of complex data distributed over large or highly textured regions poses new
challenges to spatial statistics. Methods developed so far to deal with spatial complex
data often rely upon global models to capture variability and spatial dependence (e.g.,
Menafoglio et al., 2013; Menafoglio and Secchi, 2017). A common assumption regards
the stationarity of the process generating the data, i.e., the homogeneity of its distribu-
tional properties over the whole domain. However, in many applications, observed data
are not compatible with a global stationarity assumption. Moreover, the features of the
domain may even prevent the definition of a globally stationary model.

Several approaches exist to handle non-stationary spatial fields (see Fouedjio, 2017,
for a recent review). Of particular interest for the scope of this work are the methods
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based on local models which describe spatial dependence only within subregions of
the spatial domain, where stationarity is taken to be a viable assumption (e.g., Fuentes,
2001, 2002; Fouedjio et al., 2016; Heaton et al., 2015; Haas, 1990; Harris et al., 2010;
Kim et al., 2005). For instance, Kim et al. (2005) propose a Bayesian hierarchical
model, that identifies an optimal partition of the domain in disjoint and independent
stationary subregions. Other authors, e.g., Fouedjio et al. (2016), developed estimation
methods for non-stationary covariance models, based on the key assumption of local
stationarity.

All these methods are model-based, they often require strong assumptions on the
distribution generating the data and provide estimation procedures which can rarely be
extended to high- or infinite-dimensional data, like curves, surfaces or images. When
these are the data at hand, algorithmic approaches, possibly based on computationally
intensive yet simple techniques, are usually preferred.

In this work we propose a new computational method for the analysis of spatial
data distributed over a possibly complex domain. The latter may consist in a very large
domain, or in a region with natural or artificial constraints, such as holes, barriers,
irregular boundaries.

The basic idea is to use simple, local and repeated analyses instead of an unique
global and complex one. Our line of attack is based on a divide et impera strategy.
During the divide step, the spatial domain is randomly partitioned into a set of disjoint
sub-regions, within which local geostatistical analyses are performed. These local and
weak analyses are repeated for different realizations of the random domain decomposi-
tion and then aggregated into a final strong analysis during the impera step.

The non-parametric nature of our approach is open to handle both the complexity
of the data and that of the domain. We pursue the viewpoint of Object Oriented Spatial
Statistics (O2S2, Menafoglio and Secchi (2017)) and represent data as spatially depen-
dent atoms embedded in a suitable feature space whose geometry should be founded
on, and should elicit, the data characteristics that the researcher deems to be essential
for the goal of the analysis. Instead, the complexity of the spatial domain will control
the metric upon which it is partitioned. Here, we will argue in favor of graph-based
metrics, and accordingly evaluate the distance between two sites as the length of the
shortest path linking them on a given undirected graph representing the actual spatial
closeness.

A precursor of our method is the Bagging Voronoi algorithm of Secchi et al. (2013,
2015); Abramowicz et al. (2016). The idea founding the Bagging Voronoi approach
to the analysis of spatially dependent data, is to consider a target statistical method
developed for independent data – say, a method for classification, regression, dimen-
sional reduction – and to apply it to local representatives built upon a random partition
of the spatial domain – i.e., across the elements of the partition. In the methodology
developed in this paper, the target statistical method explicitly incorporates spatial de-
pendence and generates different local analyses, one within each cell of the random
partition of the spatial domain. Although this work focuses on the problem of spatial
prediction (i.e., Kriging), the novel strategy is entirely general and can be successfully
employed to tackle several geostatistical problems (e.g., classification or spatial regres-
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Figure 1: Chesapeake Bay and its main rivers (source: www.chesapeakebay.net).

sion and smoothing).
As an insightful case study, we consider the problem of spatial prediction of dis-

solved oxygen (DO) in the Chesapeake Bay, that is the largest, most productive and
biologically diverse estuary in North America (Figure 1). An estuarine system devel-
ops on a complex, non-convex and highly irregular domain where the areas of land be-
tween adjacent tributaries act as barriers for many aquatic variables. Here, the use of the
Euclidean distance is inappropriate for describing the adjacency relation between obser-
vations in different sites. Moreover, the variable of interest may not be scalar, as when
the data object observed in each spatial location is the distribution of DO. Although
methods to treat the domain complexity are known (e.g., Sangalli et al., 2013, and ref-
erences therein), and have been inspirational for the domain representation used in this
work, the proposed methodology has the advantage of being able to handle jointly both
data and domain complexities and of being much simpler to implement while providing
accurate predictions.

The remaining part of the paper is organized as follows. Section 2 describes the key
idea of the proposed methodology, that is the use of random domain decompositions of
the spatial domain, to allow for local analyses. Section 3 explores via simulations the
performance of the method. Section 4 illustrates the case study, where the goal is the
prediction of the Dissolved Oxygen in the Chesapeake Bay.

2 Kriging via random domain decompositions

2.1 A locally-stationary model for object data

Set (Ω; F ; P) to be a probability space and H – the feature space – to be a separable
Hilbert space, with operations (+, ·), inner product 〈·, ·〉 and induced norm ‖ · ‖.

Given the spatial domain D ⊆ Rd and the sampled locations s1, ..., sn in D, we
denote by Xs1 , ...,Xsn the random elements whose realizations are the available data;
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they are assumed to be generated by a partial observation of a random field {Xs, s ∈
D} defined on (Ω; F ; P) and with values in H. The first and (global) second order
properties of the field can be defined in terms of mean (or drift) and trace-covariogram.
We thus call ms = E[Xs] the mean of the field at s in D, and C : D × D → R the
trace-covariogram of the field (Menafoglio et al., 2013), defined, for s1, s2 in D, as

C(s1, s2) = E[〈Xs1 −ms1 ,Xs2 −ms2〉]. (1)

The trace-covariogram (1) plays the role of the classical covariogram, which is widely-
used in geostatistics to represent the second-order properties of the field (e.g., Cressie,
1993). The trace-covariogram is a global measure of spatial dependence, whereas the
family of cross-covariance operators – of which the trace-covariogram represents the
trace – describes the full dependence structure of the data. Nevertheless, the global
viewpoint is sufficient for the purpose of Kriging prediction with scalar weights (for
further details refer to Menafoglio et al., 2013). As in real-valued geostatistics, one
may also define the trace-variogram,

2γ(s1, s2) = E[‖Xs1 −Xs2‖2]− ‖ms1 −ms2‖2, s1, s2 ∈ D, (2)

which is the object-oriented counterpart of the variogram.
On the basis of (1) and (2), (global) second-order stationarity can be formulated,

by requiring that the mean of the field is spatially constant over D (i.e., ms = m for
all the s in D) and that the trace-covariogram depends only on the increment between
locations (i.e., C(s1, s2) = C(s1 − s2), for s1, s2 in D). Under these assumptions,
Ordinary Kriging methods can be developed (e.g., Menafoglio and Secchi, 2017, and
references therein).

