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Abstract

We present a comprehensive review of Discontinuous Galerkin Spec-
tral Element (DGSE) methods on hybrid hexahedral/tetrahedral grids
for the numerical modeling of the ground motion induced by large
earthquakes. DGSE methods combine the flexibility of discontinuous
Galerkin methods to patch together, through a domain decomposition
paradigm, Spectral Element blocks where high-order polynomials are
used for the space discretization coupled with a leap-frog time march-
ing schemes. This approach allows local adaptivity on discretization
parameters, thus improving the quality of the solution without affect-
ing the computational costs. The theoretical properties of the semidis-
crete formulation are also revised, including well-posedness, stability
and error estimates. A discussion on the dissipation, dispersion and
stability properties of the fully-discrete (in space and time) formulation
is also presented. The capabilities of the present approach are demon-
strated through a set on computations of realistic earthquake scenarios
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obtained using the code SPEED (http://speed.mox.polimi.it), an
open-source code specifically designed for the numerical modeling of
large-scale seismic events jointly developed at Politecnico di Milano by
The Laboratory for Modeling and Scientific Computing MOX and by
the Department of Civil and Environmental Engineering.

Introduction

In the last decades, the scientific research on elastic waves propaga-
tion problems modeled through the (visco)elastodynamics equation has
experienced a constantly increasing interest in the mathematical, geo-
physical and engineering communities. In particular, the use of numer-
ical simulations is a powerful tool to study the ground motion induced
by earthquakes in regions threatened by seismic hazards. The distin-
guishing features of a numerical method designed for seismic wave sim-
ulations are: accuracy, geometric flexibility and scalability. To be ac-
curate, numerical methods must keep dissipative and dispersive errors
low. Geometric flexibility is required since the computational domain
usually features complicated geometrical shapes as well as sharp media
contrasts. Additionally, higly realistic earthquake models are typically
characterized by domains whose dimension, ranging from hundreds to
thousands square kilometres, is very large compared with the wave
lengths of interest. This typically leads to a discrete problem featuring
several millions of unknowns. As a consequence, parallel algorithms
must be scalable in order to efficiently exploit high performance com-
puters.

Historically, one of the first numerical methods employed for the
solution of the elastodynamics equation was the finite difference (FD)
discretization [8], cf. [50, 81] for its application to real test cases.
Dispersion errors of low order FDs can be mitigated by introducing a
staggered grid approach for the velocity-stress formulation of the wave
equation as in [74, 107], or by using fourth-order FD schemes as in
[21, 33, 72]. An overview of the stability and dispersion properties of
three dimensional fourth-order FD scheme can be found in [80]. A
major challenge for the complicacy of FD methods is related to the
difficulty in the treatment of complicated domains and of free-surface
or absorbing boundary conditions. Suitable techniques were developed
in order to account for surface topography in [96]. We refer the reader
to [79] for a comprehensive review of FD schemes applied to seismic
waves propagation.

Another class of numerical methods that has been extensively used
for the approximation of the elastodynamics equation is that of spec-
tral methods. Introduced nearly fifty years ago for fluid dynamics
problem, spectral schemes based on truncated Fourier series have been
firstly applied to hyperbolic equations in [71] and to seismic waves
propagation in [68]. To handle more general boundary conditions, the
original version has been modified by using Chebychev or Legendre
polynomials, leading to the so-called pseudo-spectral formulation (see
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for example [67, 61, 110]). Nonetheless, applying standard spectral
methods on realistic geometries is difficult due to their poor flexibility
in handling complex domains and heterogeneous materials. An alter-
native consists in using iso-parametric approximations (e.g. quadratic
mapping [26, 63]) but this approach can be applied only to smooth
surfaces and thus it is not suitable for realistic cases.

Spectral element (SE) methods have been designed to improve
the flexibility of spectral methods, yet preserving their high accu-
racy. Firstly introduced in [83] for fluid dynamics problem, they are
based on local polynomial approximations very similar to that pro-
vided by the p-version of the finite element method [19]. Successively,
they have been extensively applied to the elastodynamics equation
[47, 64, 99, 48, 87, 89]. The success of spectral element discretization
is mainly due to their accuracy, flexibility and efficiency. Indeed, the
use of high-order polynomial expansion not only provides exponential
convergence to smooth solutions but also reduces drastically disper-
sion and dissipation errors. Moreover, the possibility to locally refine
the grid allows to deal with complex geometries and sharp material
interfaces. Finally, the use of Gauss-Legendre-Lobatto interpolation
points leads to a diagonal mass matrix and makes any explicit time-
integration scheme computationally efficient. Nowadays, thanks to the
aforementioned properties, SE methods probably provide the most suc-
cessful tool in computational seismology, in particular for large scale
applications, see for example [65, 66, 30]. SE schemes are based on
a fully continuous approximation which employs the same polynomial
degree in all the cells. For this reason, in highly heterogeneous me-
dia or in regions where the geometry requires local refinement of the
grid, the spread of the number of unknowns and the need of too re-
strictive conditions on the time step, can lead to high computational
costs. Furthermore, SE methods are historically based on discretiza-
tions made by tensor product elements (i.e., quadrilateral elements in
2D and hexahedral elements in 3D). However, generating hexahedral
grids for complex geometries may require a huge computational and
human effort. Indeed, automatic mesh procedures with hexahedral
elements are not able to accurately reproduce complex interfaces be-
tween different layers, especially when small angles are involved. The
issues concerning the grid generation can be overtaken by using tetra-
hedral and/or hybrid meshes. Indeed, different (both commerical and
open-source) softwares are available for the automatic generation of
3D unstructured tetrahedral grids, able to deal with very complex do-
mains. To exploit this flexibility in the meshing process, high-order or
spectral element methods have been extended to tetrahedral elements
based on either nodal or modal approximations. Examples of nodal
(or Lagrangian) basis functions can be found in [57, 106, 108], while a
modal basis approximation has been originally proposed in [43]. The
latter exploits a warped tensor product structure and has the very in-
teresting property of being orthogonal with respect to the L2 scalar
product, but unfortunately it is not suitable for a global continuous
approximations. This basis has been modified in [102] by introducing
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the so called boundary adapted basis in order to enforce the continuity
between the elements. Differently from their hexahedral counterpart,
both the nodal and the modal approach lead to mass matrices that
are no longer diagonal. Therefore, when used with explicit time inte-
grators, the inversion of a global mass matrix at each time-step has
a high impact on the computational efficiency. For this reason SE
on tetrahedral grids encountered up to now a limited interest in the
seismology community. An example of a triangular spectral element
approximation based on nodal basis functions can be found in [77].

Another numerical method that in recent years has been extensively
used for elastic waves propagation is the Discontinuous Galerkin (DG)
method [92, 58, 40]. DG methods employ a discontinuous approxima-
tion of the solution based on standard finite elements formulation com-
bined with suitable approximations of interface conditions between the
elements [17]. Thanks to their intrinsically local nature, DG methods
are particularly well suited to handle highly heterogeneous media, e.g.
strong contrasts in the soil properties, or in soil-structure interaction
problems, where local refinements are needed to resolve the different
spatial scales. Indeed, it is possible to tailor the local mesh size and
the local polynomial approximation degree to the region of interest, ac-
cording to the mechanical properties or the geometrical features of the
computational domain. In this framework the two main approaches
developed in literature rely on the displacement formulation or on the
stress-velocity formulation, respectively. In the displacement formula-
tion the DG approximation is usually based on the interior penalty
technique, both in its symmetric and non-symmetric version, see for
example [95, 38]. These schemes have been further improved to take
into account viscoelastic effects in [93]. The stress-velocity formulation
is usually combined with a flux approximation at the interfaces, similar
to the one of the finite volume methods. Examples can be found in
[62, 44], where the flux term is treated by using an upwind method. It is
worth mentioning that in these works the DG scheme is combined with
an Arbitrary high order DERivatives (ADER) time integration scheme
in order to obtain high-order accuracy in the space-time domain. The
ADER-DG method has been successfully employed in several appli-
cations, from seismic wave propagation problems [45, 30] to dynamic
rupture simulation [84]. Moreover, in the ADER-DG framework, a
discontinuous discretization on two dimensional non-conforming hy-
brid grids has been introduced in [56]. In order to reduce dissipative
effects introduced in the aforementioned method, in [39, 46] a DG
method based on centered fluxes is proposed. A slightly modified ver-
sion of this approach is considered in [78] to account for arbitrary
heterogeneous media. DG approaches (both in its high-order or spec-
tral element version) provide accurate solutions and are well suited
for parallel implementation. For a detailed analysis of the different
DG formulations available in literature the reader is referred to [17].
All these methods are designed on general triangular and tetrahedral
grids and employ different polynomial approximations strategies. For
example, the ADER-DG scheme is based on a modal approximation
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that exploits the Dubiner basis, while the method presented in [78]
employs a nodal basis built from the warp and blend interpolation
nodes [108, 58]. In spite of their intrinsic parallel nature, DG methods
are still not competitive with SE methods in terms of efficiency, at
least for wave propagation problem. The first reason is that to cover
the same volume, a much larger number of tetrahedra than hexahedra
needs to be used. Moreover, since DG methods consider local poly-
nomial approximations, a major drawback is the proliferation of the
number of degrees of freedom. Finally, the computation of fluxes at
all the interfaces requires the evaluation of dense matrix-vector prod-
ucts that can significantly slow down the overall wall-time. For the
above mentioned reasons, a DGSE approach based on a domain de-
composition paradigm has been introduced in [15]. More precisely, the
discontinuities are imposed only at the interfaces between suitable non-
conforming macro-regions, so that the flexibility of the DG methods is
preserved without loosing the accuracy and efficiency of SE methods.

One of the crucial aspects of numerical methods for waves propaga-
tion is their capacity to limit dispersive and dissipative effects affecting
the discrete solution. DGSE methods feature very low dispersion and
dissipation errors thanks to the their ”SE engine”. They require a
small number of grid points per wavelength to retain the same level of
accuracy [36]. The dispersion properties of high-order methods for the
scalar wave equations have been analysed in [3] and in [4], where differ-
ent kinds of DG approximations were considered. In the elastic case,
the dispersive behaviour of spectral element methods has been analysed
in [98] using a Rayleigh quotient approximation of the eigenvalue prob-
lem resulting from the dispersion analysis. DGSE approximations on
quadrilateral grids have been investigated using a plane wave analysis
in [38] and in [15]. A similar approach has been presented for spectral
elements and DGSE approximations on triangular grids [75, 73], where
different sets of interpolating nodes have been compared, and in [14],
where the authors have used the modal boundary adapted functions
proposed in [103]. All these works deal with two-dimensional model
problems and show that triangular spectral elements feature dispersion
and dissipation properties similar to those of the standard tensor prod-
uct spectral elements. The extension to three dimension is presented
in [49], and a similar conclusion can be drawn.

