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Abstract. We present new results on the Relaxed Dimensional Factorization (RDF) precondi-
tioner for solving saddle point problems, first introduced in [5]. This method contains a parameter
α > 0, to be chosen by the user. Previous works provided an estimate of α in the 2D case using
Local Fourier Analysis. Novel algebraic estimation techniques for finding a suitable value of the
RDF parameter in both the 2D and the 3D case with arbitrary geometries are proposed. These
techniques are tested on a variety of discrete saddle point problems arising from the approximation
of the Navier–Stokes equations using a Marker-and-Cell scheme and a finite element one. We also
show results for a large-scale problem relevant for hemodynamics simulation that we solve in parallel
using up to 8196 cores.
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1. Introduction. In the last decade, many techniques have been proposed for
preconditioning linear systems of equations in saddle point form, like those arising
from the discretization of the Navier–Stokes equations. Among the most successful,
we mention the Pressure Convection–Diffusion (PCD) preconditioner [32, 26, 19],
which makes the GMRES iterations converge with a rate independent of the mesh,
at least when the viscosity is sufficiently large.

An alternative to PCD is represented by the so-called Least–Squares Commuta-
tor (LSC) preconditioner [15, 16, 19], which can be built automatically, albeit with
higher computational cost. The convergence rate of LSC is independent of the mesh
size and mildly dependent on the viscosity. A version for stabilized finite element
discretizations has been introduced in [16].

In [6], an Augmented Lagrangian (AL) preconditioner is introduced starting from
the augmented Lagrangian formulation of the underlying saddle point problem. The
corresponding convergence rate is independent of the mesh size [7], mildly dependent
on the viscosity, and robust when anisotropic meshes are considered.

In [8], the Modified Augmented Lagrangian (MAL) preconditioner is introduced
to make the action of the AL method cheaper and easier to implement, particularly
on unstructured grids. When using the MAL preconditioner, the rate of convergence
shows a mild dependence on the viscosity and is independent of the mesh size [7].
Like the AL preconditioner, MAL is robust when anisotropic meshes are used [10].

More recently, the so–called Relaxed Dimensional Factorization (RDF) precon-
ditioner has been introduced in [5] as an improvement to the Dimensional Splitting
(DS) preconditioner [4]. Although this method was mainly intended to solve steady
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Stokes and Oseen problems, it can also handle the unsteady case. Experimental
results indicate independence of its convergence rate of the mesh size and a mild de-
pendence on the viscosity. This preconditioner relies on a parameter that, in simple
2D geometries, can be estimated using Local Fourier Analysis (LFA). A comparison of
the performance of the RDF preconditioner and other preconditioners such as PCD
or LSC can be found in [5]. Those results showed that RDF can be an attractive
alternative to PCD and LSC, especially for low values of the viscosity and anisotropic
meshes. In this paper, we develop a new approach to estimating the RDF parameter
for both 2D and 3D problems in arbitrary geometries. We test our technique on a few
numerical benchmarks, as well as on a large 3D problem originating from the simu-
lation of blood flow in large arteries. In particular, we investigate the performance of
the preconditioner in terms of strong scalability using up to 8192 cores.

The remainder of this paper is organized as follows. The mathematical model and
the strategy to solve saddle point problems using the RDF preconditioner are pre-
sented in Sections 2 and 3, respectively. In Section 4, we propose original techniques
to estimate the parameter of the RDF preconditioner. Then in Sections 5, we test
the RDF preconditioner on simple 2D cases, on a 3D driven cavity problem, and on
a benchmark relevant to hemodynamic simulations using up to 8192 cores. Finally,
some conclusions are drawn in Section 6.

2. Mathematical model. We consider an incompressible Newtonian fluid with
constant density ρ and viscosity µ in a bounded domain Ω of Rd (d = 2, 3). The
Navier–Stokes equations read

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f in Ω, t > t0, (2.1)

∇ · u = 0 in Ω, t > t0, (2.2)

where u = u(x, t) is the velocity vector field, p = (x, t) the pressure scalar field,
fext the external force per mass unit, and ν = µ

ρ
the kinematic viscosity. These

partial differential equations are complemented with an initial solution and boundary
conditions:

u(x, t0) = u0(x) ∀x ∈ Ω,

u(x, t) = gD(x, t) ∀x ∈ ΓD, t > t0, (2.3)
(

ν
∂u

∂n
− pn

)

(x, t) = gN (x, t) ∀x ∈ ΓN , t > t0, (2.4)

where ΓD and ΓN refer to the Dirichlet and Neumann part of the boundary, respec-
tively, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and u0, gD, and gN are assigned functions.