In this work, we consider a more general setting, which is the one of local sta-
tionarity, also known as quasi-stationarity. This notion of stationarity is well-known
in the literature on scalar geostatistics and was introduced by Matheron (1971). In
this framework, stationarity is assumed to hold true only in neighborhoods of a given
radius around any location s in D. That is, an H-valued random field {Xs, s ∈ D}
is said to be locally stationary if it is characterized by a mean ms and a covariance
function C(s1, s2) such that (i) for any location s ∈ D, the mean ms of the field is
approximately constant in a neighborhood Vs of s; and (ii) for any location s ∈ D, the
covariance function can be approximated via a stationary model in the neighborhood
Vs of s. Although this definition may appear vague, a number of authors (e.g Fouedjio
et al., 2016, and references therein) have recently embedded such definition in a formal
modeling framework within which proposing geostatistical methods for the spatial pre-
diction of scalar random fields. In the context of object data distributed over complex
domains available methods cannot be used, as (a) they do not account for the complex-
ity of the data objects, and (b) they cannot properly deal with non-Euclidean domains.
In the following subsections, we thus illustrate the computational method we propose
to cope with the latter issues, that employs the quasi-stationary assumption to perform
stationary analyses within each of the neighborhoods identified by a suitable random
domain decomposition.
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2.2 Defining partitions of the domain

We now consider the problem of generating a decomposition of the study domain, suit-
able for estimating the locally stationary model.

We first note that only in a few applications a unique optimal domain partition
exists, and, among these, very seldom the information about it is available a priori (see,
e.g., Fuentes (2001, 2002); Kim et al. (2005)). Moreover, the existence of a sharp
partition in sub-domains (as in Kim et al. (2005)) is in contrast with local stationarity as
defined above. This, in turn, needs a system of neighborhoods to be substantiated; final
predictions will strongly depend on this system, which therefore becomes a crucial issue
of the analysis. We here follow the intuition that, when local stationarity is assumed,
the domain partition implementing the system of neighborhood defining it is auxiliary
to model estimation, rather than a founding element of the model. Accordingly, we
introduce, in a simple yet effective way, a system of neighborhoods generated by a
random partition of the domain, driven by the domain features, and only weakly by the
data.

Let us first start by settingP = {D1, . . . , DK ⊂ D : D =
⋃K
k=1Dk and Di∩Dj =

∅,∀i, j = 1, . . . ,K, i 6= j} to be a partition of the domain D into K ≥ 1 disjoint sub-
regions. If P is sufficiently fine, we will take each element of P to be representative of
a neighborhood in D where one can approximately assume stationarity. In practice, we
will suppose that the following conditions hold:

(i) E[Xs] = mk, for all s ∈ Dk and for all k = 1, . . . ,K;

(ii) E[〈Xs1 −mk,Xs2 −mk〉] = C(s1 − s2; k),
for all s1, s2 in Dk and for all k = 1, . . . ,K.

Since we do not assume to have a definite prior knowledge of the system of neigh-
borhoods which provides support to local stationarity, we will use a random partition
P to generate it. For simplicity and ease of exposition, hereafter we focus on ran-
dom Voronoi tessellations of the domain D induced by a metric d. Like other modeling
choices described below, this is not exclusive and is in part driven by the characteris-
tics of the case studies we are going to illustrate in this paper. In fact, it is obvious
how to modify this and other modeling specifications, to accommodate a different prior
knowledge guiding the analysis.

A Voronoi tessellation is defined by a set of sites (nuclei) and a metric function
d(·, ·). In the following, the set of nuclei of the Voronoi tessellation is generated by ran-
domly selectingK points among the n sampled locations. Other more refined sampling
schemes are possible; for instance, one could appeal to a non-homogeneous Poisson
process. Let ΦK = {c1, . . . , cK} be the set of locations of the K nuclei in D. The k-th
Voronoi cell is defined as

V (ck|ΦK) = {s ∈ D : d(s, ck) ≤ d(s, cj), for all cj ∈ ΦK , j 6= k}. (3)

The random partition P is then defined as P = {V (ck|ΦK), k = 1, ...,K}.
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Note that no restriction is imposed on the metric d, but we observe that different
metrics produce different partitions of the same domain, even when the set of nuclei is
the same. Although typical Voronoi tessellations are based on the Euclidean metric, a
non-Euclidean metric might be more suitable to capture closeness between sites when
the domain is complex in terms of boundary shape or for the presence of holes and
barriers. For instance, in the example of Figure 1, the distance between two sites lying
in the tributaries should be computed as a ‘water distance’ – using the terminology of
Rathbun (1998) – rather than via Euclidean distance. To formalize this idea, we propose
to map the sampled locations on a neighborhood relational graph, properly representing
the spatial adjacency of the observed objects. This allows to use a graph-based metric d
to define homogeneous regions within the complex domain, while accounting for its ge-
ometrical properties. The neighborhood relational graph is generated by a triangulation
of the domain D, using as vertices the set of sampled sites, s1, ..., sn. Among several
possible available triangulation methods, in this work we consider the Delaunay trian-
gulation (Hjelle and Dæhlen, 2006) which is closely related to Voronoi tessellations,
besides maximizing the triangles’ angles. In point of fact, to account for boundaries
with complex shape, holes or barriers, we use a Constrained Delaunay triangulation
(CD-T), illustrated, e.g., in (Lin et al., 2013). The distance between two sites belonging
to the neighborhood relational graph is then defined as the (Euclidean) length of the
shortest path on the graph connecting the two sites: this is computed by the Dijkstra’s
algorithm (Dijkstra, 1959). More generally, the distance between a site s0 ∈ D and a
site sj belonging to the graph is computed by first connecting s0 to all the closest graph
vertex, and then by measuring the length of the shortest path connecting s0 and sj . This
is the distance d that will be used to generate our Voronoi tessellation of the domain D.