The aim of this work is to present a comprehensive review on de-
terministic numerical modeling of seismic waves based on DGSE meth-
ods on hybrid hexahedral/tetrahedral grids. These methods combine
the flexibility of discontinuous Galerkin methods to connect together,
through a domain decomposition paradigm, Spectral Element blocks
where high-order polynomials are used. DGSE methods are imple-
mented in SPEED (SPectral Elements in Elastodynamics with Discon-
tinuous Galerkin - http://speed.mox.polimi.it), an open-source
code aims at simulating large-scale seismic events in three-dimensional
complex media: from far-field to near-field including soil-structure in-
teraction effects. SPEED is jointly developed at Politecnico di Milano
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by The Laboratory for Modeling and Scientific Computing (MOX)
of the Department of Mathematics and the Department of Civil and
Environmental Engineering. More precisely, we will review the main
advantages of this approach in terms of stability, accuracy, dispersion
and dissipation properties, as well as computational costs.

The rest of this paper is organized as follows. In Section 1 we in-
troduce the physical problem and governing equations. A particular
emphasis is given to the review of the key ingredients needed to set up
a highly realistic model for the numerical simulation of the ground mo-
tion induced by large earthquakes, namely, the modeling of the seismic
source, absorbing boundaries and suitable damping terms. In Section
2 we present the numerical method which is based on a Discontinuous
Spectral Element method for the space discretization coupled with a
leap-frog time marching scheme. In Section 3 we revise the theoreti-
cal results for the semi-discrete formulation and include the stability
and the corresponding error estimates for the semi-discrete problem
whereas Section 4 is concerned with the dissipation, dispersion and
stability analysis for the fully discrete scheme. In Section 5 we report
some numerical computations of realistic earthquake scenarios in order
to fully exploit the capabilities of the present approach. These results
have been obtained using SPEED. Finally, some technical results are
contained in Appendix A.

1 Physical problem and governing equa-
tions

An earthquake is the result of a sudden release of energy in the outer
layers of the Earth’s crust. The strain energy slowly accumulated over
the time is transformed into kinetic energy and radiated in all direc-
tions through the Earth’s layers. Seismic waves are energy waves that
produce a vibratory ground motion through the Earth’s media during
their passage. By studying the main properties of this induced motion,
using suitable numerical techniques, it is possible to assess the seismic
hazard of a certain region and prevent damages caused by future earth-
quakes. Seismic waves can be divided into two main categories: body
waves and surface waves. Body waves travel through the interior of the
Earth and they are further split into pressure (P) and shear (S) waves.
P-waves generate a ground motion that is aligned with the direction of
the wavefield, they can travel through all media (solids and liquids) and
are characterized by the highest wave velocities, ranging from 1.5 to 6
km/s. S-waves are transversal waves that induce a ground motion per-
pendicular to the wave propagation field and, differently from pressure
waves, they can travel only through solid media. In three dimensions,
shear waves exhibit polarization properties. Namely, S-waves can be
split into SH-waves (polarized in the horizontal plane) and SV-waves
(polarized in the vertical plane). S-waves are slower than P-waves, in-
deed they travel at approximately 250 m/s to 3.5 km/s. When body
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waves reach the Earth’s surface, they generate surface waves, such as
Love or Rayleigh waves, that induce a rolling and a circular ground
motion, respectively. Surface waves are characterized by the slowest
wave velocities and have a longer period of oscillation and a larger am-
plitude with respect to body waves. Surface waves are responsible of
the major damages occurring during an earthquake.

In the following we introduce the mathematical model that de-
scribes the propagation of seismic waves within the Earth’s media. We
consider a bounded domain Ω ⊂ R3 (representing the portion of the
ground where we study wave propagation), and assume that its bound-
ary is decomposed into three disjoint portions ΓD, ΓN and ΓNR, where
we the values of the displacement, the values of tractions, and the
values of fictitious tractions in order to avoid unphysical reflections,
respectively.

Considering a temporal interval (0, T ], with T > 0, the dynamic
equilibrium equation for a viscoelastic medium subject to an external
force leads to the following formulation

ρü+ 2ρζu̇−∇ · σ(u) + ρζ2u = f in Ω× (0, T ],

u = 0 on ΓD × (0, T ],

σ(u)n = t on ΓN × (0, T ],

σ(u)n = t∗ on ΓNR × (0, T ],

u = u0 in Ω× {0},
u̇ = v0 on Ω× {0},

(1)

where ρ is the medium density, u = u(x, t) is the displacement field,
σ(u) is the stress tensor and f = f(x, t) is a given external load (rep-
resenting e.g. a seismic source). On the boundary we impose a rigidity
condition on ΓD, a traction t = t(x, t) on ΓN and a fictitious traction
t∗ = t∗(x, t) on ΓNR. The exact expression of the term t∗ will be
discussed later on. Finally, u0 and v0 are smooth initial values for the
displacement and the velocity field, respectively. We assume that ρ is
a uniformly bounded, strictly positive function. In (1) the parameter
ζ ≥ 0 (usually referred to as damping factor) is a decay factor with
the dimension of the inverse of time and it is supposed to be piece-
wise constant in order to model media with sharp elastic impedance
and damping behaviors. The term 2ρζu̇ + ρζ2u can also be seen as
an alternative or a complement to absorbing boundary conditions [69].
Usually, in engineering applications, if ζ > 0, the viscoelastic behav-
ior of a material is expressed through the adimensional quality factor
Q, defined as Q = Q0f/f0, where f0 is a reference frequency and
Q0 = πf0/ζ.

For the stress tensor σ we use the following constitutive equation
(Hooke’s law):

σ(u) = λtr(ε(u))I + 2µε(u), (2)

where ε(u) = (∇u + ∇Tu)/2 is the strain tensor, I is the identity
tensor, λ = λ(x) ∈ L∞(Ω) and µ = µ(x) ∈ L∞(Ω) are the first and
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second Lamé elastic coefficients, respectively, and tr(·) is the trace
operator. By introducing the fourth order Hooke’s tensor D, relation
(2) can also be written as

σ(u) = D ε(u),

with D a uniformly bounded and symmetric and positive definite ten-
sor. We recall that the Lamé coefficients and the mass density are
related to the compressional and shear wave velocities through the
following relations

cP =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
, (3)

respectively.

1.1 Modeling the seismic source

In this section we discuss the nature of the source term f in (1). In
practical applications f can be a point-wise force acting on a point x0

in the ith direction, i.e.

f(x, t) = f(t)eiδ(x− x0),

where ei is the unit vector of the ith Cartesian axis, δ(·) is the delta
distribution, and f(·) is a function of time. The expression of f(·)
can be selected among different waveforms. A relevant example is the
Ricker wavelet [91], defined as

f(t) = f0(1− 2π2f2
p (t− t0)2)e−π

2f2
p (t−t0)2 ,

where f0 is the wave amplitude, fp is the peak frequency of the signal
and t0 is a fixed reference time.

Another possible choice of the seismic input is a vertically incident
plane wave. In particular, a uniform distribution of body forces along
the plane z = z0 of the form f(x, t) = f(t)eiδ(z − z0) generates a
displacement in the ith direction of the form

ūi(x, t) =
1

2ρc
H(t− |z − z0|

c
)

∫ t− |z−z0|
c

0

f(τ) dτ, (4)

where H(·) is the Heaviside function and c (= cP or cS) is the wave
velocity, see [54]. Taking the derivative with respect to time of (4) and
evaluating the result at z = z0 we can express f(t) as

f(t) = 2ρc
∂ūi
∂t

.

Finally, one of the most important seismic input in earthquake
simulation is the double-couple source force. Its mathematical repre-
sentation is based on the seismic moment tensor m(x, t), defined in [5]
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as

mij(x, t) =
M0(x, t)

V
(sF,inF,j + sF,jnF,i) i, j = 1, .., 3,

where nF and sF denote the fault normal and the rake vector along the
fault, respectively. M0(x, t) describes the time history of the moment
release at the point x and V is the elementary volume of the force.
The equivalent body force distribution is finally obtained through the
relation f(x, t) = ∇ · m(x, t), see [47]. We recall that the seismic
moment M0, measured in Nm, can be used to obtain the value of the
seismic magnitude Mw as

Mw =
2

3
log10M0 − 6.

The seismic magnitude scale, expressed through the adimensional value
Mw, is used by seismologists to classify the size of earthquakes in terms
of the energy released. A variation of one in the seismic magnitude scale
corresponds to a 31 times increase in terms of the energy released. For
instance, an earthquake of magnitude Mw ≈ 8 will release 31 times the
energy of an earthquake of magnitude Mw ≈ 7.

1.2 Modeling absorbing boundaries

One crucial aspect to be taken into account for the correct simulation
of (visco)elastic waves propagation in unbounded domains is how to
properly choose absorbing boundary conditions at artificial boundaries.
A possible approach consists in modelling the absorbing boundary lay-
ers by introducing a fictitious traction term on ΓNR, consisting of a
linear combination of displacement space and time derivatives. Here,
we consider the local P3 paraxial condition presented in [104], which
is sufficiently accurate if cP /cS ≤ 2, as in the application under con-
sideration. Let n = [nx, ny, nz]

T be the unit normal vector to ΓNR
and let τ1 = [τ1,x, τ1,y, τ1,z]

T and τ2 = [τ2,x, τ2,y, τ2,z]
T be a couple of

mutually orthogonal unit vectors that lie on the plane tangent to the
boundary, the P3 paraxial absorbing conditions read as

∂
∂n (u · n) = − 1

cP
∂
∂t (u · n) + cS−cP

cP

[
∂
∂τ1

(u · τ1) + ∂
∂τ2

(u · τ2)
]
,

∂
∂n (u · τ1) = − 1

cS
∂
∂t (u · τ1) + cS−cP

cP
∂
∂τ1

(u · n),
∂
∂n (u · τ2) = − 1

cS
∂
∂t (u · τ2) + cS−cP

cP
∂
∂τ2

(u · n).

.

(5)
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The stress σ∗ = σ∗(u) defined on the absorbing boundary in the local
coordinate system (τ1, τ2,n) has the following expression

σ∗τ1,τ1 = (λ+ 2µ)
∂

∂τ1
(u · τ1) + λ

[
∂

∂τ2
(u · τ2) +

∂

∂n
(u · n)

]
,

σ∗τ1,τ2 = µ

[
∂

∂τ2
(u · τ1) +

∂

∂τ1
(u · τ2)

]
,

σ∗τ2,τ2 = (λ+ 2µ)
∂

∂τ2
(u · τ2) + λ

[
∂

∂τ1
(u · τ1) +

∂

∂n
(u · n)

]
,

σ∗τ1,n = µ

[
∂

∂n
(u · τ1) +

∂

∂τ1
(u · n)

]
,

σ∗n,n = (λ+ 2µ)
∂

∂n
(u · n) + λ

[
∂

∂τ1
(u · τ1) +

∂

∂τ2
(u · τ2)

]
.

σ∗τ2,n = µ

[
∂

∂n
(u · τ2) +

∂

∂τ2
(u · n)

]
.

