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Abstract

In the past few years, Computational Fluid Dynamics (CFD) has become an
essential tool in the design and optimization of racing sailboats and in particular
America’s Cup yachts. The prevalent role of CFD in the design process is demon-
strated by the number of numerical simulations on different boat features, ranging
from hull and appendage design to sail optimization, that each America’s Cup syn-
dicate carries on during the boat design and its further development.

In this work, we report some of the numerical results obtained in the framework
of the research partnership between the Ecole Polytechnique Fédérale de Lausanne
(EPFL) and the Alinghi Team, in preparation to the 32nd edition of the America’s
Cup. A particular attention is devoted to the innovative aspects of the numerical
models that have been recently developed.

Introduction

An America’s Cup yacht is a very sophisticated system that should operate optimally
in a wide range of sailing conditions. The different components (above and beneath the
water surface) of a sailing yacht interact one another through several complex relations.
The design of an America’s Cup yacht must account for this complexity and requires
to set up suitable (experimental and numerical) tools able to describe as accurately as
possible the system, in order to achieve an optimal configuration.

To give an idea of the complex interactions that should be taken into account in
the design process, let us bound to a simple example. One way to reduce the viscous
resistance on the hull, that is the force in the course direction given by frictional effects,
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Figure 1: America’s Cup race course.

is reducing its wetted surface. This can be accomplished by reducing its beam (width),
keeping the same boat length. A reduction of beam decreases the heeling stability (i.e.
the stability around the longitudinal centerline of the boat) and, consequently, the forces
on the sails. We can see how a single change involves a domino effect on different areas
of the design process.

In America’s Cup match race, two buoys at a distance of 3.1 nautical miles are
positioned in the wind direction. Three laps between the two buoys have to be completed,
resulting in three upwind and three downwind legs (see Figure 1).

Upwind and downwind sailing call for different sailing techniques and the design of the
boat should accommodate the conflicting requirements arising from the two regimes. For
the sail rig, this problem is overcome through the use of different sets of sails (main and
genoa for upwind sailing, main and spinnaker/gennaker for downwind sailing). On the
other hand, in the underwater part, the possible changes during the race are restricted
to the trimming of rudder and keel trim tab. Yacht appendices have to be designed
to perform in both downwind sailing, where minimal drag should be attained, and in
upwind sailing, where they have to resist the forces and moments generated by the sails.

Moreover, an America’s cup yacht is constrained by the rules of the International
America’s Cup Class (IACC), which was first introduced in 1992 and since then it has
continuously evolved from one edition to the next. For the 32nd America’s Cup edition
that will take place in Valencia (Spain) during the summer 2007, a new edition (Version
5) of the IACC rules has been released. The major changes with respect to the previous
version include a 1 tonne reduction of the boat displacement, deeper keels (+100 mm)
and an increase in the maximum total sail area by around 50 m2 downwind. These
changes should make the racing closer with boats able to accelerate more readily and
stand a better chance of closing the gap on the leading boat on the downwind leg.

The IACC rules impose severe restrictions on a number of design factors, not only on
geometrical dimensions (depth, displacement, sail area), but also on flow control devices
(e.g. number of underwater moving surfaces) and materials. The main rule that plays
a crucial role in the evolution to the current America’s Cup configuration is known as
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Figure 2: Forces and moments on the water plane.

“the Formula” and is in fact an inequality involving a relation between boat length Lb,
sail area As and displacement D:

Lb + 1.25
√

As − 9.8 3
√

D

0.686
≤ 24 m (1)

A longer boat can be realized at the expense of lowering the sail area or increasing the
displacement. Further unilateral constraints are dictated for boat length, beam, draft
and displacement.

The standard approach adopted in the America’s Cup design teams to evaluate
whether a design change (and all the other design modifications that this change implies)
is globally advantageous, is based on the use of a Velocity Prediction Program (VPP),
which can be used to estimate the boat speed (and, in certain cases, the boat attitude) for
any prescribed wind condition and sailing angle βTW (the angle between the centerline
of the boat and the wind direction). A numerical prediction of boat speed and attitude
can be obtained by modeling the balance between the aerodynamic and hydrodynamic
forces acting on the boat. A diagram representing the hydrodynamic and aerodynamic
force as well as moment components acting in the water plane is presented in Fig. 2.