2.3 Model estimation and prediction

Given a realization of the random partition P = {D1, ..., DK}, we now focus on es-
timation methods for the local trace-variogram, and the associated Kriging prediction.
The field being locally stationary, one can employ stationary methods to estimate the
trace-variogram within the cell Dk ∈ P , for k = 1, ...,K. We recall that in this case,
as in classical geostatistics (Cressie, 1993), most methods for trace-variogram estima-
tion consist of two stages, namely (a) computing an empirical estimate from the data,
and (b) fitting a parametric valid model via least square (LS) or maximum likelihood
(ML). Within cell Dk, one may define an empirical estimator of the corresponding
trace-semivariogram via the method of moments as (Menafoglio and Secchi, 2017, and
references therein)

γ̂(h; k) =
1

|N(h)|
∑
N(h)

‖Xsi −Xsj‖2, (4)

where N(h) = {(si, sj) ∈ Dk ×Dk : h−∆h ≤ si − sj ≤ h + ∆h} collects the set
of pairs in Dk separated approximately by a vector h, and |N(h)| is its cardinality.

One should note that estimator (4) suffers from a bias-variance trade-off. Indeed, to
guarantee that stationarity is a viable assumption within each cell Dk, one should strive
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for a fine partition P entailing a low bias for (4). However, fine partitions inevitably
yield cells with very few data, thus inflating the variance of (4).

To cope with such trade-off, we consider a kernel-weighted empirical estimator of
the local variogram, of which (4) is a particular case. We here generalize the approach
proposed by Fouedjio et al. (2016) in a scalar setting. We setKε : Rd×Rd → R+ to be
a kernel function, i.e., a non-negative symmetric function, where ε > 0 is its bandwidth
parameter. An instance of such a kernel is the Gaussian kernel, defined as

Kε(s1, s2) = exp

{
− 1

2ε2
d2(s1, s2)

}
. (5)

Here, the distance d is the same distance appearing in the definition of the Voronoi
cells in (3). Given a kernel Kε, we then consider the following estimator for the local
trace-semivariogram

γ̂ε(h; k) =

∑
N(h)Kε(ck, si)Kε(ck, sj)‖Xsi −Xsj‖2

2
∑

N(h)Kε(ck, si)Kε(ck, sj)
. (6)

Intuitively, the kernel appearing in (6) down-weights the contribution of data “far apart”
– according to the metric d – from the center of the cell, where the range of influence of
neighbour locations is controlled by the bandwidth parameter ε. Unlike estimator (4),
estimator (6) allows to borrow strength from data outside the cell Dk. Whenever one
may assume isotropy, (6) reads

γ̂ε(‖h‖d; k) =

∑
N(‖h‖d)Kε(ck, si)Kε(ck, sj)‖Xsi −Xsj‖2

2
∑

N(‖h‖d)Kε(ck, si)Kε(ck, sj)
(7)

with N(‖h‖d) = {(si, sj) ∈ Dk×Dk : ‖h‖d−∆h ≤ ‖si− sj‖d ≤ ‖h‖d + ∆h}, and
‖h‖d denoting the Euclidean norm of h.

Note that in (7) two metrics on the domain D are considered: (i) the metric d em-
bedded in the kernel Kε and generating the random partition P and (ii) the Euclidean
metric implied by the norm argument of the trace-semivariogram. This apparent am-
biguity is needed to guarantee that the commonly-employed parametric families for
variogram estimation (e.g., spherical, Matérn) are valid, and thus that the geostatistical
prediction yields sensible results. Indeed, this may not be the case when using a non-
Euclidean metric (Huang et al., 2011; Jensen et al., 2006; Rathbun, 1998, and references
therein).

Having estimated the trace-semivariogram within the cell Dk according to (6) (or
(7)), a parametric model can be fitted, e.g., via least squares. In the following, we shall
denote by γ̂(·; k, ε) the fitted trace-semivariogram model for Dk, k = 1, ...,K. Each of
these semivariograms is the conerstone for the local Object Oriented Kriging (OOK).

Call Xs0 the random element of the field {Xs, s ∈ D} at an unsampled location
s0 ∈ D. Let Dk be the cell of P containing s0 and let γ̂(·; k, ε) be the corresponding
estimated trace-semivariogram. To predict Xs0 we look for the OOK predictor within
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the cell Dk, that is the Best Linear Unbiased Predictor (BLUP)

X ∗s0 =

n∑
i=1

λ∗i · Xsi1{si ∈ Dk}, (8)

where 1 is the indicator function and the weights λ∗i , . . . , λ
∗
n ∈ R minimize

E

∥∥∥∥∥Xs0 −
n∑
i=1

λi · Xsi1{si ∈ Dk}

∥∥∥∥∥
2
 subject to E

[
n∑
i=1

λi · Xsi1{si ∈ Dk}

]
= mk,

over λ1, . . . , λn ∈ R. The OOK problem can be explicitly solved through a linear
system, which is the very counterpart of the classical Kriging system. We refer the
reader to (Menafoglio and Secchi, 2017) for further details.

We remark that predictor X ∗s0 is a function of the data and of the realization of
the random partition P. Indeed, in (8), data observed in sites lying outside the cell
Dk get zero weight. Moreover we also note that, for a given realization of P, the
Kriging prediction of the field {Xs, s ∈ D} over the domain D could be discontinuous,
with discontinuities located at the boundary of adjacent cells of P . However, this field
prediction is only a weak auxiliary step of the overall analysis, as we shall explain in
the next subsection.

2.4 Bootstrap and aggregation

We now incorporate the elements introduced in the previous subsections within a bag-
ging algorithm (Breiman, 1996) made of two steps: (1) a first bootstrap stage, where
the same analysis is performed several times on different learning samples, and (2) a
final aggregating stage where the weak analyses generated at step (1) are aggregated
into a final strong analysis.