We consider a fully implicit scheme, see, e.g. [18, 28], to discretize in time the
equations:

1

∆t
un+1 − ν∆un+1 + un+1 · ∇un+1 +∇pn+1 = fn+1 +

1

∆t
un,

∇ · un+1 = 0.

Picard iteration is used to solve the nonlinearity; see, e.g., [18]. The weak formulation
of the resulting equations is discretized in space using the Finite Element Method
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(FEM) yielding at each timestep a linear system of the form ANSx = b with

ANS =









F1 0 0 BT
1

0 F2 0 BT
2

0 0 F3 BT
3

−B1 −B2 −B3 0









, x =









Un+1
1

Un+1
2

Un+1
3

Pn+1









, b =









G1

G2

G3

0









. (2.5)

Here Fi (i = 1, 2, 3) are discrete operators associated with the Laplace operator, the
(linearized) convection operator and one part of the time derivative for the different
components of the velocity, and Bi, B

T
i (i = 1, 2, 3) are discretized versions of the

first partial derivatives (and their adjoints) for the different components of the veloc-
ity, respectively. Note that we are using −Bi instead of Bi, i = 1, 2, 3; this choice
guarantees that all the eigenvalues of ANS lie in the right half-plane [3, 29]. Finally,
Gi (i = 1, 2, 3) contain the discretized source forces and the second part of the time
derivatives which depend on un. Both the matrix and the right hand side of the
system are modified to take the boundary conditions into account.

3. Relaxed Dimensional Factorization (RDF) preconditioner. The Re-
laxed Dimensional Factorization (RDF) preconditioner was introduced in [5] as an im-
proved version of the Dimensional Splitting (DS) preconditioner [4]. It was originally
designed for steady Oseen problems with small viscosity ν, possibly using anisotropic
meshes. On such problems, most of the preconditioners fail to converge at all or con-
verge very slowly as showed in [5]. The RDF preconditioner exploits the structure of
the matrix of the linear system (2.5) and reads:

PRDF =
1

α2









F1 0 0 BT
1

0 αI 0 0
0 0 αI 0

−B1 0 0 αI

















αI 0 0 0
0 F2 0 BT

2

0 0 αI 0
0 −B2 0 αI

















αI 0 0 0
0 αI 0 0
0 0 F3 BT

3

0 0 −B3 αI









,

where α > 0 is a parameter to be chosen. By expanding the product, we can observe
that PRDF coincides with ANS up to additional terms (which depend on α) showing
up on the upper triangular part:

PRDF =









F1 − 1

α
BT

1 B2 − 1

α
BT

1 B3 BT
1

0 F2 − 1

α
BT

2 B3 BT
2

0 0 F3 BT
3

−B1 −B2 −B3 αI









.

Numerical experiments conducted in [5] on 2D problems using Q2−Q1 and Q2−P1 FE
on a structured grid show that the RDF preconditioner leads to better results than
the DS preconditioner for Stokes problems, and generalized Oseen problems, when
the dynamic viscosity ν is relatively small. For unsteady problems, the convergence
rate of RDF preconditioned iterations is independent of h and ν. Experiments with
inexact variants of the RDF preconditioner also indicate h-independent convergence
rates. However, a moderate dependency on ν is noticed. In [5], it is shown that RDF
is generally more robust and effective than PCD, in particular for small ν.

4. Estimates for the parameter of the RDF preconditioner. When the
preconditioner RDF is used in combination with GMRES, the rate of convergence is
not overly sensitive with respect to the parameter α, as pointed out in [5]; for a value
of α close enough to the optimal value, the convergence rate remains acceptable. The
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optimal value αopt of is the one that minimizes the number of iterations and was
determined in [5] by LFA for 2D problems; this technique is recalled in Section 4.1 of
this paper. For 3D problems, empirical search was used to find a good estimate for
αopt. In this section, we introduce two new search strategies for αopt for both 2D and
3D problems. The first one is based on the minimization of a suitable norm of the
difference between PRDF and ANS , and is described in Section 4.2. The second one
is based on an analysis of the trace of the preconditioned matrix, and is presented in
Section 4.3.

4.1. Local Fourier analysis for the determination of αopt. LFA is a clas-
sical tool for parameter estimation in iterative methods, see, e.g., [16, 9, 33]. In
particular, estimates for the α parameter of the RDF preconditioner in the context
of a fluid cavity problem have been found using this technique in [5] in the 2D case.
This type of analysis is based on the following assumptions:

• the viscosity ν and β in the convective term β · ∇ are constant;
• periodic boundary conditions are imposed;
• centered finite differences are used to discretize the problem;
• the discrete problem is extended to an infinite uniform structured grid;
• F1, F2, B1, B2, are all square of the same order and commute.