By inserting the above espression in (5), the traction term t∗ = [t∗τ1 , t
∗
τ2 , t

∗
n]T =

σ∗(u)n in the local coordinate system (τ1, τ2,n) reads as

t∗τ1t∗τ2
t∗n

 =


µ(2cP−cS)

cS
∂
∂τ1

(u · n)− µ
cS

∂
∂t (u · τ1)

µ(2cP−cS)
cS

∂
∂τ2

(u · n)− µ
cS

∂
∂t (u · τ2)

λcS+2µ(cP−cS)
cS

[
∂
∂τ2

(u · τ1) + ∂
∂τ1

(u · τ2)
]
− λ+2µ

cS
∂
∂t (u · n)

 .
Finally, the expression of t∗ in the global coordinate system can be
recovered by writing the normal and the tangential derivatives as

∂

∂n
= nx

∂

∂x
+ ny

∂

∂y
+ nz

∂

∂z
,

∂

∂τ1
= τ1,x

∂

∂x
+ τ1,y

∂

∂y
+ τ1,z

∂

∂z
,

∂

∂τ2
= τ2,x

∂

∂x
+ τ2,y

∂

∂y
+ τ2,z

∂

∂z
,

and then projecting the resulting vector on the global coordinate sys-
tem by

t∗(x, t) =

t∗xt∗y
t∗z

 =

τ1,x τ2,x nx
τ1,y τ2,y ny
τ1,z τ2,z nz

t∗τ1t∗τ2
t∗n

 .
Details on the practical choice of the vectors (τ1, τ2) can be found in
[27].

2 Numerical discretization

In this section we describe the numerical approximation of the (weak
formulation) of (1) through a Discontinuous Spectral Element method
coupled with a leap-frog time marching scheme.
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For an open, bounded, polygonal domain D ⊂ R3 and for a non-
negative integer s we denote by Hs(D) the L2 Sobolev space of order
s and by ‖ · ‖s,D and | · |s,D the corresponding norm and semi-norm.
In addition, for s = 0, we write L2(D) in place of H0(D). We set
Hs(D) = [Hs(D)]3 and Hs(D) = [Hs(D)]3×3, and denote by (·, ·)D
and 〈·, ·〉∂D the corresponding L2 and L2 inner products. Finally, we
introduce the following space for time dependent functions defined on
the interval (0, T )

Lq(0, T ;Hs(D)) = {v : (0, T )→ Hs(D) s.t.

∫ T

0

‖v‖qs,Ddt < +∞}, 1 ≤ q <∞.

cf. [1]. For vector- and tensor-valued functions the above space is
defined analogosuly. The space C0(0, T ;Hs(D)) and C1(0, T ;Hs(D))
are defined analogously.

Let V = {v ∈ H1(Ω), v = 0 on ΓD}; the weak formulation of
problem (1) read as: ∀t ∈ (0, T ] find u(t) ∈ V such that

(ρü(t),v)Ω+(2ρζu̇(t),v)Ω+(ρζ2u,v)Ω+A(u(t),v) = F(v) ∀v ∈ V,
(6)

supplemented with the initial conditions u(0) = u0 and u̇(0) = v0,
where

A(u,v) = (σ(u), ε(v))Ω, F(v) = (f ,v)Ω + 〈t,v〉ΓN
+ 〈t∗,v〉ΓNR

.

If ΓNR = ∅ and ζ = 0, the above problem is well-posed and its unique
solution u ∈ C0(0, T ;V ) ∩C1(0, T ;L2(Ω)), provided that ρ ∈ L∞(Ω),
u0 ∈ V , v0 ∈ L2(Ω), f ∈ L2(Ω;L2(0, T )) and t ∈ L2(ΓN ;L2(0, T )),
see for instance [90, Theorem 8.3-1].

2.1 Partitions and trace operators

We consider a (not necessarily conforming) decomposition TΩ of Ω
into L nonoverlapping polyhedral sub-domains Ω`, i.e., Ω = ∪`Ω`,
Ω` ∩ Ω`′ = ∅ for ` 6= `′. On each Ω`, we built a conforming, quasi-
uniform computational mesh Th`

of granularity h` > 0 made by open
disjoint elements Kj` , and suppose that each Kj` ∈ Ω` is the affine image

through the map F j` : K̂ −→ Kj` of either the unit reference hexahedron

or the unit reference tetrahedron K̂. Given two adjacent regions Ω`± ,
we define an interior face F as the non-empty interior of ∂K+ ∩ ∂K−,
for some K± ∈ Th`±

,K± ⊂ Ω`± , and collect all the interior faces in

the set FIh . Moreover, we define FDh , FNh and FNRh as the sets of
all boundary faces where displacement, traction or fictitious tractions
are imposed, respectively. Implicit in this definition is the assumption
that each boundary face can belong to exactly one of the sets FDh ,
FNh , FNRh . Finally, we collect all the boundary faces in the set Fbh. To
carry out the analysis, we suppose that the following mesh assumption
holds, see [85, 52], (see also [41, 42] for the case of highly discontinuous
coefficients).
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Assumption 2.1. Mesh assumption. For any element K ∈ Th and
for any face F ⊂ ∂K, it holds hK . hF .

We refer to[24], for example, for the weakening of the above assumption
and to [23, 10] for for the use of polyhedral-shaped elements.
Let K± ∈ Th`±

,K± ⊂ Ω`± be two elements sharing a face F ∈ FIh ,
and let n± be the unit normal vectors to F pointing outward to K±,
respectively. For (regular enough) vector and tensor-valued functions
v and τ , we denote by v± and τ± the traces of v and τ on F , taken
within the interior of K±, respectively, and set

[[v]] = v+ � n+ + v− � n−, [[τ ]] = τ+ n+ + τ− n−,

{v} =
v+ + v−

2
, {τ} =

τ+ + τ−

2
,

where v�n = (vTn+nTv)/2. On F ∈ Fbh, we set {v} = v, {τ} = τ ,
[[v]] = v � n, [[τ ]] = τn.

2.2 Discontinuous Galerkin Sprectral Element ap-
proximation

To each subdomain Ω` we assign a nonnegative integer N`, and intro-
duce the finite dimensional space

VN`

h`
(Ω`) = {v ∈ C0(Ω`) : v

∣∣
Kj

`

◦ F j` ∈ [MN`(K̂)]3 ∀ Kj` ∈ Th`
},

where MNk(K̂) is either the space PNk(K̂) of polynomials of total degree

at most Nk on K̂, if K̂ is the reference tetrahedron, or the space QNk(K̂)

of polynomials of degree Nk in each coordinate direction on K̂, if K̂ is
the unit reference hexahedron in R3. We then define the space VDG

as VDG =
∏
`V

N`

h`
(Ω`). The semi-discrete SIPG approximation of

problem (6) reads: ∀t ∈ (0, T ], find uh = uh(t) ∈ VDG such that∑
Ω`

(ρüh(t),v)Ω`
+
∑
Ω`

(2ρζu̇h(t),v)Ω`
+Ah(uh(t),v)

+
∑
Ω`

(ρζ2uh,v)Ω`
= Fh(v) (7)

for any v ∈ VDG, subjected to the initial conditions uh(0) = u0,h and
u̇h(0) = v0,h. The right-hand side Fh(·) is defined as

Fh(v) =
∑
Ω`

(f ,v)Ω`
+ 〈t,v〉FN

h
+ 〈t∗,v〉FNR

h
v ∈ VDG,

where we have used the short-hand notation 〈w,v〉FN
h

=
∑
F∈FN

h
〈w,v〉F

and 〈w,v〉FNR
h

=
∑
F∈FNR

h
〈w,v〉F . The bilinear form Ah(·, ·) in (7)

is defined as

Ah(u,v) =
∑
Ω`

(σ(u), ε(v))Ω`
− 〈{σ(u)}, [[v]]〉FI

h

− 〈[[u]], {σ(v)}〉FI
h

+ 〈η[[u]], [[v]]〉FI
h
, (8)

where, as before, 〈w,v〉FI
h

=
∑
F∈FI

h
〈w,v〉F .
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Remark 2.2. If L = 1, i.e., if there is only one subdomain, FIh = ∅
and the formulation (7) correspond to the classical Spectral Element
method. In this case, we will denote the corresponding discrete space
as VCG, to highlight that the corresponding semi-discrete solution is
globally continuous. On the other hand if L > 1 the discrete solution
is piecewise discontinuous across macroelements and (weak) continuity
is enforced based on employing, at a subdomain level, the symmetric
interior penalty DG (SIPG) method [15]. Notice that here the essential
boundary conditions are enforced strongly. In the context of a “fully”
DG approach, i.e., the DG paradigm is employed elementwise, relevant
applications of the SIPG method to elastic wave propagation problems
can be found in [94, 38], while in [95] the same problem is solved based
on employing the non-symmetric version of the interior penalty method
(NIPG) [109]. Other DG methods based on the flux approximation at
element interfaces have been considered for the elastodynamics problem
in [44, 39, 78] for the stress-velocity formulation and in [9] for both
the displacement and the stress-displacement formulation. We refer to
[9] for a unified analysis of the h-version of the method and to [14, 12]
for the hp-version of the method and its analysis.

2.3 Fully discrete formulation

In this section we address the issue of integrating in time the semi-
discrete formulation (7). By fixing a basis for the discrete space VDG,
the semi-discrete algebraic formulation of problem (7), reads as

MÜ(t) + (M2 + S)U̇(t) + (A + M3 + R)U(t) = F(t), (9)

supplemented with suitable initial conditions U(0) = U0 and U̇(0) =
V0. Here, denoting by Ndof be total number of degrees of freedom,
the vector U = U(t) ∈ RNdof contains, for any time t, the expansion
coefficients of the semi-discrete solution uh(t) ∈ VDG in the chosen set
of basis functions. Analogously, M,M2,A,M3 are the matrices repre-
sentations of the bilinear forms∑

Ω`

(ρüh(t),v)Ω`
,
∑
Ω`

(2ρζu̇(t),v)Ω`
, Ah(uh(t),v),

∑
Ω`

(ρζ2u,v)Ω`
,

respectively, cf. (7). When absorbing boundary conditions are included
in the model, the matrices S and R take into account the boundary term
〈t∗(u),v〉FNR

h
, otherwise they are identically equal to the null matrix.

Finally, F is the vector representation of the linear functional Fh(·) cf.
(7).

For the time integration of the system of second order ordinary
differential equations (9), we employ the leap-frog method [88], that it
widely employed time integration scheme for the numerical simulation
of elastic waves propagation, see for example [20, 64, 29, 78]. Other
time integration techniques based on high-order time marching scheme
can be employ to discretize in time the (visco)elasdodynamics equation,
such as Runge-Kutta methods [61], the ADER-DG method [62] or the
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space-time DG discretization [11]. With this aim, we subdivide the
time interval (0, T ] into NT subintervals of amplitude ∆t = T/NT and
we denote by Ui ≈ U(ti) the approximation of U at time ti = i∆t,
i = 1, 2, . . . , NT . Whenever ζ = 0, i.e. no dumping is present and
ΓNR = ∅, then M2,M3 and R are null and the leap-frog method reads
as

MU1 = (M− ∆t2

2
A)U0 + ∆tMV0 +

∆t2

2
F0,

MUn+1 = (2M−∆t2A)Un −MUn−1 + ∆t2Fn, n = 1, ..., NT − 1.
(10)

We notice that (10) involves a linear system with the matrix M to be
solved at each time step. The choice the basis functions spanning the
space VDG strongly influences the structure of the mass matrix M and,
therefore, the computational costs related to the solution of the linear
system. Furthermore, the leap-frog method being an explicit second
order accurate scheme, to ensure its numerical stability a Courant -
Friedrich - Levy (CFL) condition has to be satisfied (see [88]). In
this general case, i.e. ζ 6= 0 or ΓNR 6= ∅, we set K = M2 + S and
Q = A + M3 + R. Then, the leap-frog method consists in computing

MU1 = (M− ∆t2

2
Q)U0 + (∆tM− ∆t2

2
K)V0 +

∆t2

2
F0,

(M +
∆t

2
K)Un+1 = (2M−∆t2Q)Un + (M− ∆t

2
K)Un−1 + ∆t2Fn,

(11)
n = 1, ..., NT − 1.