Bootstrap At each iteration of this step: (i) the domain D is decomposed into
K cells according to independent realizations of the random partition P; (ii) K local
analyses are performed, one for each cell in P. That is, for k = 1, ...,K, the trace-
semivariogram is estimated in Dk as in (6), and the value of the random element Xs0

at each unsampled location s0 ∈ Dk is predicted as in (8). At the end of B iterations
of the bootstrap step, one obtains a collection of Kriging predictors {X ∗bs0 }

B
b=1 for each

unsampled location in D.

Aggregation The Kriging predictions {X ∗bs0 }
B
b=1 at the target site s0 need even-

tually to be aggregated into a final prediction X ∗s0 . To this end, one may employ the
average of the predictors obtained along the bootstrap iterations, X ∗s0 = 1

B

∑B
b=1X ∗bs0 .

Note that the final predictor X ∗s0 will depend not only on the data, but also on the B
independent realizations of the random partition P . Indeed X ∗s0 is the sample version
of

EP [X ∗s0(Xs1 , ...,Xsn ;P)] =

∫
P
X ∗s0(X ; p)dµP(p)
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where P is the set of all possible partitions of the domain, and µP the distribution
over P of P . One can readily envision other types of aggregations, e.g., weighted
averaged kernel-based, or based on the Kriging variance. Figure 2 contains a pseudo-
code summarizing our proposal.

Object Oriented Kriging via RDD

Initialization.
Set the parameters 1 ≤ K ≤ n, B ≥ 1, a kernel Kε with its bandwidth ε,
a valid variogram model, a metric d for the spatial domain D and the target
location s0.

Bootstrap step.
for b := 1 to B do

Step 1. Draw a realization of P.
Randomly generate a set of nuclei ΦK = {c1, . . . , cK} among the ob-
served sites s1, ..., sn ∈ D; define the Voronoi cells {V (ck|ΦK)}Kk=1 by
assigning each site s to the nearest nucleus ck, according to the metric d.

Step 2. For each Voronoi cell Dk: estimate the semivariogram γ̂ε(h; k), by
means of (6) or (7); fit the parametric valid model to the empirical esti-
mate and obtain γ̂(·; k, ε).

Step 3. For s0 ∈ Dk, obtain the OOK prediction X ∗b
s0 , as in (8).

end for.

Aggregation step.
For s0 ∈ D, compute the final prediction by aggregating the B predictions as
their average X ∗

s0 = 1
N ·
∑B
b=1 X ∗b

s0 .

Figure 2: Pseudocode scheme of the Random Domain Decomposition (RDD) algorithm for
Kriging prediction over the grid domain.

2.5 On the model parameters

The algorithm summarized in Figure 2 requires to initialize a few parameters: the num-
ber of auxiliary analyses B, the number K of cells of the random partition P of D, the
kernel Kε and its bandwidth ε.

Conditionally on computational time, the parameter B should be chosen as large
as possible to ensure that the algorithm reaches a desired accuracy. It controls the
robustness of the final result: the higher the number of B weak analyses performed, the
stronger the basis upon which the final result is obtained.

The parameter K should be carefully evaluated since it has a great influence on the
algorithm performances. Indeed, K affects the Kriging bias-variance trade-off: if K
is small, the predictor at an unsampled location will be based on large sub-samples.
This tends to minimize the variance of the Kriging predictor, but also to increase its
bias since local stationarity within each of the few cells of the partition P may not

9



be verified. The limiting case is K = 1: here we would assume stationarity over the
whole domain, although we might not even be able to formulate a clear assumption
of stationarity due to, e.g., domain complexities, such as holes or irregular boundaries.
On the other hand, if K increases, the partition of the domain will become more and
more refined, being able to accurately define the boundaries of different homogeneous
sub-regions. This tends to minimize bias; at the same time, the sample size pertaining
to each cell of the partition will decrease with the effect of increasing the variance of
the Kriging predictor. The limiting case is K = n, when the prediction of Xs0 is based
on a single observation, the closest datum to the location s0.

As we mentioned before, we can include within the general RDD methodology,
a geographically weighted approach by using a kernel function. This is an optional
choice which contributes to the flexibility and robustness of our proposal. However, the
use of a kernel function for estimating the local semivariograms can be unimportant in
some cases, e.g, when large sample sizes in each cell of the partition P are guaranteed.
Using a kernel may become necessary if one has very few observations, since each local
analysis would be then performed on a subset of the data of very small size. In this
work, we will focus on Gaussian kernels; nevertheless, other kernels are possible, and
their choice should be driven by prior knowledge. As regards the bandwidth parameter
ε, it controls the range of influence of the observations on the estimate of the local
semivariogram. Once again, a small value of ε implies a variogram estimate based on
too few observations, and therefore highly uncertain, while a large value of ε assigns
considerable weights to observations very far away from the cell of interest, against the
assumption of local stationarity.

3 Simulation study

In this section, we explore, through a simulated example, the performances of our ran-
dom domain decomposition approach for Kriging object data on complex domains. For
ease of exposition and representation of the results, we here focus on the case of scalar
data. In Section 4 we will illustrate an application to the analysis of more complex
object data, in the form of distributional data. An additional simulated example is pro-
vided in the supplementary material.

3.1 A locally stationary field over a complex domain

This simulation example concerns a spatial random field distributed over a C-shaped
domain. Figure 3 displays the test function, which is the same test function used by
Sangalli et al. (2013). We observe the test function in n = 250 locations randomly and
uniformly selected within the domain.

Embedding the C-shaped domain into a larger rectangular domain and then assum-
ing global spatial stationarity defined in terms of the Euclidean metric does not seem to
be a suitable modeling approach, because of the apparent drift in the data and due to the
shape of the domain, characterized by the presence of the thin space which separates
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Figure 3: C-shaped domain: smooth test function and Delaunay Triangulation.