On the water plane, a steady sailing condition is obtained imposing two force balances
in x direction (aligned with the boat velocity) and y direction (normal to x on the water
plane) and a heeling moment balance around the centerline of the boat:

Dh + T a = 0,

Sh + Sa = 0, (2)

Mh + Ma = 0,
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where Dh is the hydrodynamic drag (along the course direction), T a is the aerodynamic
thrust, Sh is the hydrodynamic side force perpendicular to the course, Sa is the aerody-
namic side force, Mh and Ma are, respectively, the hydro mechanical righting moment
and the aerodynamic heeling moment around the boat mean line. The angle βY between
the course direction and the boat centerline is called yaw angle. The aerodynamic thrust
and side force can be seen as a decomposition in the reference system aligned with the
course direction of the aerodynamic lift and drag which are defined on a reference sys-
tem aligned with the apparent wind direction (Fig. 2). Similar balance equations can
be obtained for the other degrees of freedom.

In a VPP program, all the terms in system (2) are modeled as functions of boat
speed, heel angle and yaw angle. Suitable correlation between the degrees of freedom of
the system and the different force components can be obtained based on different sources
of information: experimental results, theoretical predictions and numerical simulations.
For a detailed presentation of Velocity Prediction Programs, we refer to [13, 5].

The role of advanced Computational Fluid Dynamics is to supply accurate estimates
of the forces acting on the boat in different sailing conditions in order to improve the
reliability of the prediction of the overall performance associated with a given design con-
figuration. Since 1983, when the keel of Australia II was designed using computational
methods [28], the subsequent America’s Cup campaigns have always been characterized
by an increasing interest in numerical simulations (see, e.g., [3, 4, 7, 6, 12, 20]).

In this paper, we describe the numerical methods adopted in the framework of the
collaboration between the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the
Alinghi Team, in preparation to the 32nd edition of the America’s Cup which will take
place in Valencia (Spain) in summer 2007. A selection of the numerical results ob-
tained on the different design aspects that have been investigated is also presented and
discussed.

1 Mathematical Model

1.1 The flow equations

Let Ω denote the three-dimensional computational domain in which we solve the flow
equations. If Ω̂ is a parallelepiped surrounding the boat B, the computational domain is
the complementary of B w. r. to Ω̂, that is Ω = Ω̂\B (see Fig. 3 for a two-dimensional
sketch). The equations that govern the flow around B are the density-dependent (or
inhomogeneous) incompressible Navier–Stokes equations, which read (see, e.g., [22]):

∂ρ

∂t
+ ∇ · (ρu) = 0 (3)

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) − ∇ · τ (u, p) = ρg (4)

∇ · u = 0 (5)
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for x ∈ Ω and 0 < t < T , and where ρ is the (variable) density, u is the velocity field, p is
the pressure, g = (0, 0, g)T is the gravity acceleration, and τ (u, p) = µ(∇u+∇uT )−pI

is the stress tensor with µ indicating the (variable) viscosity. The above equations have
to be complemented with suitable initial conditions and boundary conditions. For the
latter we typically consider a given velocity profile at the inflow boundary, with a flat
farfield free-surface elevation.

Ω

BΩ

Figure 3: A two-dimensional section of the computational domain Ω = Ω̂\B

In the case we are interested in, the computational domain Ω is made of two regions,
the volume Ωw occupied by the water and that Ωa occupied by the air. The interface
Γ separating Ωw from Ωa is the (unknown) free-surface, which may be a disconnected
two-dimensional manifold if wave breaking is accounted for. The unknown density ρ
actually takes two constant states, ρw (in Ωw) and ρa (in Ωa). The values of ρw and ρa

depend on the fluid temperatures, which are considered to be constant in the present
model. The fluid viscosities µw (in Ωw) and µa (in Ωa) are constants which depend on
ρw and ρa, respectively.

The set of equations (3)-(5) can therefore be seen as a model for the evolution of a
two-phase flow consisting of two immiscible incompressible fluids with constant densities
ρw and ρa and different viscosity coefficients µw and µa. In this respect, in view of
the numerical simulation, we could regard equation (3) as the candidate for updating
the (unknown) interface location Γ, then treat equations (4)-(5) as a coupled system of
Navier–Stokes equations in the two sub-domains Ωw and Ωa:

∂(ρwuw)

∂t
+ ∇ · (ρwuw ⊗ uw) − ∇ · τw(uw, pw) = ρwg,

∇ · uw = 0,

in Ωw × (0, T ),

∂(ρaua)

∂t
+ ∇ · (ρaua ⊗ ua) − ∇ · τ a(ua, pa) = ρag,

∇ · ua = 0,
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in Ωa × (0, T ). We have set τw(uw, pw) = µw(∇uw + ∇uw
T )− pwI, while τ a(ua, pa) is

defined similarly.
The free surface Γ is a sharp interface between Ωw and Ωa, on which the normal

components of the two velocities ua · n and uw · n should agree. Furthermore, the
tangential components must match as well since the two flows are incompressible. Thus
we have the following kinematic condition

ua = uw on Γ. (6)