3 Analysis of the semi-discrete formula-
tion: stability and error estimates

In this section we review the results on stability, convergence, and cor-
responding error estimates of the semi-discrete problem (7). For the
sake of presentation we assume null tractions, i.e., t = 0, and lack of
absorbing boundaries, i.e., ΓNR = ∅. Moreover, we assume that each
macro region Ω`, ` = 1, 2, . . . , consists of a single element, either a
hexahedron or a tetrahedron, having size h` and characterized by a
polynomial of degree N`. Notice that in this case the subdomain par-
tition TΩ coincide with the mesh Th, and the skeleton FIh includes all
the non-empty intersections between neighboring elements Ω`± . In the
following, to avoid the proliferation of constants, we use the notation
a . b to represent the inequality a ≤ Cb, where C is a given positive
constant, independent of the discretization parameters, but that can
depend on the material properties ρ, λ, µ.

Before proceeding we properly define facewise the stabilization func-
tion η ∈ L∞(FIh) in (8) as

η|F = α {D}H
max{N2

`+ , N
2
`−}

min{h`+ , h`−}
, F = ∂Ω`+ ∩ ∂Ω`− , (12)
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where α is a positive constant to be properly chosen. For a piecewise
constant tensor D, {D}H is defined as

{D}H = 2
((n+)TD+n+)((n−)TD−n−)

(n+)TD+n+ + (n−)TD−n−
.

3.0.1 Well-posedness

Denoting by Hs(TΩ) the space
∏
`H

s(Ω`) of piecewise Hs vector-
valued functions, for any real s ≥ 0, we recall some useful inequalities.

Lemma 3.1. For any polynomial v of degree N` ≥ 1 over Ω` there
hold

|v|m,Ω`
.

(
N2
`

h`

)m−s
|v|s,Ω`

0 ≤ s ≤ m,

‖v‖0,F .

(
N2
`

h`

) 1
2

‖v‖0,Ω`
∀F ∈ FIh , F ⊂ ∂Ω` (13a)

We refer, for example, to [2, 22, 97, 25, 101] for further details and for
the proof.

We next introduce the following (discretization parameters depen-
dent) norms

‖v‖2DG =
∑
`

‖D1/2ε(v)‖20,Ω`
+ ‖η1/2[[v]]‖20,FI

h
∀v ∈H1(TΩ),

|||v|||2DG = ‖v‖2DG + ‖η−1/2{Dε(v)}‖20,FI
h

∀v ∈H2(TΩ),

(14)

with the convention that ‖w‖2
0,FI

h
=
∑
F∈FI

h
‖w‖20,F . Using the trace-

inverse inequality (13a) of Lemma 3.1, it can be proved that the norms
‖ · ‖DG and |||·|||DG are equivalent when restricted to the space VDG.
The well-posedness of the semi-discrete formulation (7) easily follows
from the following result, cf. [92, Chapter 5], provided a local bounded
variation on the mesh-size and the polynomial degree is assumed, i.e.
h`+ . h`− . h`+ and N`+ . N`− . N`+ for any pair of neighboring
elements Ω`± , cf. [85] for example.

Lemma 3.2. The bilinear form ADG(·, ·) : VDG × VDG −→ R defined
as in (8) satisfies

|ADG(w,v)| . ‖w‖DG‖v‖DG, ADG(v,v) & ‖v‖2DG ∀v,w ∈ VDG,

where the second estimate holds provided that the parameter α appear-
ing in the definition of the stabilization function cf. (12) is chosen
sufficiently large. Moreover,

|ADG(w,v)| . |||w|||DG‖v‖DG ∀w ∈H2(TΩ) ,∀v ∈ VDG.

15



3.0.2 Stability

In this section we present a stability analysis of the semi-discrete for-
mulation (7) in the following (mesh dependent) energy norm

‖uh(t)‖2E = ‖ρ1/2u̇h(t)‖20,Ω + ‖ρ1/2ζuh(t)‖20,Ω + ‖uh(t)‖2DG t ∈ (0, T ]
(15)

cf. [9, 12] for the case ζ = 0. For t = 0, the above definition modifies
as

‖uh(0)‖2E = ‖ρ1/2v0,h‖20,Ω + ‖ρ1/2ζu0,h‖20,Ω + ‖u0,h‖2DG,

where u0,h,v0,h ∈ VDG are suitable approximations of the initial data
u0 and v0, respectively, cf. (1). Differently than what done in [95, 93,
94], the present analysis holds without including an extra term that
penalizes the jump of the time derivative of the displacement.

Theorem 3.3 (Stability). Let, for any time t ∈ (0, T ] and for a suffi-
ciently large penalty parameter α in (12), uh(t) ∈ VDG be the solution
of problem (7). If f ∈ L2(0, T ;L2(Ω)), then

‖uh(t)‖E . ‖uh(0)‖E +

∫ t

0

‖f(τ)‖0,Ω dτ, 0 < t ≤ T.

Proof. Our proof makes use of some technical results that are proved
in Appendix A. By taking v = u̇h in (7), we obtain∑

Ω`

(ρüh, u̇h)Ω`
+
∑
Ω`

(2ρζu̇h, u̇h)Ω`
+
∑
Ω`

(σ(uh), ε(u̇h))Ω`

− 〈{σ(uh)}, [[u̇h]]〉FI
h
− 〈[[uh]], {σ(u̇h)}〉FI

h
+ 〈η[[uh]], [[u̇h]]〉FI

h

+
∑
Ω`

(ρζ2uh, u̇h)Ω`
=
∑
Ω`

(f , u̇h)Ω`

that is

1

2

d

dt
(‖uh‖2E−2〈{σ(uh)}, [[uh]]〉FI

h
)+2

∑
Ω`

‖ρ1/2ζ1/2u̇h‖20,Ω`
=
∑
Ω`

(f , u̇h)Ω`
.

where we have used the definition of the energy norm (15). Integrating
the above inequality over the time interval (0, t) we have

‖uh(t)‖2E−2〈{σ(uh(t))}, [[uh(t)]]〉FI
h

+4

∫ t

0

‖ρ1/2ζ1/2u̇h(τ)‖2L2(Th)d τ

= ‖uh(0)‖2E − 2〈{σ(uh(0))}, [[uh(0)]]〉FI
h

+ 2

∫ t

0

(f(τ), u̇h(τ))Thd τ.
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Since 4
∫ t

0
‖ρ1/2ζ1/2u̇h(τ)‖2L2(Th)d τ ≥ 0, we get

‖uh(t)‖2E − 2〈{σ(uh(t))}, [[uh(t)]]〉FI
h

≤ ‖uh(0)‖2E − 2〈{σ(uh(0))}, [[uh(0)]]〉FI
h

+ 2

∫ t

0

(f(τ), u̇h(τ))Thd τ.+

∫ t

0

〈t(τ), u̇h(τ)〉FN
h
d τ.

¿From Lemma A.3 we get

‖uh‖2E − 2〈{σ(uh)}, [[uh]]〉FI
h
& ‖uh‖2E ,

‖uh(0)‖2E − 2〈{σ(uh(0))}, [[uh(0)]]〉FI
h
. ‖uh(0)‖2E .

where the first bound holds provided that the stability parameter α
appearing in the definition of the penalization function (12) is chosen
large enough. Then

‖uh(t)‖2E . ‖uh(0)‖2E + 2
∑
Ω`

∫ t

0

(f(τ), u̇h(τ))Ω`
d τ.

The Cauchy Schwarz inequality leads to

2
∑
Ω`

∫ t

0

(f(τ), u̇h(τ))Ω`
d τ .

∑
Ω`

∫ t

0

‖f(τ)‖0,Ω`
‖ρ1/2u̇h(τ)‖0,Ω`

dτ

≤
∫ t

0

‖f(τ)‖0,Ω‖uh‖E dτ.

The thesis follows based on employing the Gronwall’s lemma A.1.

3.0.3 Semi-discrete error estimates

In this section we derive a priori error estimates for the semi-discrete
problem (7) in the energy norm (15). We start by recalling the follow-
ing interpolation estimates (see [18])

Lemma 3.4. For any function v such that v|Ω`
∈ Hs`(Ω`), s` ≥ 0,

` = 1, . . . , L, there exists vI ∈ VDG such that

∑
Ω`

‖v − vI‖2r,Ω`
.
∑
Ω`

h
2 min(s`,N`+1)−2r
`

N2s`−2r
`

‖v‖2s`,Ω`
∀r, 0 ≤ r ≤ s`,

∑
Ω`

‖v − vI‖20,∂Ω`
.
∑
Ω`

h
2 min(s`,N`+1)−1
`

N2s`−1
`

‖v‖2s`,Ω`
,

∑
Ω`

‖∇(v − vI)‖20,∂Ω`
.
∑
Ω`

h
2 min(s`,N`+1)−3
`

N2s`−3
`

‖v‖2s`,Ω`
.

The above result stands at the basis for the following interpolation
bounds.
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Lemma 3.5. For any function v such that v|Ω`
∈ Hs`(Ω`), s` ≥ 2,

` = 1, . . . , L, there exists vI ∈ VDG such that

|||v − vI |||2DG .
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

‖v‖2s`,Ω`
. (16)

Moreover, if in addition v, v̇ ∈Hs`(Ω`), s` ≥ 2, ` = 1, . . . , L, then

‖v − vI‖2E .
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
‖v̇‖2s`,Ω`

+ ‖v‖2s`,Ω`

)
. (17)

Proof. We first show (16). With this aim, use Lemma 3.4 to bound
each contribution appearing in the definition of the DG norm |||·|||DG

‖D1/2ε(v − vI)‖20,Ω .
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−2
`

‖v‖2s`,Ω`
,

‖η1/2[[v − vI ]]‖20,FI
h
.
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

‖v‖2s`,Ω`
,

‖η−1/2{Dε(v − vI)}‖20,FI
h
.
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−1
`

‖v‖2s`,Ω`
.

This yields

|||v − vI |||2DG .
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
1

N`
+ 1 +

1

N2
`

)
‖v‖2s`,Ω`

.
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

‖v‖2s`,Ω`
.

To show (17), we recall the definition (15) of energy norm ‖ · ‖E and
employ again the interpolation estimates of Lemma 3.4 to get

‖ρ1/2(v̇ − v̇I)‖20,Ω .
∑
Ω`

h
2 min(s`,N`+1)
`

N2s`
`

‖v̇‖2s`,Ω`
,

‖ρ1/2ζ(v − vI)‖20,Ω .
∑
Ω`

h
2 min(s`,N`+1)
`

N2s`
`

‖v‖2s`,Ω`
,

‖v − vI‖2DG .
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

‖v‖2s`,Ω`
.
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Summing up the above contributions we obtain

‖v − vI‖2E .
∑
Ω`

(
h

2 min(s`,N`+1)
`

N2s`
`

‖v̇‖2s`,Ω`

+
h

2 min(s`,N`+1)
`

N2s`
`

‖v‖2s`,Ω`
+
h

2 min(s`,N`+1)−2
`

N2s`−3
`

‖v‖2s`,Ω`

)

.
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
h2
`

N3
`

‖v̇‖2s`,Ω`
+
h2
`

N3
`

‖v‖2s`,Ω`
+ ‖v‖2s`,Ω`

)

.
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
‖v̇‖2s`,Ω`

+ ‖v‖2s`,Ω`

)
,

and the proof is complete.