Figure 4: C-shaped domain: example of kernel weights for different metric d(·, ·). For a fine
grid of points s0 in D, the plots refer to the value of the kernel Kε(s0, c), where c is the center
(symbol) and ε = 1.

the two branches of the C. Nonetheless, local stationarity holds thanks to the smooth
variation of the field. Note however that the Euclidean distance is not appropriate as
a measure of adjacency, because it crosses over the space separating the two branches
of the C. Hence, as detailed in Section 2.2, a Constrained Delaunay Triangulation was
built to represent the domain (Figure 3) and, on this basis, a graph-based metric d was
defined.

For the simulations, we employed a Gaussian kernel with bandwidth ε = 1. We
remark that this kernel is isotropic with respect to d, but anisotropic with respect to the
Euclidean metric. Figure 4 displays an example of kernel weights for both the Euclidean
metric and the graph-based metric. One can appreciate that points on one branch do not
contribute to the estimate of variograms for the other branch, when d is used.

At each bootstrap iteration, a realization of a random Voronoi partition of the do-
main was generated according to d, and for each cell of the partition the empirical
variogram was estimated and fitted with an exponential model with nugget, as detailed
in Section 2.3. Given the fitted variograms, OOK was performed on a fine grid D0 of
points covering the C. The number B of bootstrap iterations was set equal to 100, and
the results aggregated through a simple average. Figure 5a displays OOK predictions
obtained when the number of Voronoi cells is K = 16. For comparison, Figure 5b
reports the OOK predictions when the analysis is performed without the perturbation
introduced by the RDD, i.e. setting K = 1, and measuring distances in the C through
the Euclidean metric. Figure 5c shows predictions obtained by using OOK and a ran-
dom Voronoi partition of the domain with K = 16 cells, but based on the Euclidean
metric to measure distances in the C instead of d. Graphical inspection of Figure 5 sug-
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(a) OOK, graph-based distance
(K = 16)

(b) OOK, Euclidean distance
(K = 1)

(c) OOK, Euclidean distance
(K = 16)

Figure 5: C-shaped domain: Prediction of the field.

Distance
K

1 2 4 8 16

Euclidean 3.287·10−3 3.365·10−3 3.307·10−3 3.207·10−3 3.029·10−3
Graph-based 3.287·10−3 0.4807·10−3 0.1168·10−3 0.0603·10−3 0.0551·10−3

Table 1: C-shaped domain. OOK predictions with different distances: Average of the MSPE
over the M = 50 repetitions.

gests that the use of a graph-based metric generates better predictions, especially in the
central part of the C where the OOK is not induced to borrow information from the
wrong branch of the domain, as it happens when the Euclidean metric is in force.

To test the performance of the method, we repeated the analysis M = 50 times,
for different values of K in {1, 2, 4, 8, 16}, K = 1 meaning Object Oriented Kriging
with no random domain partition and Euclidean metric for measuring distances in the
C. Note that, in the latter case, the kernel is not used for the estimation of the only vari-
ogram involved in the analysis. At each of the M repetitions of the analysis, a different
set of n = 250 of locations was uniformly sampled out of the C and the corresponding
value of the field observed. To compare the performances of the method for different
parameter settings and metrics, for m = 1, ...,M, we computed the (normalized) mean
square prediction error (MSPE), defined as

MSPEm =

∑
s0∈G ‖X

∗
s0 −Xs0‖2∑

s0∈G ‖Xs0‖2
(9)

where G is the set of target points in D0, and ‖ · ‖ denotes the norm on R (i.e., the abso-
lute value). Results are reported in Table 1 and Figure 6 which show the improvements
in predictions obtained by increasing the value of K and by moving from the Euclidean
metric to the graph-based metric d.

A second simulated example is provided as supplementary material. It is aimed
to test the performance of the method when its hypotheses are not met, based on the
model of Kim et al. (2005). Those simulations suggest that a major role in evaluating
the validity of the model assumptions – particularly the local-stationarity – is played by
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Figure 6: C-shaped domain: MSE boxplots for different values of K in {1, 2, 4, 8, 16} (K = 1
meaning Ordinary Kriging) and for the Euclidean and graph-based distance.

the bootstrap variance, defined, for any grid point s0 in target set D0, as

σ2B =
1

B

B∑
b=1

‖X ∗bs0 −X
∗
s0‖

2, (10)

whereX ∗bs0 is the prediction at s0 at the b-th iteration, X ∗s0 is the final prediction obtained
by aggregation of theB bootstrap replicates, and ‖·‖ represents the norm on the feature
space. Intuitively, a large value of the bootstrap variance indicates large deviations of
the predictions obtained along the B repetitions from the final one. Instabilities in the
map of bootstrap variance may indicate a violation of the above-mentioned assump-
tions, and thus serve as a driver, e.g., in the definition of the RDD (for further details,
see the supplementary material).

4 A Case Study: analysis of the distribution of dissolved oxy-
gen in the Chesapeake Bay

Problem setting The Chesapeake Bay is the largest estuary in the United States
and the third largest in the world. This estuarine ecosystem is approximately 300 km
long, from Havre de Grace, Maryland (on the North) to Virginia Beach, Virginia (on
the South). Its width ranges between 5 km (the mean width of the mainstream) and 30
km, if one considers the lateral tributaries. The total shoreline, including tributaries, is
18804 km long, and circumnavigates a surface area of 11601 km2.

The Bay is one of the most productive and complex ecosystems in the US, besides
being a very important economic resource for the zone. The extreme use of the land
around the estuary and, in particular, the pollution due to the close farms and cities,
changed the Bay over the years. Human activities caused a drastic reduction of oxygen,
which must be present underwater, in dissolved form, to guarantee the life of most
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marine species. The most critical areas of the Bay – i.e., those with the lowest values
of dissolved oxygen (DO) – are called Dead zones. These are the areas of the estuary
where the presence of oxygen in the water is below 2 mg/l. In these areas most of the
marine species cannot move quickly enough and, consequently, they usually suffocate.

The Bay’s degradation problem motivated the constitution of the Chesapeake Bay
Program (CBP) in 1983, which is a regional partnership aimed to provide a support for
the restoration and protection activities for the Bay. Monitoring DO is crucial for the
purpose of determining the areas that deserve more attention. For this reason, the values
of DO are collected at monitoring stations in the Bay, on a regular basis. Nonetheless,
such observations provide only a partial picture of the distribution of DO in the Bay. As
such, its spatial prediction is of key importance.