Moreover, the forces acting on the fluid at the free-surface are in equilibrium. This
is a dynamic condition and means that the normal forces on either side of Γ are of
equal magnitude and opposed direction, while the tangential forces must agree in both
magnitude and direction:

τ a(ua, pa) · n = τw(uw, pw) · n + κσn on Γ, (7)

where σ is the surface tension coefficient, that is a force per unit length of a free surface
element acting tangential to the free-surface. It is a property of the liquid and depends
on the temperature as well as on other factors. The quantity κ in (7) is the curvature
of the free-surface, κ = R−1

t1 + R−1
t2 , where Rt1 and Rt2 are radii of curvature along the

coordinates (t1, t2) of the plane tangentially to the free-surface (orthogonal to n).

1.2 Modelling turbulence and transition

The flow around an IACC boat in standard race regime exhibits turbulent behaviour
over the vast majority of the yacht surface. Turbulent flows are characterized by being
highly unsteady, three-dimensional, containing vortices and coherent structures which
stretch and increase the intensity of turbulence. Even more importantly, they fluctuate
on a broad range of scales (in space and time). This feature makes the so-called direct
numerical simulation (DNS) unaffordable. The adoption of a RANS (Reynolds Averaged
Navier-Stokes) model is then required to deal with the turbulent nature of the flow.

The SST (Shear Stress Transport) model proposed by Menter [18] is an eddy-viscosity
model defined as a combination of a k−ω model (in the inner boundary layer) and k−ε
model (in the outer region of and outside of the boundary layer). A blending function
ensures a smooth transition between the two models.

The k−ε model has two main weaknesses: it over-predicts the shear stress in adverse
pressure gradient flows because of too large length scale (due to low dissipation) and it
requires near-wall modification (i.e. low-Reynolds number damping terms). The k − ω
model is better at predicting adverse pressure gradient flow and the standard model
of Wilcox [29] does not use any damping functions. However, the disadvantage of the
standard k − ω model is that it depends on the free-stream value of ω [17]. In order
to improve both the k − ε and the k − ω model, Menter [18] combines the two models.
Prior to that, it is convenient to transform the k− ε model into a k−ω model using the
relation ω = ε/(cµk).
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The two partial differential equations governing the turbulent kinetic energy k and
the turbulent frequency ω then reads:

D(ρk)

Dt
= Pk − Dk + ∇ · ((µ + σkµt)∇k) (8)

D(ρω)

Dt
= αρ

Pk

µt
− Dω + Cdω + ∇ · ((µ + σkµt)∇ω)

where Pk and PΩ are production terms, Dk and Dω destruction ones and Cdω results
from transforming the ε equation into an equation for ω. The coefficients in the SST
model are obtained by combining the value of the coefficients of the standard k − ω (in
the near wall region) to those of the k − ε model by using a blending function F1. We
refer to [18] for a detailed description of the model and its parameters.

Eddy-viscosity turbulence models, such as the one described here, are nowadays
widely adopted for the simulation of turbulent flows in engineering applications. Indeed,
they are able to recover with an acceptable accuracy the global behaviour related to the
turbulence nature of a flow. In particular, in presence of walls, they supply an accurate
description of turbulent boundary layers.

The laminar-turbulent transition is physical phenomenon as complex as turbulence
itself since involves the nonlinear interaction of flow perturbations that eventually evolves
towards a fully turbulent behaviour. Many models for transition prediction have been
proposed in the past decades [26, 15, 25, 16]. However, only recently transition models
have been fully integrated into RANS solver. Among them, the Langtry-Menter tran-
sition model [19] is based on a transport equation for the turbulence intermittency γ
which can be used to trigger transition locally. The intermittency function is coupled
with the SST turbulence model introduced above by turning on the production term
of the turbulent kinetic energy downstream of the transition point. In addition to the
transport equation for the intermittency, a second transport equation is solved in terms
of the transition onset momentum-thickness Reynolds number R̃eθt. This is done in or-
der to capture the non-local influence of the turbulence intensity, which changes due to
the decay of the turbulence kinetic energy in the freestream, as well as due to changes in
the free-stream velocity outside the boundary layer. This additional transport equation
is an essential part of the model as it relates the empirical correlation to the onset crite-
ria in the intermittency equation and allows the model to be used in general geometries
without interaction from the user.