The first assumption may seem quite restrictive. However, we note that when ν is
large the diffusion term −ν∆ dominates the convection term v · ∇ such that we can
assume that β = v has almost no impact. The Laplacian term is also dominating
the convection term for h small enough. Indeed, for finite difference discretization the
entries of the stiffness matrix associated to the Laplacian scale as O(h−2) and the en-
tries of the matrix associated to the convection as O(h−1). Under these assumptions,
F1, F2, are replaced by discrete unsteady convection-diffusion operators of the form

1

∆t
I + νLx +Nx,

1

∆t
I + νLy +Ny,

where I is the identity operator, Lx, and Ly are discrete one-dimensional Laplacians
obtained by centered differences and Nx, and Ny are the one-dimensional convection
operators obtained by centered differences in the x, y, and z directions respectively.
B1, B2 are replaced with the one-dimensional differentiation operators Sx and Sy

obtained by one-sided differences in x, and y directions, respectively. Finally, to
mimic the scaling of the entries of the finite element mass matrix, we multiply these
operators by h2 in 2D. For the sake of comparison, we assume, as in [5], that ∆t ≈ h.
The symbols corresponding to the operators are the following

1

∆t
I + νLx +Nx : ν(1− ei2πhθx − e−i2πhθx) + h(1 + βmax,x(e

i2πhθx − e−2pπhθx))

1

∆t
I + νLy +Ny : ν(1− ei2πhθy − e−i2πhθy ) + h(1 + βmax,y(e

i2πhθy − e−2pπhθy ))

Sx : h(1− e−i2πhθx)

Sy : h(1− e−i2πhθy ),

where βmax,x and βmax,y denote the maximum of the x and y components of the
convective field β. For arbitrary meshes, we choose h to be the average of the diameter
of the tetrahedra.
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In this case, it has been shown in [5] that a good estimate for αopt is given by

α∗ = argmin
α

|µ(α)− 1|, (4.1)

where µ(α) is defined as follows:

µ(α) =
1

α
(s1 + s2)−

2

α2
s1s2. (4.2)

Here s1 and s2 are the eigenvalues of S1 = B1(F1 +
1

α
BT

1 B1)
−1BT

1 and S2 = B2(F2 +
1

α
BT

2 B2)
−1BT

2 , respectively. We observe that the quantity µ(α) is to be minimized
not only with respect to α but also with respect to all the frequencies θx, θy that
appear in the expression for the eigenvalues of S1 and S2; we refer to [5] for details.
In practice, the computational cost for computing α∗ for a given value of h and ν is
small compared to the solution of the saddle point problem, and the computation can
be performed off-line for a broad range of values of h and ν.

Since in this paper we are using a FE method to discretize the equations, the
entries of the mass matrix Mu scale as O(h−2). Therefore, we expect small values for
the parameter α.

4.2. Estimation using error minimization. As previously noted, the differ-
ence between ANS and PRDF is given by

Rα = PRDF −ANS =









0 − 1

α
BT

1 B2 − 1

α
BT

1 B3 0
0 0 − 1

α
BT

2 B3 0
0 0 0 0
0 0 0 αI









. (4.3)

We want to choose α > 0 by minimizing the function Ψ(α) = ‖Rα‖, where ‖ · ‖
represents a suitable norm to be chosen. We refer to this approach as global error

minimization (GEM) method. We consider three versions: ΨF (α), Ψ1(α), and Ψ∞(α)
corresponding to the Frobenius norm, the 1-norm, and the infinity norm, respectively:

ΨF (α) =

√

α2Np +
1

α2

(

∥

∥BT
1 B2

∥

∥

2

F
+
∥

∥BT
1 B3

∥

∥

2

F
+
∥

∥BT
2 B3

∥

∥

2

F

)

,

Ψ1(α) =
1

α
max

(

α,
∥

∥BT
1 B2

∥

∥

1
,

∥

∥

∥

∥

(

BT
1 B3

BT
2 B3

)∥

∥

∥

∥

1

)

,

Ψ∞(α) =
1

α
max

(

α,
∥

∥

(

BT
1 B2 BT

1 B3

)∥

∥

∞
,
∥

∥BT
2 B3

∥

∥

∞

)

.