The data We consider the DO data at the 110 measurement locations in the Bay
for which data are available along the period 1990 to 2006 (source: US Environmental
Protection Agency Chesapeake Bay Program (US EPA-CBP)). Note that the spatial
sample size is relatively small compared to the covered area, which represents a critical
issue when applying local models. A preliminary analysis of the data showed that
no significant autocorrelation exists, along time, for the time series of DO (level 1%,
result obtained through a Durbin-Watson test on each time series, the p-value of single
tests being corrected via Holm’s method). Further, no evident trend is displayed by
the observations (Figure 3 of the supplementary material shows the raw data and the
sampling locations).

We here consider as data objects the probability density functions of DO in the sam-
pling locations. Considering the whole information content provided by the distribution
of DO allows one to provide predictions not only of some selected data features (e.g., a
few moments or quantiles), but of all the moments and quantiles jointly, as well as the
probability of events of interest (e.g., observing a DO lower than the attention limit of
2 mg/l). Note that the joint analysis of multiple quantiles would require the construc-
tion of a model for a vector of ordered components – due to the ordering of quantiles –
which is highly non-trivial. For the sake of brevity, in the following we limit to show
the results in terms of selected features (mean or median). Additional plots related with
further quantiles of the distribution are provided in the supplementary material.

A feature space for PDFs Probability density functions (PDFs) are an instance
of data objects which can be analyzed in the setting of O2S2 through the embedding
within an appropriate feature space. Several authors (Egozcue et al., 2006; Delicado,
2011; Hron et al., 2016; Menafoglio et al., 2014, 2016b,a) suggested that PDFs can be
considered as the generalization to the functional setting of multivariate compositional
data, i.e., vectors whose components represent parts of a given total (e.g., 1 or 100, if
proportion or percentages are considered). A Bayes Hilbert space (van den Boogaart
et al., 2014) is the natural feature space for PDFs, as it was precisely built as a gener-
alization to infinite-dimension of the Aitchison geometry for multivariate compositions
(Pawlowsky-Glahn and Egozcue, 2001).
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The Bayes Hilbert space B2(I) is the space of real valued positive functions on
I ⊂ R, whose logarithm is squared-integrable, i.e.,

B2(I) = {f : I → (0,+∞),

∫
I

log[f(τ)]2dτ <∞}.

In B2, two functions are equivalent if they are proportional, i.e., f ∼ g if f = αg
for α > 0, f, g in B2. The theory of the Bayes space B2 is well developed, and in-
teresting interpretations of its geometric structure are given in the literature. We here
limit to mention the geometric structure of B2 – which shall be used in the present case
study – and refer the interested reader to (Egozcue et al., 2013; Hron et al., 2016, and
references therein) for further details. The space B2 can be equipped with a separa-
ble Hilbert structure, when endowed with the appropriate operations and inner product.
The operations (+, ·) in this setting are named perturbation and powering, and defined
respectively as (Egozcue et al., 2006; van den Boogaart et al., 2014):

(f ⊕ g)(t) =
f(t)g(t)∫

I f(s)g(s) ds
, (α� f)(t) =

f(t)α∫
I f(s)α ds

, t ∈ I.

The inner product is defined as (Egozcue et al., 2006)

〈f, g〉2B =
1

2η

∫
I

∫
I

ln
f(t)

f(s)
ln
g(t)

g(s)
dt ds, f, g ∈ B2(I). (11)

Having embedded a dataset of PDFs in this space, one can perform the analy-
sis as detailed in Section 2. Nonetheless, observations are rarely given in the form
of smoothed PDFs, hence pre-processing of the data is usually needed. To estimate
the smooth PDFs of DO from available data we followed the approach proposed by
Machalová et al. (2016). These authors developed a constrained B-spline basis in B2
(to fulfill the integral constraint), and a smoothing procedure for histogram data, consis-
tent with the geometry of B2. At each measurement station, we thus used the 17 yearly
DO values to estimate a histogram, which was then smoothed by using a B-spline ba-
sis of order 2, with 13 equally spaced knots and smoothing parameter α = 0.98. The
parameters were set as to guarantee a good fitting to the data, yet avoiding overfitting.
The smoothed data are displayed in Figure 7.

Modeling the domain and its metric Regarding the modeling of the domain, we
note that the highly irregular boundaries of the Bay prevent the use of a globally station-
ary model, and of the Euclidean metric on the domain. Indeed, even if few kilometres
separate two points lying on adjacent and parallel tributaries, long and narrow areas of
land could be separating them (i.e., a high water distance). These land areas represent
barriers for the distribution of many aquatic variables, as was also recognized by Jensen
et al. (2006), who analyzed the distribution of blue crab in the Bay.

To model the water distance between points of the estuary, we thus built a graph-
based metric, using a Constrained Delaunay Triangulation of the domain (Figure 7c).
For illustrative purposes, we employed a simplified description of the Bay’s border in
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Figure 7: Smoothed data and domain representation. (a)-(b): Smoothed PDFs and mean of DO
at the sampled locations; colors given on the same scale. (c) Constrained Delaunay triangulation
of the domain; red symbols indicate points defining the domain boundary, black symbols the
measurement locations, empty symbols the additional points used to build the triangulation.

order to define its triangulation; the use of more refined meshes and its impact on the
prediction will be the scope of future work. The boundaries were thus defined through
straight segments, able to approximate the real boundary of the estuary, with particular
emphasis on the main tributaries and on the land areas separating them. The short and
tight channels outgoing the tributaries and the central unit of the Bay were partially
neglected. We note that the definition of the boundary required the addition of vertices
appearing only for the Delaunay triangulation, but not accounted for in the analysis (red
symbols in Figure 7c). Additional points (empty symbols in Figure 7c) were added for
the purpose of refining the quality of the Constrained Delaunay Triangulation.