The intermittency equation is given by

D(ργ)

Dt
= Pγ − Eγ + ∇ ·

((
µ +

µt

σf

)
∇γ

)
(9)

where Pγ and Eγ are the production and destruction/relaminization terms, respec-
tively. The production term Pγ is activated based on the value of the local vorticity
Reynolds number. The onset criterion depends on the local value of the transition onset
momentum-thickness Reynolds number R̃eθt which is computed by solving the following
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transport equation

D(ρR̃eθt)

Dt
= Pθt + ∇ ·

(
σθt(µ + µt)∇R̃eθt

)
. (10)

The source term Pθt is defined as

Pθt = cθt
ρ

t

(
Reθt − R̃eθt

)
(1 − Fθt)

where Reθt is calculated from empirical correlation and Fθt is a suitable blending func-
tion. Note that the empirical correlation is used only in the source term of the transport
equation for transition onset momentum thickness Reynolds number (10).

The interplay between the transition model and the SST turbulence model leads to
the following modifications in equations (8):

D(ρk)

Dt
= P̃k − D̃k + ∇ · ((µ + σkµt)∇k) (11)

D(ρω)

Dt
= αρ

Pk

µt
− D̃ω + Cdω + ∇ · ((µ + σkµt)∇ω)

with

P̃k = γPk,

D̃k = min(max(γ, 0.1), 1.0)Dk ,

F̃1 = max
(
F1, e

−(ρy
√

k/120µ)
8
)

,

and where Pk and Dk are the original production and destruction terms for the SST
model and F̃1 replaces the original SST blending function F1.

The CFD solver used in this work is Ansys-CFX. The RANS equations, as well as all
the partial differential equations required in the turbulence, transition and free-surface
models, are solved using a vertex-based finite volume method [24]. The free-surface is
tracked using the Volume of Fluid (VOF) method [10].

1.3 Coupling with a 6-DOF rigid body dynamical system

The attitude of the boat advancing in calm water or wavy sea is strictly correlated
with its performances. For this reason, a state-of-the-art numerical tool for yacht design
predictions should be able to account for the boat motion. This requires the coupling
between the fluid solver and a code able to compute the structure dynamics. In the case
at hand, the structural deformations can be neglected and only the rigid body motion
of the boat in the six degrees of freedom is considered.

Following the approach adopted in [1, 2], two orthogonal cartesian reference systems
are considered: an inertial reference system (O,X, Y,Z) which moves forward with the
mean boat speed and a body-fixed reference system (G,x, y, z), whose origin is the
boat center of mass G, which translates and rotates with the boat. The XY plane
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in the inertial reference system is parallel to the undisturbed water surface and the
Z − axis points upward. The body-fixed x-axis is directed from bow to stern, y is
positive starboard and z upwards.

The dynamics of the boat in the 6 degrees of freedom is determined by integrating the
equations of variation of linear and angular momentum in the inertial reference system,
as follows

mẌG = F (12)

¯̄T ¯̄I ¯̄T−1Ω̇ + Ω × ¯̄T ¯̄I ¯̄T−1Ω = MG (13)

where m is the boat mass, ẌG is the linear acceleration of the center of mass, F is the
force acting on the boat, Ω̇ and Ω are the angular acceleration and velocity, respectively,
MG is the moment with respect to G acting on the boat, ¯̄I is the tensor of inertia of
the boat about the body-fixed reference system axes and ¯̄T is the transformation matrix
between the body-fixed and the inertial reference system ([1] for details).

The forces and moments acting on the boat are given by

F = F Flow + mg + F Ext

MG = MFlow + (XExt − XG) × F Ext

where F Flow and MFlow are the force and moment, respectively, due to the interaction
with the flow and F Ext is an external forcing term (which may model, e.g., the wind
force on sails) while XExt is its application point.

To integrate in time the equations of motion, the second order ordinary differential
equations (12-13) are formulated as systems of first order ODE. If we consider, for
example, the linear momentum equation (12), it can be rewritten as

mẎ G = F , (14)

ẊG = Y G, (15)

where Y G denotes the linear velocity of the center of mass. This system is solved using
an explicit 2-step Adam-Bashforth scheme for the velocity

Y n+1 = Y n +
∆t

2m
(3F n − F n−1),

and a Crank-Nicholson scheme for the position of the center of mass

Xn+1 = Xn +
∆t

2
(Y n+1 + Y n).