Theorem 3.6. (A-priori error estimate in the energy norm.) Assume
that, for any time t ∈ [0, T ], the exact solution u(t) of problem (1) to-
gether with its two first temporal derivatives satisfy u(t)|Ω`

, u̇(t)|Ω`
, ü(t)|Ω`

∈
Hs`(Ω`), ` = 1, . . . , L, s` ≥ 2. Let uh be the corresponding solution of
the semidiscrete DG formulation given in (7), with a sufficiently large
penalty parameter α in the definition of the stabilization function (12).
Then,

sup
t∈[0,t]

‖eh‖2E . sup
t∈[0,T ]

{∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
‖u̇‖2s`,Ω`

+ ‖u‖2s`,Ω`

)}

+

∫ T

0

∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
‖ü‖2s`,Ω`

+ ‖u̇‖2s`,Ω`

)
dτ.

Remark 3.7. If h = maxΩ`
h` ≈ h`, N` = N for any ` = 1, . . . , L,

and the exact solution belong to Hs(Ω), with s ≥ N + 1, the error
estimate above becomes

sup
t∈[0,T ]

‖eh(t)‖2E .
h2 min(s,N+1)−2

N2s−3

(
sup
t∈[0,T ]

{
‖u̇‖2s,Ω + ‖u‖2s,Ω

}
+

∫ T

0

(
‖ü‖2s,Ω + ‖u̇‖2s,Ω

)
dτ.

)

These bounds are optimal in h and suboptimal in N by a factor N1/2.
We refer to [85, 59] for analogous bounds for stationary (scalar) second
order elliptic problems and to [12] for the case of elastic wave propaga-
tion problems. Optimal error estimates with respect to the polynomial
approximation degree N can be shown either using the projector of [53]
(provided the solution belongs to a suitable augmented space), or when-
ever a continuous interpolant can be built; cf. [105].

Proof. (Proof of Theorem 3.6.) The discrete formulation (7) is strongly
consistent, that is the exact solution u of (1) satisfies equation (7) for
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any time t ∈ (0, T ]∑
Ω`

(ρü,v)Ω`
+
∑
Ω`

(2ρζu̇,v)Ω`
+Ah(u,v)

+
∑
Ω`

(ρζ2u,v)Ω`
= Fh(v) ∀v ∈ VDG.

Subtracting (7) from the above identity and setting e = u − uh, we
obtain the error equation∑

Ω`

(ρë,v)Ω`
+
∑
Ω`

(2ρζė,v)Ω`
+Ah(e,v)

+
∑
Ω`

(ρζ2e,v)Ω`
= 0 ∀v ∈ VDG.

We next decompose the error as e = eI − eh, with eI = u − uI and
eh = uh − uI , uI ∈ VDG being the interpolant defined as in Lemma
3.5, and rewrite the above identity as∑

Ω`

(ρëh,v)Ω`
+
∑
Ω`

(2ρζėh,v)Ω`
+Ah(eh,v) +

∑
Ω`

(ρζ2eh,v)Ω`

=
∑
Ω`

(ρëI ,v)Ω`
+
∑
Ω`

(2ρζėI ,v)Ω`
+Ah(eI ,v) +

∑
Ω`

(ρζ2eI ,v)Ω`
.

By taking as test function v = ėh, we get∑
Ω`

(ρëh, ėh)Ω`
+
∑
Ω`

(2ρζėh, ėh)Ω`
+Ah(eh, ėh) +

∑
Ω`

(ρζ2eh, ėh)Ω`

=
∑
Ω`

(ρëI , ėh)Ω`
+
∑
Ω`

(2ρζėI , ėh)Ω`
+Ah(eI , ėh)+

∑
Ω`

(ρζ2eI , ėh)Ω`
,

that is

1

2

d

dt

(
‖ρ1/2ėh‖20,Ω + ‖ρ1/2ζeh‖20,Ω + ‖eh‖2DG − 2〈{σ(eh)}, [[eh]]〉FI

h

)
+ 2‖ρ1/2ζ1/2ėh‖20,Ω =

∑
Ω`

(ρëI , ėh)Ω`
+
∑
Ω`

(2ρζėI , ėh)Ω`

+Ah(eI , ėh) +
∑
Ω`

(ρζ2eI , ėh)Ω`
.

Using the definition of the energy norm (15) and the Cauchy-Schwarz
inequality to bound the terms on the right hand side we obtain

1

2

d

dt

(
‖eh‖2E − 2〈{σ(eh)}, [[eh]]〉FI

h

)
+ 2‖ρ1/2ζ1/2ėh‖20,Ω

≤ ‖ėI‖E‖eh‖E + 2‖ρ1/2ζ1/2ėI‖0,Ω‖ρ1/2ζ1/2ėh‖0,Ω
+Ah(eI , ėh) +

∑
Ω`

(ρζ2eI , ėh)Ω`
.
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Thanks to the Young inequality we have that 2‖ρ1/2ζ1/2ėI‖0,Ω‖ρ1/2ζ1/2ėh‖0,Ω ≤
‖ρ1/2ζ1/2ėI‖20,Ω + ‖ρ1/2ζ1/2ėh‖20,Ω, and therefore the above bound can
be rewritten as

1

2

d

dt

(
‖eh‖2E − 2〈{σ(eh)}, [[eh]]〉FI

h

)
+ ‖ρ1/2ζ1/2ėh‖20,Ω

≤ ‖ėI‖E‖eh‖E + ‖ρ1/2ζ1/2ėI‖20,Ω
+Ah(eI , ėh) +

∑
Ω`

(ρζ2eI , ėh)Ω`
.

Observing that ‖ρ1/2ζ1/2ėh‖0,Ω ≥ 0 and employing Lemma A.3 we
obtain

1

2

d

dt

(
‖eh‖2E

)
. ‖ėI‖E‖eh‖E+‖ρ1/2ζ1/2ėI‖20,Ω+Ah(eI , ėh)+

∑
Ω`

(ρζ2eI , ėh)Ω`
.

Integrating in time between 0 and t and using that eh(0) = u0,h −
(u0)I = 0, we get

‖eh‖2E .
∫ t

0

‖ėI‖E‖eh‖E dτ +

∫ t

0

‖ρ1/2ζ1/2ėI‖20,Ω dτ

+

∫ t

0

Ah(eI , ėh) dτ +

∫ t

0

∑
Ω`

(ρζ2eI , ėh)Ω`
dτ. (18)

We next estimate the last two terms on the right hand side. For the first
one, the integration by parts formula (28) together with the observation
that eh(0) = u0,h − (u0)I = 0, and Lemma 3.2 lead to∫ t

0

Ah(eI , ėh) dτ = Ah(eI(t), eh(t))−Ah(eI(0), eh(0))

−
∫ t

0

Ah(ėI , eh) dτ

. |||eI |||DG‖eh‖DG +

∫ t

0

|||ėI |||DG‖eh‖DG dτ

. |||eI |||DG‖eh‖E +

∫ t

0

|||ėI |||DG‖eh‖E dτ,

where in the last step we have used the definition of the energy norm
(15). Analogously, for the second term∫ t

0

∑
Ω`

(ρζ2eI , ėh)Ω`
dτ =

∑
Ω`

(ρζ2eI(t), eh(t))Ω`

−
∑
Ω`

(ρζ2eI(0), eh(0))Ω`

−
∫ t

0

∑
Ω`

(ρζ2ėI , eh)Ω`
dτ

. ‖eI‖E‖eh‖E +

∫ t

0

‖ėI‖E‖eh‖E dτ.
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By substituting the above two bounds in (18) we get

‖eh‖2E . (‖eI‖E + |||eI |||DG)‖eh‖E +

∫ t

0

‖ρ1/2ζ1/2ėI‖20,Ω dτ

+

∫ t

0

(‖ėI‖E + |||ėI |||DG)‖eh‖E dτ.

From the Young inequality

(‖eI‖E + |||eI |||DG)‖eh‖E ≤ ε(‖eI‖E + |||eI |||DG)2 +
1

ε
‖eh‖2E

≤ 2ε(‖eI‖2E + |||eI |||2DG) +
1

ε
‖eh‖2E .

We can therefore chose ε = 2C, being C the hidden constant in (18),
and obtain

‖eh‖2E . ‖eI‖2E + |||eI |||2DG +

∫ t

0

‖ρ1/2ζ1/2ėI‖20,Ω dτ

+

∫ t

0

(‖ėI‖E + |||ėI |||DG)‖eh‖E dτ.

By applying the Gronwall’s lemma A.1 with a constant G defined as

G = sup
t∈[0,T ]

{
‖eI‖2E + |||eI |||2DG +

∫ t

0

‖ρ1/2ζ1/2ėI‖20,Ω dτ
}
,

we obtain

‖eh‖2E . G+

∫ t

0

(‖ėI‖2E + |||ėI |||2DG) dτ.

The interpolation estimates of Lemma 3.4 and Lemma 3.5 lead to

G . sup
t∈[0,T ]

{∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
‖u̇‖2s`,Ω`

+ ‖u‖2s`,Ω`
+

∫ t

0

‖u̇‖2s`,Ω`
dτ

)}
,

and

‖ėI‖2E + |||ėI |||2DG .
∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
‖ü‖2s`,Ω`

+ ‖u̇‖2s`,Ω`

)
,

Therefore we obtain

sup
t∈[0,T ]

‖eh‖2E . sup
t∈[0,T ]

{∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`(

‖u̇‖2s`,Ω`
+ ‖u‖2s`,Ω`

+

∫ t

0

‖u̇‖2s`,Ω`
dτ

)}
+

∫ T

0

∑
Ω`

h
2 min(s`,N`+1)−2
`

N2s`−3
`

(
‖ü‖2s`,Ω`

+ ‖u̇‖2s`,Ω`

)
dτ,

and the proof is complete.
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Figure 1: Left: Example of a traveling wave (blue line) and its numerical
approximation (red line). Right: Decomposition of a seismic wave into SH,
SV and P components.

4 Dispersion, dissipation and numerical sta-
bility analysis

The aim of this section is to present an analysis of the dispersion, dis-
sipation and stability properties for the fully discrete numerical scheme.