Prediction results We applied the procedure detailed in Section 2, by setting
the number of bootstrap iterations to B = 150, and the bandwidth parameter to ε =
0.75. The latter value was chosen as to balance the trade-off between the locality of the
variogram estimate and its stability along the realization of the RDD. The analysis was
performed for values of K in {1, 2, 4, 8, 16}, K = 1 representing the case of Object
Oriented Kriging under a globally stationary model based on the Euclidean distance.
We here focus on the results obtained for K = 1 and K = 16.

Figure 8 reports the predicted medians using OOK with a Voronoi random domain
decomposition with K = 16 cells (Figure 8a) and using OOK when K = 1 (Figure
8b). Although we recognize a general agreement in the predicted patterns, the case
K = 16 is characterized by more localized features, compatible with the peculiar mor-
phology of the domain. This is more evident in the central part of the main branch of
the estuary. Similar patterns are visible from the maps of other quantiles, provided in
the supplementary material.
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(a) Predicted Median (K=16)
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Figure 8: Medians of the predicted distribution, by using the OOK with K = 16 or K = 1.

With regard to the monitoring program of the Bay, of particular interest are the
Dead zones. Figure 9 represents the predicted probability p of observing a DO value
below the attention limit of 2 mg/l, i.e., of being a Dead zone. Figure 9a represents
the predictions obtained through OOK when K = 16, Figure 9b when K = 1. For
ease of comparison between the probability maps, Figure 9 also reports the contour line
at p = 0.5. The latter may be used to identify the dead zones as those regions with
probability p > 0.5 of observing DO < 2 mg/l. When K = 16 these areas appear
larger, and localized not only in the main branch, but also in the main left tributary.
In fact, the values in the tributaries are likely to suffer from the smoothing effect of
neighboring locations when the Euclidean distance is in force. Such effect is instead
partially mitigated by the use of a random domain decomposition approach.

Finally, Figure 10 reports the bootstrap variance (as defined in (10)), and the Kriging
variance, defined as the average, along the bootstrap replicates, of the OOK variance,
i.e., σ2(s0) = 1

B

∑B
b=1 σ

2,b
OK(s0), with σ2,bOK(s0) being the kriging variance at the target

location s0, at the b-th iteration. We note that the highest uncertainty is associated with
the areas in the central left tributary, where only few observations are available, and
at the conjunction between the latter and the main branch. This latter area displays a
high local variability, and is located in a region of the domain with a high degree of
non-convexity. Regarding Figure 10b, we note that the Kriging variances do not appear
to be homogeneous in the region. This suggests that the local variogram estimated from
the data are indeed different in different locations. The aggregation of the variogram
models estimated at each iteration will be the scope of future work.

5 Conclusions and Discussion

We proposed a methodology for the analysis of spatial random fields of object data,
when the use of a global model for the observations is not appropriate either because of
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(a) Probability of DO < 2 mg/l (K=16)
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Figure 9: Probability of observing a DO value below the attention limit of 2 mg/l. The contour
line p = 0.5 is indicated by the thick solid line.

(a) Bootstrap variance (K = 16)
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Figure 10: Bootstrap and Kriging variances for RDD-OOK.
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data non-stationarities or due to domain complexities. Our approach is based upon the
idea of repeatedly and randomly partitioning the domain – through a Random Domain
Decomposition (RDD) – and then accordingly estimating multiple locally stationary
models, instead of a unique and globally non-stationary one.

Although RDD is here considered for the purpose of performing Kriging predic-
tions (RDD-OOK), the approach is entirely general and may be employed for different
types of analysis, e.g., classification or estimation of a drift. Here, the model for the
local mean may be extended to account for possible (scalar or object) covariates. For
instance, for the study of dissolved oxygen one may consider the auxiliary information
provided by the water temperature, salinity and dissolved nutrient concentrations (e.g.,
Prasad et al. (2011)). In this context, our method may be interpreted as alternative to
geographically-weighted regression, in an object-oriented setting.

Amongst the critical issues associated with the use of partitions and local models,
we mentioned the problem of the bias-variance trade-off. To borrow strength from data
outside the neighborhoods and lower the variance of the estimates within the tiles, we
proposed a geographically-weighted approach to estimate the trace-variogram. Here,
the use of a kernel greatly enhances the flexibility and robustness of the analysis, par-
ticularly for those sub-regions with few observations. In this setting, data-driven ap-
proaches may be developed to improve the selection of the parameters related with the
kernel and the tessellation. For instance, the parameters ε – controlling the bandwidth
of the kernel – could be chosen together with K – the number of neighborhoods – and
both may be selected locally to accommodate for possible non-homogeneous sampling
designs (see, e.g., Tavakoli et al. (2016)).

The OOK-RDD method, together with the use of kernel weighted variogram esti-
mates, open new venues for the use of directional data to enhance the prediction power
in the presence of complex phenomena. Indeed, even though for the examples here
discussed we always employed a simple isotropic kernel, one can readily envision more
complex kernel functions (e.g., anisotropic), able to capture and take advantage of the
prior knowledge on the phenomenon under investigation (e.g., directional dependence).
As a way of example, the problem of DO depletion within the Chesapeake Bay is known
to be influenced by the summertime wind direction (see, e.g., Scully (2010)) and such
information could be used to enhance its modeling based on anisotropic kernels.

The use of anisotropic (possibly locally varying) kernels may also be considered
as a driver for the definition of the partition. In this work, we considered Voronoi
tessellations that are consistent with the use of an isotropic kernel. Indeed, assigning a
location s0 to the nearest center is equivalent to its assignment to the center associated
with the highest value for the kernel, i.e., s ∈ V (ck|ΦK) iff Kε(ck, s) > Kε(cj , s)
for j 6= k. However, once a kernel has been identified, the RDD may be consistently
accommodated to account for peculiar non stationarities, as well as the design of the
experiment.

We remark that the use of a non-Euclidean metric as a measure of the adjacency re-
lations among the locations is in general incompatible with the valid covariance struc-
tures commonly used in geostatistics. This motivated us to locally consider an Eu-
clidean metric, even though both the partitions and the kernel are indeed based on a
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non-Euclidean metric. An interesting yet challenging future direction of research will
concern the development of a general theory of Kriging for random field defined on
non-Euclidean spatial domains, possibly represented through an undirected graph.