For a convergence analysis of the scheme (as well as for a detailed description of the
integration scheme for the angular momentum equation), we refer to [14], where it is
shown that second-order accuracy in time is obtained. Moreover, the schemes features
adequate stability properties. Indeed, the stability restriction on time step are less severe
than the time step required to capture the physical time evolution.
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In the coupling with the flow solver, the 6-DOF dynamical system receives at each
time step the value of the forces and moments acting on the boat and returns values of
new position as well as linear and angular velocity. In the flow solver, these data are used
to update the computational grid (by a mesh motion strategy based on elastic analogy)
and the flow equations are solved on the new domain through an Arbitrary Lagrangian
Eulerian (ALE) approach.

2 Numerical Results

The numerical techniques described in the previous sections represent a relevant con-
tribution for the improvement of the CFD technology adopted for IACC yacht design.
In this section, we present an overview of the numerical results obtained on different
design aspects during the preparation for the 2007 edition of the America’s Cup, in
collaboration with the Alinghi Team, defender of the Cup. In the same context, an
advanced model for the simulation of the fluid-structure interaction between the flexible
sails and the wind has been developed. The results of the research on this subject will
be presented in a later paper [8].

2.1 Appendages optimization

One of the design areas where CFD simulations play a crucial role is the optimization of
the appendages. Keel, bulb, winglets and rudder should be shaped and sized (within the
degrees of freedom left by the strict IACC rules) in order to guarantee global optimal
performances.

Full-scale tests are still an invaluable ingredient of the design process: the final
step for taking every important design choice is always testing full scale on the real
boat. Several days of testing, with the two boats differing by the design detail under
investigation, are planned during every America’s Cup campaign by all the syndicates.

Although the final choice between two keel designs is customary taken on the ground
of two-boat testing comparisons and sailors’ preference, the way the two final keel shapes
are defined is determined by a deep numerical simulation analysis where many hundreds
of different keel shapes are considered as candidates.

The design analyses that can be carried out by CFD simulations cover all the possible
design variables that define a set of appendages. The great advantage of the numerical
approach relies on the possibility to test several different configurations and to have a
complete picture of the flow behaviour at every time instant.

Information about local distribution of flow quantities (such as, e.g. pressure, vor-
ticity and turbulence intensity) can be very useful to improve the hydrodynamic perfor-
mances. These information can be hardly obtained during a full-scale test and even in
a fully equipped experimental facility (wind tunnel or towing tank) each of these data
requires the setup of suitable measurement equipments. On the other hand, numeri-
cal simulations supply as outcome a complete database of relevant quantities about the
considered flow problem.
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Figure 4: Streamlines around the appendages.

A complete reconstruction of the flow around the appendages can help understanding
the formation of the main flow features (see, e.g., in Figure 4 a visualization of the vortex
generated around the bulb) and their interaction with the boat components.

Another example of flow structure that can be captured by numerical simulations is
the typical horseshoe vortex localized at the keel bulb intersection (see Figure 5, left). In
this case, local change in the bulb shape (dillets) have been analysed in order to minimize
the impact of this flow feature on the global performances. The range of boat speed and
attitude in which the appendages can work efficiently (e.g., without leading to local
flow separation or even stall) are also subject to numerical investigation. An accurate
numerical model should be able to predict the occurrence of these kind of phenomena
(see Figure 5, right).

Figure 5: Isosurface of total pressure around bulb and keel displaying the horseshoe vor-
tex generated around the keel-bulb junction (left) and separation bubble at the winglet-
bulb junction (right).
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The fluid-dynamic mechanism underlying the benefits observed when winglets are
adopted is qualitatively displayed in Figure 6. Comparing appendage configurations
with and without winglets shows that the latter have a strong impact on the vorticity
evolution in the appendage wake. This effect is even stronger when increasing the yaw
angle (and therefore the lift induced recirculation). Indeed, this vorticity reduction can
be related to a reduction of the induced drag on keel and bulb, which is considered to
be the most important beneficial effect induced by the presence of winglets.

The possibility to accurately predict the laminar-turbulent transition represents a
big step forward in naval hydrodynamics, in particular for appendage design. Indeed,
in this domain, the optimization process is often governed by trade-off analyses where
pressure and viscous drag play one versus the other. A typical example is given by the
comparison between a slender bulb and a shorter one (for constant weight/volume). If
the former usually guarantees a lower pressure drag, this advantage is counteracted by
a larger viscous drag due to the larger wetted surface. For this comparison, an accurate
estimation of the transition location is required to predict the viscous component of the
drag with an acceptable precision. Indeed, bulb and keel are often designed to work in

Figure 6: Cut plane of the vorticity field in the appendage wake. Top row: without
(left) and with (right) winglets at 0 degree yaw angle. Bottom row: without (left) and
with (right) winglets at 1.5 degree yaw angle.
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Figure 7: Results of the wind tunnel thermography: transition location on bulb (left),
keel suction side (middle) and keel pressure side (right).