If the numerical wave shows a phase leg with respect to the physical
one we have a dispersion effect, whereas if we observe a decrease in am-
plitude we are in presence of dissipation (cf. Figure 1, left). A traveling
wave in a three dimensional elastic medium can be decomposed into: i)
a pressure wave (P-wave) with velocity cP inducing a displacement in
the same direction of the propagating wave; ii) a shear wave (S-wave)
with velocity cS inducing a displacement in a direction transversal to
the propagating wave. Additionaly, S-waves can be further decom-
posed into a vertical component (SV-wave), inducing a motion on a
plane perpendicular to the wave direction, and a horizontal compo-
nent (SH-wave), inducing a transversal motion on a horizontal plane
containing the wave direction, see [5, 100] and Figure 1 (right). The
Von Neumann analysis [31, 60] investigates the properties of numerical
solutions approximating plane waves of the form

u(x, t) = aei(k·x−ωt), (19)

propagating in an unbounded domain and looks for quantitative esti-
mates of the dispersion and the dissipation errors. Here, a = [a1, a2, a3]T ∈
R3 represents the amplitude of the wave, ω the angular frequency, and
k = 2π/L(cos θ cosφ, sin θ cosφ, sinφ) the wave vector, being L the
wavelength, and θ and φ the angles between the propagating direction
and the coordinate axes. The physical wave can be recovered by taking
the real part of (19).

To comply with unboundedness, we consider problem (1) posed
over a reference domain EC and impose periodic boundary conditions
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Figure 2: Periodic reference element EC and periodic reference patterns:
hexahedral grid (left) and tetrahedral grid (right).

on its boundary, see Figure 2. In the case of a hexahedral tessellation,
the smallest periodic grid is made by a single cube, i.e. EC = (−1, 1)3

whereas for tetrahedral grids it is composed by six tetrahedra, Figure
2. Given that we are considering a DG spectral element method, the
interelement jump and average contributions are assembled at the in-
terfaces between EC and its neighbors (periodic reference pattern), see
Figure 2. Assuming, without loss of generality, no seismic source (i.e.
f ≡ 0), no dumping factor (i.e. ζ = 0) and no reflecting boundaries
(i.e. ΓNR = ∅), the semi-discrete problem (9) becomes

M1Ü(t) + AU(t) = 0,

U(0) = U0,

U̇(0) = V0,

(20)

where U0 = aei(k·x) and V0 = −iωaei(k·x). Follow the approach of
[38, 15, 75, 73, 14, 49] we impose periodic boundary conditions by
introducing a suitable projection matrix Π and we obtain from (20)

M̃Ü(t) + ÃU(t) = 0, (21)

where M̃ = ΠTM1Π and Ã = ΠTAΠ. We next consider the fully discrete
formulation based on employing the leap-frog time integration scheme
(10) to (21); the analogous results for the semidiscrete case can be
found in [49]. Following [6], we substitute (19) into (21) and we obtain

M̃(e−iωtj+1−2e−iωtj+e−iωtj−1)
U0

∆t2
+Ãe−iωtj U0 = 0, j = 1, ..., NT−1.

The above system can be rewritten as

M̃(2− e−iω∆t − eiω∆t)
4

∆t2
U0 = ÃU0.

Now, using the following relation

2− e−iω∆t − eiω∆t = 2(cos(ω∆t)− 1) = 4 sin2

(
ω

∆t

2

)
,
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we obtain a generalized eigenvalue problem of the form

ÃU0 = ΛM̃U0, (22)

where the eigenvalues Λ are related to the angular frequency ω at which
the wave travels in the grid through the relation

Λ =
4

∆t2
sin2(ω

∆t

2
). (23)

We will use this after solving the eigenvalue problem in order to derive
the grid-dispersion relations as it will be shown later on. We remark
that for three dimensional seismic modeling only three eigenvalues in
(22) have a physical meaning as they are related to shear and pressure
waves, cf. [36, 38] for the bidimensional case. All the other eigenvalues
correspond to nonphysical modes, see e.g. [31] for the one dimensional
case.

4.1 Dispersion errors

The relative dispersion errors are given by

eP =
cP,h
cP
− 1, eS =

cS,h
cS
− 1,

where cP and cS are the P- and S-wave velocities (see (3)) whereas
cP,h and cS,h are the corresponding numerical wave velocities whose
expression is given by

cP,h =
hωP,h
2πδ

, cS,h =
hωS,h
2πδ

,

where δ = h/(NL) is the sampling ratio, i.e., δ−1 is the number of
interpolation points per wavelength, h is the mesh size and ωP,h and
ωS,h are the numerical angular frequencies computed through (23) for
the P-wave and the S-wave, respectively. In practice we first solve nu-
merically (22) to obtain the eigenvalues in (23) that represent the best
approximations of the angular frequencies of the travelling waves. For
a 3D plane wave we can distinguish between the frequency ωP , which
is related to the longitudinal displacement, and the two frequencies
ωSV = ωSH , which are related to the transversal displacement of ver-
tically polarized (SV) and horizontally polarized (SH) shear waves, re-
spectively. In general, as pointed out before, the number of eigenvalues
obtained through (22) exceeds the number of physical modes. There-
fore, we identify the numerical eigenvalues ΛP and ΛS , corresponding
to the physical frequencies, by computing the numerical velocities ob-
tained for each eigenvalue and comparing them to the real values of
cP and cS , respectively. We remark that the computed eigenvalues
approximating ωSV and ωSH are not exactly the same but their dif-
ference is negligible, cf. [98, 111]. In the following we will select ΛS as
that eigenvalue, between the two physically relevant ones, that leads
to the worst approximation of cS .
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We next present some numerical results aiming at measuring the
dispersion error, versus the polynomial approximation degree N , the
sampling ratio δ, and the time step ∆t. For the sake of brevity we do
not discuss here the dependence of the dispersion error on the angles
of incidence, and refer to [49] for more details. We first address the
behavior of the dispersion error by varying the polynomial degree N .
In particular, we compute the dispersion errors versus N for different
time steps ∆t, fixing the values of velocities, sampling ratio and inci-
dent angles as cP = 1, cS = 0.5, δ = 0.2 and φ = θ = π/4, respectively.
In Figure 3 we observe that, as ∆t goes to zero, eP and eS decay ex-
ponentially fast until the term ∆t2 becomes dominant, cf. [14, 49]. As
a comparison, Figure 3 also report the corresponding results for the
semi-discrete approximation, i.e. using a sufficiently small time step
in such a way that exact time integration can be assumed. We also
notice that the same level of accuracy is obtained on both hexahedral
and tetrahedral grids for a polynomial degree N ≥ 5. We have re-
peated the same set of numerical experiments varying the sampling
ration δ, with N = 1. The results are reported in Figure 4. We can
clearly observe that for δ ≤ 0.1, i.e., ten points per wavelength, the
same level of accuracy is attained on both hexahedral and tetrahedral
grids. Regarding the dissipation of the fully-discrete scheme, the con-
siderations made in the semi-discrete case are still valid.

4.2 Dissipation errors

We next move to the dissipation analysis that is carried out by studying
the amplitude of the numerical displacement. By considering as the
exact solution of (20) the unitary amplitude plane wave, we can express
its amplitude as |ei(k·x−ωt)| = etIm(ω). Since the physical wave satisfies
Im(ω) = 0, its amplitude is equal to 1 for all times t. On the contrary,
the numerical wave will have in general Im(ωh) 6= 0. Then, we say that
the scheme is non dissipative if Im(ωh) = 0, whereas it is dissipative if
Im(ωh) < 0. In the generalized eigenvalues problems (22) the mass and
the stiffness matrices are symmetric and positive definite. Therefore,
the computed eigenvalue are all real, leading to a scheme that does not
suffer from dissipation errors.

4.3 Numerical stability

In this section we briefly analyze the stability properties of the fully
discrete scheme (11), focusing as before on the case where no dumping
is present, i.e. ζ = 0, and no reflecting boundaries are considered,
i.e. ΓNR = ∅. According to the Courant, Friedrichs and Lewy (CFL)
condition, the leap-frog scheme is stable provided that the time step
∆t satisfies

∆t ≤ CCFL
h

cP
,
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(b) Tethrahedral grid

Figure 3: Computed dispersion errors eP (left) and eS (right) versus N
for ∆t = 0.001, 0.0001. The continuous lines refers to the semi-discrete
approximation.
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Figure 4: Computed dispersion errors eP (left) and eS (right) versus the
sampling ratio δ for ∆t = 0.001, 0.0001. The continuous lines refers to the
semi-discrete approximation.
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where h is the granularity of the computational grid and cP is the
velocity of pressure waves. The constant CCFL depends both on the
material properties ρ, λ, µ and on the polynomial degree N . We con-
sider a generalized eigenvalue problem of the form (22) but rescaled on

the reference element K̂

ÂU0 = Λ′M̂U0, (24)

where Λ′ = (h/∆t)2 sin2(ωh∆t/2) and introduce the stabilization pa-
rameter q = cP∆t/h. The following inequality holds

q2Λ′ = c2P

[
sin

(
ωh∆t

2

)]2

≤ c2P ,

or, equivalently,

q ≤ cP√
Λ′

= CCFL(Λ). (25)

As shown in [37], Λ′ depends on the wave vector k and therefore on the
values of the incident angles φ and θ. Thus, (25) can be formulated as

q ≤ c∗(λ, µ)
1√

Λ′max
,

where Λ′max is the maximum eigenvalue of (24), taken with respect the
values of φ and θ. The constant c∗ depends on the Lamé parameters λ
and µ as well as on the penalty paramenter α appearing in the defini-
tion of the stabilization function (12), more precisely it is proportional
to α−1/2, see [13].

We next present some numerical experiments to give a quantitative
estimate of the CFL bound expressed in term of the stability parameter
q. The material properties considered are the same as in the previous
section and the stability parameter α = 10. In Table 1 we report
the computed value of q as a function on N based on employing both
the reference hexahedron and tetrahedron. We can observe that, as
expected, q grows proportionally to N2. This result is in agreement
with the analogous ones obtained in [37, 15, 14, 49]. In addition we
notice that tetrahedral elements are subjected to a more restrictive
stability condition than hexahedral ones. In particular, in the case
of a continuous (resp. discontinuous) approximation on a tetrahedral
grid, the stability parameter q is around the 60% (resp. 80%) of the
corresponding one computed using a hexahedral mesh.

5 Numerical experiments

5.1 Layer over half space benchmark

In this example we apply our method to a more challenging test case,
known in the literature as the LOH (Layer Over a Half-space) test.
This problem has been proposed in [35] and it has been used as refer-
ence benchmark for different numerical codes for the elastodynamics
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N 2 3 4 5 6 7 8

Hexahedral 0.077 0.041 0.021 0.014 0.010 0.008 0.006

Tetrahedral 0.052 0.028 0.017 0.012 0.009 0.007 0.005

Table 1: Computed stability parameter q as a function of N = 2, .., 8 on
both the hexahedral and tetrahedral reference elements.

[34, 44]. The domain Ω consists of a rectangle of dimension (−15, 15)×
(−15, 15) × (0, 17) km, with a 1 km layer (L) on the top surface (see
Figure 5). The material properties of the layer and of the halfspace
(HS) are summarized in Table 2.

30 km

30 km

17 km

1 km

x

y

z

Figure 5: LOH test case. Computational domain. The red dot denotes the
position of the seismic source.

Layer ρ [kg/m3] cP [m/s] cS [m/s]

L 2600 4000 2000
HS 2700 6000 3464

Table 2: LOH tets case. Material properties.