Finally, a remarkable open issue regards the uncertainty associated with the final
Kriging prediction. Simulation results suggest that the bootstrap variance may play a
major role in identifying areas of the field in which the local stationary assumption may
not be viable. Further research will be however needed to combine the latter with the
average kriging variance. Here, one should decouple the endogenous and exogenous
variability, the former due to the natural variability of the phenomenon (thus of the
prediction), the latter to the bagging algorithm. To this end, a general theoretical frame-
work should be established to formalize the relation between the model for the field and
the generation scheme of the random partitions.

SUPPLEMENTARY MATERIAL

Supplement: Additional figures and a simulated example (.pdf file). Codes used for
the case study are available upon request to the authors.
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1 A simulation study: random domain decomposition when
there is an optimal domain partition

This section present a simulated example, aimed to investigate the performance of the
method when its hypotheses are not met. We thus consider Kim et al. (2005), who pro-
posed a hierarchical Bayesian model to analyze spatial fields that are non-stationary in a
global sense, but stationary within independent and disjoint subregions. As mentioned
earlier, such model is outside the assumptions of our work.

We consider a square domain D = [−1, 1] × [−1, 1] partitioned in two subregions
D1 = [−1, 1] × [−1, 0] and D2 = [−1, 1] × [0, 1]. The random field {Xs, s ∈ D} is
generated by juxtaposition of two independent Gaussian random fields {X (1)

s , s ∈ D1}
and {X (2)

s , s ∈ D2}, each field being stationary within the corresponding domain. For
the field {X (1)

s , s ∈ D1}, we assume a model with mean 0 and exponential variogram,
with practical range 4 and sill 1, whereas for {X (2)

s , s ∈ D2} we consider a model with
mean 10, and exponential variogram with practical range 1.5 and sill 1. The reference
realization is shown in Figure 1.

Note that, unlike the example shown in the manuscript, in this case the domain does
not display any complexity, but it is rather the existence of a sharp partition between
two regions of the domain which moves the investigation.

As in the previous simulation example, we randomly select 250 points out of the
reference realization. We then perform the analysis with a Gaussian kernel Kε, with
ε = 1, while the random Voronoi partition is based upon the Euclidean distance over
D. The prediction results obtained by setting B = 100 and K = 8 are shown in Figure
2a. Figure 2b displays the plot of the bootstrap variance, defined, for any grid point s0
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Figure 1: Reference realization of a non-stationary process, when an optimal sharp partition
exists.

in target set D0, as

σ2B =
1

B

B∑
b=1

‖X ∗b
s0 −X

∗
s0‖

2, (1)

whereX ∗b
s0 is the prediction at s0 at the b-th iteration, X ∗

s0 is the final prediction obtained
by aggregation of theB bootstrap replicates, and ‖·‖ represents the norm on the feature
space, i.e., the absolute value (H = R). Intuitively, a large value of the bootstrap vari-
ance indicates large deviations of the predictions obtained along the B repetitions from
the final one. Graphical inspection of Figure 2b suggests a strong instability precisely
in correspondence of the boundary between the regions D1 and D2, thus suggesting a
localized problem with the notion of quasi-stationarity assumed by our approach.

Table 1 lists the simulation results for different values ofK ∈ {1, 2, 4, 8, 16, 32, 64}
and of n ∈ {100, 250, 500}. The results are obtained by repeating 50 times the analysis,
each time with a different subsample of the reference realization, but based on the same
set of parameters (B = 100, ε = 1). The OOK performances show only a slight
improvement when the perturbation generated by the random Voronoi decomposition
of the domain is introduced. The bias-variance trade-off related with the value of the
parameter K is also evident, as well as its interplay with the sample size n; larger
sample sizes offer the opportunity of finer partitions better capturing local stationarity.

We note that, although here an optimal partition in two sub-domains exists, MSPE
does not show a minimum for K = 2. In fact, our random domain decomposition
approach does not seek the optimal domain partition, but rather looks for partitions
which make the stationary assumption viable within each cell. In this example, such
partitions are finer than the optimal one because they aim at minimizing the part of the
domain covered by cells crossing the boundary between subregions.
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(a) Prediction via RDD-OOK (K = 8) (b) Bootstrap variance (K = 8)

Figure 2: Analysis of the non-stationary field of (Kim et al., 2005). In panel (b): colors are
given on a log-scale, to enhance the readability of patterns for lower values

n
K

1 2 4 8 16 32 64

100 0.0607 0.0595 0.0585 0.0581 0.0596 0.0614 0.0707
250 0.0385 0.0379 0.0375 0.0373 0.0371 0.0368 0.0375
500 0.0264 0.0259 0.0256 0.0255 0.0254 0.0251 0.0249

Table 1: Non-stationary simulation example. For different values of the sample size n: Average
values of MSPE over the M = 50 repetitions.
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Figure 3: Data at the Chesapeake Bay. (a) Scheme of the sampling locations. (b) average of
values of DO recorded during the summer season of each year between 1990 to 2006. In both
panels, colors are given according to the mean of DO values along the years 1990 to 2006.

2 Additional figures

This section contains additional figures related with the case study presented in the
manuscript.

Figure 3a and 3b show the DO data, collected at the 110 measurement locations in
the Bay for which data are available along the period 1990 to 2006. Figure 3a displays
the sampling scheme, while Figure 3b represent the average values of DO recorded
during the summer season of each year.

Figure 4 displays the the smoothed data, and the spatial distribution of the mean
and quartiles of the sampled data.

Figure 5 reports the predicted quartiles using OOK with a Voronoi random domain
decomposition with K = 16 cells ((a) to (c)) and using OOK when K = 1 ((d) to (f)).
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(c) 1st Quantile of DO
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Figure 4: Smoothed data at the Chesapeake Bay. (a): Smoothed PDFs at the sampled locations.
Colors are given according to their mean values. (b) to (e): Mean, 1st, 2nd and 3rd quartiles of
DO at the sampled locations. Colors in panels (a) to (e) are given on the same scale.
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(a) 1st Predicted Quartile
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Figure 5: Quartiles of the predicted distribution, by using the OOK with K = 16 (panels (a) to
(c)) or K = 1 (panels (d) to (f)).
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