Component Wind Tunnel CFD

Bulb 7-15 % 8 %
Keel (Pressure side) 12-23% 24%
Keel (Suction side) 62 % 57%

Table 1: Comparison between experimental and numerical predictions for transition
location.

a transitional regime where slight difference in shape can induce a significant change on
the location where laminar-turbulent transition occurs.

As illustrated in Section 1.2, the transition model adopted is able to take into account
not only natural transition mechanisms but also transition due to free-stream turbulence.
In order to calibrate the model on the configuration we were interested in, experimental
measurements have been carried on in the NCR’s 9m × 9m wind tunnel in Ottawa
(Canada). A 1.5:1 model scale (larger than the full scale!) of the appendages was
necessary in order to match the actual Reynolds number. A large amount of experimental
data have been generated for the CFD calibration, including global and local (on each
appendage element) force components, transition locations on keel and bulb, sensitivity
analysis with respect to freestream turbulence intensity.

In Figure 7, the results of the wind tunnel thermography for an upwind configura-
tion is presented. As expected, the extension of the laminarity region on pressure and
suction side is very different. The laminar-turbulent transition is located based on the
temperature gradient, since the heat exchange in a turbulent boundary layer is stronger
than in a laminar one. The same upwind configuration has been simulated numerically.
The laminar and turbulent regions on the appendage surface are displayed in Figure 8.

A quantitative comparison of laminarity extension on the different appendage ele-
ments is given in Table 1 and it seems to indicate that the model is able to predict with
acceptable accuracy the transition location.

As mentioned above, the adoption of the transition model, giving an automatic way
to estimate the transition location, is essential to compare different shapes with different

13



Figure 8: Results of the CFD transition analysis: transition location on suction side
(left) and pressure side (right) of the appendages. Laminar regions are shown in red,
turbulent ones in blue.

level of laminarity. A precise measure of the freestream turbulence intensity in wavy sea is
often difficult to estimate. However, since a clear dependence of the transition location on
the turbulence level imposed at the inlet boundary of the computational domain has been
shown, the model can be calibrated based on the available experimental data. Indeed,
when one experimental measure of the transition location on a reference configuration
is known, it is possible to modify the inlet level of turbulence in order to match the
transition location. In Table 2, the results of such kind of calibration are presented. In
this case, a downwind symmetric appendage configuration is considered. Note that the
value of inflow turbulent intensity that better matches the transition location measured
in the wind tunnel is the same that guarantees the best correlation in terms of total
force on the appendages. Laminar regions corresponding to different values of inflow
turbulent intensity are shown in Figure 9.

Due to the grid requirements imposed by the transition and turbulence models,
these simulations entail very large size computational grids (up to 20 millions elements).
The simulations were run on the EPFL’s Mizar cluster (450 AMD Opteron processors
connected by a Myrinet network). The CPU time required for each simulation to reach
convergence was about 30 hours on 32 processors.
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TU CD Error Bulb Lam. Keel Lam.

0.1% 0.0460 16% 18-26% 57%
0.15% 0.0483 12% 6-12% 57%
0.25% 0.0495 10% 5-6% 54%
0.5% 0.0558 1% 2-2.5% 29-36%

Exp. 0.0550 2% 27-30%

Table 2: Comparison between experimental and numerical predictions for transition
location.

Figure 9: Transition locations for different values of freestream turbulence intensity.
From top-left to bottom-right: TU = 0.1, 0.15, 0.25, 0.5.
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2.2 Free-surface simulations

The wave drag can be quite significant fraction on an America’s Cup hull, as much as the
60% of the total resistance at 10 knots of boat speed. An accurate determination of this
component is important when comparing the performances of two hull designs. Local
shape modifications require accurate analysis tools to correctly predict the performance
differences deriving from these subtle changes.

In a typical hull design process, designers explore the performance of a family of hull
shapes through a fast free-surface potential solver (see, e.g., [23]) to determine a set of
candidates to be tested in the towing tank.

Numerical simulations based on RANS models are integrated into the design process
in different ways: on one hand, they can be used to decrease the number of candidate
shapes for which models are to be constructed and tested in the towing tank; moreover,
they can be used to evaluate the free-surface flow in conditions where codes based on
the panel method are unable to resolve critical differences due to viscous effects.