The seismic source is modelled as a point double-couple, f = ∇δ(x −
xs)M(t), located at the point xs = (0, 0, 2) km, where the moment

rate M(t) = M0

(
t
t20

)
e−

t
t0 , being M0 = 1018 Nm the scalar seismic

moment and t0 = 0.1 s a relaxation time controlling the frequency and
the amplitude of the seismic source. Finally, we impose a free surface
condition on the top surface and absorbing conditions on the remaining
ones, while for the time integration we fix ∆t = 0.0002 s.

The numerical results presented in the following have been obtained
with the following choices of the discretization parameters. In the half-
space we employ a hexahedral grid with a fix size of h ≈ 600 m, while
in the layer we consider a hybrid discretization made by tetrahedral
elements in the positive quadrant and by hexahedral elements of fixed
size h ≈ 300 m in the remaining portion, see Figure 5.1. The final
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Figure 6: Left: computational grids for the LOH test case B). Right: de-
tail of the grid at the interface between the layer and the half space. We
can observe the non-conforming interface between the tetrahedral and the
haxahedral grid.

mesh contains 84141 hexhaedral elements. We employ N = 5 for the
elements in the half-space and N = 4 for the elements in the layer.
The resulting number of degrees of freedom Ndof inside the hexahedral
region is approximately 10 million. Regarding the region meshed with
tetrahedral elements, we consider the three following configurations:

A) h ≈ 150 m, N = 3, Ndof = 6.0× 105,

B) h ≈ 200 m, N = 3, Ndof = 9.8× 105,

C) h ≈ 200 m, N = 4, Ndof = 2.3× 106.

We also remark that the grid of each portion of the domain has been
built independently from the others, leading to a grid characterized by
non conforming interfaces on the skeleton.

To compare the results obtained with the reference solution we
report the time histories of the velocity field measured at a receiver
located at the point (6, 8, 0) km. For each component of the velocity
we also compute the relative seismogram misfit E through the formula

E =

∑ns
i=1(u̇h(ti)− u̇(ti))

2∑ns
i=1 u̇(ti)2

,

where ns is the number of time samples in the seismogram, u̇h(ti)
is the numerical velocity at the time ti and u̇(ti) is the value of a
quasi-analytical solution, which can be found in [16, 35].

In Figures 7, 8 and 9 we report the radial, transversal and verti-
cal components of the velocity field recorded at the point (6, 8, 0) km.
From the velocity histories we observe that the setting for the case
A provides the worst approximation. The numerical solution, indeed,
presents spurious oscillations, in particular in the transversal compo-
nent. This oscillatory effect is probably due to dispersion effects caused
by the low order approximation. In both the cases B and C the os-
cillations are mitigated and the value of the seismic misfit is below
the 10% and 4%, respectively. The small oscillations that we can be
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Figure 7: LOH test case. Grid configuration A. Velocity field recorded at
(6, 8, 0) km. The blue line represents the numerical solution, the black line
represents the quasi-analytical solution.
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Figure 8: LOH test case. Grid configuration B. Velocity field recorded at
(6, 8, 0) km. The blue line represents the numerical solution, the black line
represents the quasi-analytical solution.

appreciated after 6.5 s are probably due to reflecting waves generated
by the artificial boundaries. From the numerical results we can con-
clude that our approach gives a more accurate approximation of the
LOH problem than the ones obtained via other numerical codes based
on finite difference and finite element methods [34], and a comparable
accuracy to the one obtained in [45, 76].

Finally, in Table 3 we report the number of elements and of degrees
of freedom used in the tetrahedral portion of the layer, together with
the computational times needed for the set-up, the assembly of the
mass matrix and to compute the solution at each time step. The results
show that the setting used for test case B (h ≈ 200 m, N = 3) gives
the best compromise in term of accuracy and computational times.
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Figure 9: LOH test case. Grid configuration C. Velocity field recorded at
(6, 8, 0) km. The blue line represents the numerical solution, the black line
represents the quasi-analytical solution.

Case Nb. elem. N Ndof Set up [s] Mass ass. [s] Time/step [s] E [%]

A 4.2e+4 2 6.0e+5 11.7e+3 0.7 4.3 31
B 2.0e+3 3 9.8e+5 7.1e+3 300 3.2 7.88
C 2.0e+3 4 2.3e+6 7.7e+3 6.2e+3 10.8 3.2

Table 3: LOH test case. Numerical settings, computational times and aver-
age seismic misfit for the three mesh configuration.

5.2 Earthquake scenarios for the area around Bei-
jing

The assessment of seismic risk damage in large urban areas is the
reliable evaluation of hazard based on suitable approaches for earth-
quake ground motion prediction. However, the empirical tools that
are most often used for this purpose neglect the specific tectonic and
geotechnical conditions in which the urban area lies, thus producing
in many cases significant underestimations of the earthquake ground
motion intensity. An overview of applications of physics-based numer-
ical modelling approaches to large urban areas was presented in [82].
Specifically, so far SPEED has been applied so far to several case stud-
ies, including Christchurch and Wellington (New Zealand), Santiago
(Chile), Istanbul (Turkey), and several urban areas in Italy. In this
section, we aim at summarizing results obtained from a large set of
earthquake scenario simulations in Beijing (China).

Situated on a sedimentary basin, with its more than 20 million
inhabitants, Beijing is one of the many megacities around the world
highly exposed to the seismic threat. As a matter of fact, in the past
thousand years, many destructive earthquakes have occurred in the
area around Beijing, with magnitude varying from Mw 6 to Mw 6.5,
cf. [55]. For these reasons, the characterization of strong ground mo-
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Figure 10: Contour of depth of sedimentary base. Superimposed black line
represents the projection of Shunyi-Qianmen-Liangxiang fault considered in
the present work.

tion plays a crucial role for the risk assessment studies in this large
urbanized area.

Setup of the 3D computational model

The 3D numerical model for the Beijing area was set up exploiting: i)
the topography model; ii) depth of sedimentary base; iii) the kinematic
seismic fault model; iv) and the 3D velocity profiles. For the elevation
model, freely-available digital elevation dataset of CGIAR-CSI for the
Beijing region has been extracted and downloaded from the website
http://www.cgiar-csi.org (with a precision of roughly 90 × 90 m, for
east-west and north-south directions around Beijing city), while the
depth of sedimentary base model has been derived from the digitaliza-
tion of the map proposed in [51], as shown in Figure 10.

The seismic fault considered consists of the Shunyi-Qianmen-Liangxiang
fault, lying just through the downtown of Beijing (Figure 10, cf. also
Figure 11 left.). The source is a quasi-vertical segmented fault (with
dip angle of about 80◦), consisting of three main segments with differ-
ent strike angles. The total length of the fault is about 90 km, capable
of producing up to Mw 7.3 events. The geometric parameters of the
Shunyi-Qianmen-Liangxiang fault, as implemented in the numerical
model, are reported in Table 4.

In order to define the 3D soil model, the Vs,30 map provided by
MunichRe company, cf. [7], and the depth of sediment base obtained
previously, see Figure 11, were used. In particular in the first layer
(0 to 2 km depth), we defined different velocity profiles (in m/s) as

34



Segment Strike Dip Lmax Wmax Fault Origin Top Depth
(◦) (◦) [km] [km] (LAT [◦N], LON [◦E]) [m]

South 30 80 35.6 30 (39.5586, 116.0657) 31.7
Middle 48 80 29.7 30 (39.8387, 116.2696) 51.9
North 44 80 24.9 30 (40.0211, 116.5248) 38.8

Table 4: Geometric parameters of the Shunyi-Qianmen-Liangxiang fault.
Fault Origin is defined as the point of the fault at zero strike and zero dip.

Figure 11: Left: Vs,30 map adopted in the present work. Right: cs model in
the first layer of the domain (depth < 2 km).

follows
cs = Vs,30 + 5

√
|z − ztop|, cp = 1.6cs, for Vs,30 >= 600 m/s

cs = Vs,30 + 10
√
|z − ztop|, cp = 1.6cs, for Vs,30 < 600 m/s and z >= zsed,

cs = 800 + 10
√
|z − ztop|, cp = 2000 + 15

√
|z − ztop|, for Vs,30 < 600 m/s and z < zsed,

(26)
where ztop and zsed represent the projection of a generic point with

coordinate z into the surface and the sediment base, respectively. Sim-
ilarly, for the soil density (kg/m3) we consider the following profiles

ρ = 1800 + 5
√
|z − ztop|, for Vs,30 >= 600 m/s

ρ = 1530 + 5
√
|z − ztop|, for Vs,30 < 600 m/s and z >= zsed,

ρ = 1800 + 5
√
|z − ztop|, for Vs,30 < 600 m/s and z < zsed.

(27)
Figure 11 (right) shows the cs model obtained for the first layer. The
properties of the underlying bedrock layers (depth > 2 km) have been
selected in agreement with [51]. The quality factor Q is estimated
directly by the cs values and is assumed to be proportional to frequency,
see Section 1, for the target value Q = cs/10 to be obtained at f =
1 Hz. The 3D velocity model is summarized in the Table 5.

The computational domain, spanning an area of 70×70 km2 down
to 30 km depth (see Figure 12), was built by combining all the in-
formation above. Considering a rule of thumb of 5 grid points per
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Layer Depth [km] cp [m/s] cs [m/s] ρ [kg/m3] Q

1 0 – 2 see (26)–(27) cs/10
2 2 – 4 3500 2100 2200 200
3 4 – 12 6000 3400 2760 800
3 12 – 30 6200 3500 2810 900

Table 5: Horizontally stratified crustal model, cf. [51].

Figure 12: Left: Computational domain of Beijing region adopted in the
present work. Shunyi-Qianmen-Liangxiang fault system included in the do-
main. Right: µ− γ and ζ − γ curves adopted for the first layer of the model
where Vs,30 <= 400 m/s and ztop <= z <= ztop − 300 m, in a non-linear
elastic approach.

minimum wavelength for non-dispersive wave propagation in heteroge-
neous media by the SE approach (see [76]), and considering a maximum
frequency fmax = 1.5 Hz, the model consists of 859,677 hexahedral el-
ements, resulting in approximately 160 million degrees of freedom, us-
ing a fourth order polynomial approximation degree. The conforming
mesh has a size varying from a minimum of 150 m, on the top surface,
up to 600 m at 4 km depth and reaching 1800 m in the underlying
layers.

Summary of simulated scenarios

A total of 30 scenarios were simulated by varying the magnitude, from
6.5 up to 7.3, the kinematic slip distribution, the hypocenter location
and the location of the rupture area. The simulations were performed
on the Marconi cluster at CINECA1, Italy. Each simulation takes
around 12 hours on 512 cores. A summary of the seismic scenarios,
grouped according to the magnitude, is given in Table 6.