Hereafter, we present some numerical investigations carried out on the Series 60
benchmark hull with the model described in Section 1 where free-surface phenomena
play a crucial role. Results on America’s Cup hulls with comparisons with towing tank
measurements are also presented and discussed.

2.2.1 Series 60 - Steady simulations

We first consider a standard free-surface test case for naval applications, that is the flow
around the Series 60 CB = 0.6 hull for which many experimental and numerical data
are available (see, e.g., [27, 11, 1]). For the present study, the flow was computed at a
Reynolds number Re=4 · 106 and a Froude number Fr=0.316.

Different grid resolution are considered ranging from around 10000 elements for the
coarsest grid to more than 1.5 millions for the finest. The wave pattern obtained on
the finest grid is compared with the experimental data in Figure 10. The results in
term of drag coefficients on the different grids are presented in Table 3 together with a
comparison with the experimental data from [11]. The data and the waveline convergence
on the hull given in Figure 11 indicate a good convergence of the numerical results to
the experimental measurements.

Grid Nx · Ny · Nz Ct Cp Cf

1 32 · 12 · 24 0.0084 0.0053 0.0030

2 64 · 24 · 48 0.0064 0.0033 0.0031

3 96 · 32 · 64 0.0059 0.0026 0.0033

4 192 · 64 · 128 0.0056 0.0023 0.0033

Exp. - 0.0058 - -

Table 3: Drag coefficient convergence for the Series 60 test case, Fr=0.316.
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Figure 10: Wavepattern around Series 60 hull (Fr=0.316): numerical results on the finest
grid (top) experimental data (bottom).
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Figure 11: Wavelines on Series 60 hull for different grid resolution, Fr=0.316.
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2.2.2 Series 60 - Dynamics in calm water

A complete set of validation studies on the coupling between the flow solver and the
6-DOF dynamical system has been carried out for the prediction of the ship’s running
attitude using the Series 60 hull. For a detailed description of the results we refer to
[14].

We report one of these studies in which the stabilization behaviour of the hull sub-
jected to a roll forcing moment (that may be due, for example, to a wind or current
gust) has been analysed. We start from a steady symmetric solution and we impose a
time dependent rolling moment given by

Mx,ext = 20H(0.5 − t)(sin(2t))2,

where H is the Heaviside function. Under this external moment the hull rotates by
about 15 degrees and then, through a damped oscillation, stabilizes to the symmetric
equilibrium state. The position of the hull and the free surface around it at different
time instants during the stabilization process are reported in Figure 12.

Figure 12: Bow wave around the hull at different time instant of the roll stabilization.

Two different roll moments of inertia, one double of the other, have been considered.
The time evolution of the roll angle for the two cases is given in Figure 13. As expected,
the hull with the smaller moment of inertia reaches a larger maximal roll angle and then
undergoes a faster stabilization with a smaller oscillation period. In Table 4, we report
the maximal amplitude of the oscillation Amax, the period T and the damping factor

defined as δ = ln

(
φj

φj+1

)
where φj is the value of the roll angle at the j-th maximum.
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Figure 13: Time evolution of the roll angle with different moments of inertia.

This kind of analysis can be very useful to characterize the dynamic behaviour of a boat.

Amax T δ

Ixx 0.098L 1.21 s 0.8

2Ixx 0.080L 1.64 s 0.5

Table 4: Damped oscillation parameters for different moments of inertia

2.2.3 Series 60 - Dynamics in wavy sea

Although the simulations in calm water are already useful to understand some of the
dynamical features of a hull and its natural frequencies with respect to each different
degree of freedom, the potential benefits coming from the introduction of the boat motion
model are fully exploited when the model is adopted for the analysis of the hull response
in wavy sea.

To this purpose, an incoming wave model based on the fifth order Stokes wave expan-
sion [9] has been implemented. This results in imposing a time dependent wave elevation
and the correspondent orbital velocity at the inflow boundary of the domain.

We have considered a wave amplitude λ = 0.05L where L is the boat length and
different wave frequencies correspondent to incoming wave length of values in the range
[0.5L,4L].

First a steady state simulation of the flow around the boat with no active degrees
of freedom and without incoming wave (as described in Section 1) is performed and the
solution is then used as initial condition for a time dependent simulation with incoming
waves and the boat free to sink and trim. After a short transient the boat dynamics
reaches an asymptotic periodic behaviour governed by the incoming wave characteristics.
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The contours of the free-surface height at different time instants during one period is
shown in Figure 14. We can appreciate the interaction between the incoming waves and
the hull generated wave pattern.

Figure 14: Contours of free-surface height at different time instant during one wave
period.

The dynamical response of the boat to the periodic forcing generated by the incoming
waves is presented in Figure 15 where the sink amplitude normalised to the incoming
wave amplitude, ξ = z/a, is plotted against the incoming wave frequency ω. The figure
clearly shows the presence of a resonance peak in correspondence to the natural sinking
frequency of the boat. The time evolution of sink for different values of frequency is
plotted in Figure 16 together with the corresponding wave profile. The amplitude of
the sink oscillation is similar to the wave amplitude for low frequencies with the boat
following the wave profile. The maximal amplitude is obtained with the natural sink
frequency of the boat and is around the double than the wave amplitude. Finally, as
expected, when encountering high frequency waves the sink response is almost null. For
a detailed description of the implementation of the incoming waves into the flow solver
and a complete presentation of the numerical results, we refer to [21].
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Figure 15: Dynamical response of the boat: sink amplitude as a function of the incoming
wave frequency.
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Figure 16: Asymptotic periodic behaviour of sink for different incoming wave frequency
compared with the correspondent incoming wave amplitude.
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2.2.4 IACC hull

The numerical scheme presented here for the prediction of boat dynamics can be a
powerful tool in America’s Cup yacht design. Many potential applications are being
explored and range from the dynamic response in waves to manoeuvring. We expect
this kind of numerical investigation could become the standard in the coming years.

Thus far, in the context of the America’s Cup design, this approach has been used to
reproduce towing tank experiments. Two IACC hull shapes, that will be referred to as
Hull 1 and Hull 2, have been considered. The two hulls have different bow designs and
towing tank experiments have been carried out to estimate drag and sink at different
boat speeds.

Numerical simulations have been carried out with a similar setup as the one used for
the Series 60 study, with just the sink degree of freedom activated, since in the towing
tank the trim, as well as the other degrees of freedom, were fixed.

In Figure 17 we show the time history of the sink value starting from the initial sink
position, correspondent to the hydrostatic equilibrium, and evolving through a damped
oscillation towards the hydrodynamic equilibrium. The wave pattern around the two
hulls at convergence are displayed in Figure 18.
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Figure 17: Time evolution of sink for the two hulls.

The numerical results show a good agreement in terms of forces and sink movement.
A comparison between the total drag on Hull 1 obtained with the numerical simulations
and the towing tank measurements at different boat speed is given in Figure 19, left.
The error is consistently lower than 2% for all boat speeds. A similar comparison for
the sink values at different boat speeds is presented in Figure 19, right. Again, we see a
good correlation between numerical and experimental results.

In the yacht design context, a numerical tool able to accurately predict forces and
attitudes is of utmost importance since it may reduce the need of carrying out expensive
experimental sessions in towing tank facilities. In this respect, it is crucial for the nu-
merical results to predict correct trends and variations between different configurations,
even more than to give precise estimation of absolute values.
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Figure 18: Wave patterns for Hull 1 (left) and Hull 2 (right) with a boat speed of 10 kts.

Figure 19: Drag (left) and sink (right) vs. boat speed: comparison between towing tank
measurements and numerical predictions for Hull 1.

For the case at hand, a consistent rating between the two hull designs considered can
be obtained from the numerical simulations as well as for the towing tank data, as shown
in Table 5 where the drag deltas between Hull 2 and Hull 1 at different boat speeds are
given.

BSP [kts]
(Hull 2-Hull 1) Drag Delta [N]

CFD Exp.

4 0.62 0.32
7 0.79 0.41
10 4.15 2.87

Table 5: Comparison of the drag deltas between Hull 2 and Hull 1 obtained with towing
tank measurements and numerical simulations.
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Conclusions

In this work, we have presented some of the most recent results on numerical fluid-
dynamic modelling obtained in the framework of the collaboration between the Ecole
Polytechnique Fédérale de Lausanne and the Alinghi Team in preparation of the 32nd

edition of the America’s Cup.
We have highlighted the importance that CFD analysis is achieving in the design

process of a racing yacht, devoting a particular attention to those modelling techniques
that represent a step forward in this field.

Among them, we have presented and discussed through numerical examples the re-
cent advances in transition modelling and its coupling with standard eddy-viscosity
turbulence models. We have shown how accurate predictions on transition location can
play a key role in the optimization of the appendages.

Finally, the coupling of a RANS solver with a 6-DOF dynamical model of the boat has
been presented together with recent results of free-surface simulations of boat dynamics
in calm and wavy water.
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