In order to automatically construct K physically constrained slip

1http://www.cineca.it/en/content/marconi
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Mw Rupture Area (km2) Simulated scenarios

6.5 24× 12 15
6.9 36× 18 10
7.3 54× 24 5

Table 6: Simulated scenarios grouped for magnitude.

distributions for a given fault and a given earthquake magnitude, a pre-
processing tool has been devised taking into account joint probability
distributions of the main kinematic parameters. This ensures that the
resulting scenario variability will not be affected by systematic bias
in the input parameters. In particular, we considered the kinematic
source rupture generator proposed by Crempien and Archuleta (2015)
(see [32]). We refer the reader to the relevant publication and to the
SCEC Broadband Platform for the documentation of the code. Note
that for each scenario, the rupture velocity follows the built-in scheme
proposed in [32], and the source time function is a simplified smoothed
Heaviside function. A time step equal to 0.001 s has been chosen and a
total observation time T = 60 s has been considered. In order to model
the non-linear soil behaviour of the soft soil deposits (Vs,30 <= 400m/s
and ztop <= z <= ztop − 300 m) a simple Non-Linear Elastic (NLE)
soil model is implemented as a generalization to 3D load conditions of
the classical modulus reduction (µ−γ) and damping (ζ−γ) curves used
within 1D linear-equivalent approaches (e.g. [70]), where µ, ζ and γ are
the shear modulus, damping ratio and 1D shear strain, respectively.
Namely, to extend those curves to the 3D case, a scalar measure of
shear strain amplitude is considered as follows:

γmax(x, t) = max[|εI(x, t)− εII(x, t)|, |εI(x, t)− εIII(x, t)|,
|εII(x, t)− εIII(x, t)|],

where εI , εII and εIII are the principal values of the strain tensor.
Once the value of γmax is calculated at the generic position x and
generic instant of time t, its effective value (set as 0.6γmax) is intro-
duced in the µ−γ and ζ−γ curves to update the corresponding values
for the following time step, cf. Figure 12 (right). Therefore, unlike the
classical linear-equivalent approach, in this non-linear elastic approach
the initial values of damping and stiffness are recovered at the end of
the excitation.

In Figure 13 (left column) we report the maps of the Peak Ground
Velocity (PGV) obtained for the average scenario with magnitude
Mw 6.5 (top), Mw 6.9 (middle) and Mw 7.3 (bottom). We remark
that: i) these maps have been recovered by averaging the complete set
of scenarios sharing the same magnitude, ii) only important urbanized
areas are reported. In the same figure (central column) a comparison
with the ground motion prediction equation (GMPE) proposed by [28],
here denoted by CAEA15, is also reported. We note that the distance
metric used here is Rrupt (closest distance to the fault rupture), but
analogous results can be achieve with other metrics. The scattered
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Figure 13: Left column: PGV maps obtained averaging the 15 scenarios at
Mw 6.5 (top), Mw 6.5 (middle) and Mw 7.3 (bottom). Comparison with
GMPE by [28] using as a metric the closest distance to the fault rupture:
scattered plot (middle column), nonlinear curve fit model (right column).
Here, σ represents the standard deviation.
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Figure 14: Snapshots of the PGV obtained for a scenario with Mw 6.5.
Top-left: t = 6 s, top-right: t = 8 s, bottom-left: t = 10 s, bottom-right:
t = 12 s.

plot have then been fitted by a nonlinear regression model and the
resulting curve are reported in Figure 13 (right column). The numer-
ical results obtained by SPEED are substantially in agreement with
the proposed GMPE. However, synthetic scenarios produce higher PG
values for the velocity field in the proximity of the fault rupture. This
has already been noted in many recent works, see [82] and references
therein, and may have a great impact on seismic hazard estimates,
as standard GMPEs cannot account for such effects. Finally, we also
report in Figure 14 some snapshots of the peak ground velocity wave
field for a target scenario with magnitude Mw 6.5. It is possible to
notice that the wave field propagates in the direction south-west to
north-east and that higher values of PGV are obtained closed to the
projection of the fault rupture on the surface.

A Appendix

In this section we provide some technical results needed for the proof of
Theorem 3.3. The first key ingredient is the following Gronwall lemma,
see [86] for example.

Lemma A.1 (Gronwall). Let A(t) ∈ L1(0, T ) be a non-negative func-
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tion and let φ(t) ∈ C0(0, T ) a non-negative function such that

φ(t)2 ≤ G+

∫ t

0

A(τ)φ(τ)d τ ∀t ∈ [0, T ],

where G is a non negative constant. Then

φ(t) .
√
G+

∫ t

0

A(τ)d τ ∀t ∈ [0, T ].

We also recall the following well known integration by parts formula∫ t

0

(w, v̇)∗dτ = (w(t),v(t))∗ − (w(0),v(0))∗ −
∫ t

0

(ẇ,v)∗dτ, (28)

for w,v regular enough and for any scalar product (·, ·)∗.

Based on standard DG techniques, the following preliminary bound
holds.

Lemma A.2. The following inequality holds

‖η−1/2{σ(v)}‖20,FI
h
.

1

α

∑
Ω`

‖D1/2ε(v)‖20,Ω`
∀v ∈ VDG,

where α is the stability parameter appearing in the definition of the
penalization function (12).

Proof. Let F ∈ FIh be an interior face shared by two neighboring
elements Ω`± . Using the definition of the average operator it clearly
holds

‖η−1/2{σ(v)}‖20,F ≤ ‖η−1/2σ(v+)‖20,F + ‖η−1/2σ(v−)‖20,F .

Recalling that σ(v±) = D ε(v±), it is therefore enough to show

‖η−1/2σ(v±)‖20,F = ‖η−1/2D ε(v±)‖20,F .
1

α
‖D1/2ε(v)‖20,Ω`±

,

since the thesis then follows by summing over all the interior faces
F ∈ FIh . Using the definition of the penalization function (12), the local
bounded variation property, together with the trace-inverse inequality
(13a) we have

‖η−1/2D ε(v±)‖20,F .
1

α

min{h`+ , h`−}
max{N2

`+ , N
2
`−}
‖D1/2 ε(v±)‖20,F

.
1

α
‖D1/2 ε(v)‖20,Ω`±

,

where the hidden constant depends on the material properties through
the quantity ‖D‖∞/ {D}H.

40



Lemma A.3. For any v ∈ VDG it holds

‖v‖2E − 2〈{σ(v)}, [[v]]〉FI
h
. ‖v‖2E ,

‖v‖2E − 2〈{σ(v)}, [[v]]〉FI
h
& ‖v‖2E .

The second bounds holds provided the stability parameter α appearing in
the definition of the penalization function (12) is chosen large enough.

Proof. The first bound follows immediately based on employing the
Cauchy-Schwarz inequality, Lemma A.2, and the definition of the en-
ergy norm (15). That is,

‖v‖2E − 2〈{σ(v)}, [[v]]〉FI
h
. ‖v‖2E + ‖η−1/2{σ(v)}‖0,FI

h
‖η1/2[[v]]‖0,FI

h

. ‖v‖2E +

(
1

α

∑
Ω`

‖D1/2ε(v)‖20,Ω`

)1/2

‖v‖DG

≤ ‖v‖2E + ‖v‖2DG

≤ ‖v‖2E .

To prove the second bound, it is sufficient to show that

‖v‖2DG − 2〈{σ(v)}, [[v]]〉FI
h
& ‖v‖2DG. (29)

Indeed, using again the definition of the energy norm (15) and the
above estimate we immediately have

‖v‖2E − 2〈{σ(v)}, [[v]]〉FI
h

=
∑
Ω`

‖ρ1/2v̇‖20,Ω`
+
∑
Ω`

‖ρ1/2ζv‖20,Ω`

+ ‖v‖2DG − 2〈{σ(v)}, [[v]]〉FI
h

&
∑
Ω`

‖ρ1/2v̇‖20,Ω`
+
∑
Ω`

‖ρ1/2ζv‖20,Ω`
+ ‖v‖2DG = ‖v‖2E .

Therefore, we next show that (29) holds provided that the stability
parameter α appearing in the definition of the penalization function
(12) is chosen large enough. To this aim, we observe that by using the
Young inequality we have, for any positive number ε,

〈{σ(v)}, [[v]]〉FI
h
≤
∑
F∈FI

h

‖η−1/2{σ(v)}‖0,FI
h
‖η1/2[[v]]‖0,FI

h

≤ 1

ε
‖η−1/2{σ(v)}‖20,FI

h
+ ε‖η1/2[[v]]‖0,FI

h

where η is the stabilization function defined in (12). Therefore, from
the definition of the DG norm (14) it follows

‖v‖2DG − 2〈{σ(v)}, [[v]]〉FI
h
≥
∑
Ω`

‖D1/2ε(v)‖20,Ω`
+ (1− ε) ‖η1/2[[v]]‖0,FI

h

− 1

ε
‖η−1/2{σ(v)}‖20,FI

h

≥
(

1− C

αε

)∑
Ω`

‖D1/2ε(v)‖20,Ω`
+ (1− ε) ‖η1/2[[v]]‖0,FI

h
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where the last step follows from Lemma A.2, with C denoting the
hidden constant. Then (29) follows by choosing, for example, ε = 1/2
and α ≥ 4C.
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M. Käser, M. Stupazzini, and M. Kristekova. Quantitative com-
parison of four numerical predictions of 3D ground motion in the
Grenoble valley, France. Bulletin of the Seismological Society of
America, 100(4):1427–1455, 2010.

[31] G. Cohen. Higher-Order Numerical Methods for Transient Wave
Equations. Springer, 2002.

[32] J. G. F. Crempien and R. J. Archuleta. Ucsb method for sim-
ulation of broadband ground motion from kinematic earthquake
sources. Seismological Research Letters, 86(1):61–67, 2015.

[33] M. Dablain. The application of high-order differencing to the
scalar wave equation. Geophysics, 51(1):54–66, 1986.

[34] S. M. Day, J. Bielak, D. Dreger, S. Larsen, R. Graves, A. Pitarka,
and K. B. Olsen. Test of 3D elastodynamic codes, Lifelines Pro-
gram Task 1A01. Technical report, Pacific Earthquake Engineer-
ing Research Center, 2001.

[35] S. M. Day and C. R. Bradley. Memory-efficient simulation of
anelastic wave propagation. Bulletin of the Seismological Society
of America, 91(3):520–531, 2001.

[36] J. D. De Basabe and M. K. Sen. Grid dispersion and stability
criteria of some common finite-element methods for acoustic and
elastic wave equations. Geophysics, 72(6):T81–T95, 2007.

[37] J. D. De Basabe and M. K. Sen. Stability of the high-order finite
elements for acoustic or elastic wave propagation with high-order
time stepping. Geophysical Journal International, 181(1):577–
590, 2010.

[38] J. D. De Basabe, M. K. Sen, and M. F. Wheeler. The in-
terior penalty discontinuous Galerkin method for elastic wave
propagation: grid dispersion. Geophysical Journal International,
175(1):83–93, 2008.

44



[39] S. Delcourte, L. Fezoui, and N. Glinsky-Olivier. A high-order
discontinuous Galerkin method for the seismic wave propagation.
In ESAIM: Proceedings, volume 27, pages 70–89. EDP Sciences,
2009.

[40] D. A. Di Pietro and A. Ern. Mathematical Aspects of Discontin-
uous Galerkin Methods, volume 69. Springer Science & Business
Media, 2011.

[41] M. Dryja. On Discontinuous galerkin methods for elliptic prob-
lems with discontinuous coefficients. Comput. Methods in Appl.
Math., 3(1):76–85, 2003.

[42] M. Dryja, J. Galvis, and M. Sarkis. BDDC methods for discon-
tinuous Galerkin discretization of elliptic problems. J. Complex-
ity, 23(4-6):715–739, 2007.

[43] M. Dubiner. Spectral methods on triangles and other domains.
Journal of Scientific Computing, 6(4):345–390, 1991.
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