To avoid explicitly forming BT
1 B2, B

T
1 B3, and BT

2 B3, we consider instead

Ψ̂F (α) =

√

α2Np +
1

α2

(

∥

∥BT
1

∥

∥

2

F
‖B2‖

2

F +
∥

∥BT
1

∥

∥

2

F
‖B3‖

2

F +
∥

∥BT
2

∥

∥

2

F
‖B3‖

2

F

)

,

Ψ̂1(α) =
1

α
max

(

α,
∥

∥BT
1

∥

∥

1
‖B2‖1 ,

(∥

∥BT
1

∥

∥

1
+
∥

∥BT
2

∥

∥

1

)

‖B3‖1
)

,

Ψ̂∞(α) =
1

α
max

(

α,
∥

∥BT
1

∥

∥

∞
(‖B2‖∞ + ‖B3‖∞) ,

∥

∥BT
2

∥

∥

∞
‖B3‖∞

)

.
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Since the three norms are submultiplicative, Ψ(α) ≤ Ψ̂(α) for each one of the norms.
The minimization of these functions leads to

αGEM,F =

(
∥

∥BT
1

∥

∥

2

F
‖B2‖

2

F +
∥

∥BT
1

∥

∥

2

F
‖B3‖

2

F +
∥

∥BT
2

∥

∥

2

F
‖B3‖

2

F

Np

)

1

4

,

αGEM,1 ≥ max
(∥

∥BT
1

∥

∥

1
‖B2‖1 ,

(∥

∥BT
1

∥

∥

1
+
∥

∥BT
2

∥

∥

1

)

‖B3‖1
)

,

αGEM,∞ ≥ max
(∥

∥BT
1

∥

∥

∞
(‖B2‖∞ + ‖B3‖∞) ,

∥

∥BT
2

∥

∥

∞
‖B3‖∞

)

.

The estimates αGEM,1 and αGEM,∞ are not very informative since they hardly pro-
vide a value close to αopt. In particular, the numerical results presented in [5] show
examples for which values of α away from αopt deteriorate the convergence rate of
preconditioned GMRES iterations. Therefore, for these two estimates we only take
the lower bound. We now consider a slightly different approach from GEM; we try to
minimize the error in Rα by minimizing the function

Φ(α) = α ‖I‖+
1

α

(∥

∥BT
1 B2

∥

∥+
∥

∥BT
1 B3

∥

∥+
∥

∥BT
2 B3

∥

∥

)

,

where ‖ · ‖ represents again a generic norm. We note that clearly Φ(α) ≥ 0 and that
if Φ(α) = 0 then Rα is the null matrix. We refer to this approach as block error

minimization (BEM) method.
To evaluate Φ(α) without explicitly forming BT

1 B2, B
T
1 B3, and BT

2 B3 we consider
its approximation

Φ̂(α) = α ‖I‖+
1

α

(∥

∥BT
1

∥

∥ ‖B2‖+
∥

∥BT
1

∥

∥ ‖B3‖+
∥

∥BT
2

∥

∥ ‖B3‖
)

.

Let Φ̂F (α), Φ̂1(α), and Φ̂∞(α), denote the versions of Φ̂(α) where the Frobenius norm,
the one norm, and the infinity norm is used, respectively. Because of submultiplica-
tivity, Φ(α) ≤ Φ̂(α). We observe that Φ̂(α) has a minimum given by

αBEM =

√

∥

∥BT
1

∥

∥ ‖B2‖+
∥

∥BT
1

∥

∥ ‖B3‖+
∥

∥BT
2

∥

∥ ‖B3‖

‖I‖
. (4.4)

With respect to αGEM , the estimates are no longer given in terms of inequalities.
It should be mentioned that when ‖Bi‖1 = ‖Bi‖∞ (i = 1, 2, 3), the estimates for

the optimal α obtained using the 1-norm and the infinity norm are identical. This is
indeed the case for most saddle point problems arising from PDEs, and in particular
for most discretizations of the Navier–Stokes equations. For more general saddle point
problems, however, the two norms may lead to different estimates.

Finally, we observe that neither αBEM , nor αGEM depend on the viscosity ν. To
amend this deficiency, we develop in Section 4.3 a different approach.

4.3. Estimation using matrix traces. Experience shows that the number of
preconditioned GMRES iterations is usually lower when the eigenvalues of the right
preconditioned matrix Tα = ANSP

−1
RDF (or, equivalently, of the left preconditioned

matrix T ′
α = P−1

RDFANS) are clustered around one. For this reason, we propose to
use the following value for α:

αT = argmin
α

∣

∣

∣

∣

∣

∑

i

(λi − 1)

∣

∣

∣

∣

∣

= argmin
α

|Tr(Tα)−N |,
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where the λi’s denote the eigenvalues of Tα (and T ′
α). As proved in [5] all these

eignvalues have positive real part. Computing the trace of Tα (or of T ′
α, which is the

same) is an expensive task. To reduce its cost, we use an explicit expressions of T ′
α

that is provided by Lemma 4.1.
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Lemma 4.1. Let F̂i − Fi +
1

α
BT

i Bi and Si = BiF̂iB
T
i , i = 1, 2, 3. Then

T ′
α = I − P−1

RDFRα = I −









0 − 1

α
F̂−1
1 BT

1 B2 − 1

α
F̂−1
1 BT

1 B3 −F̂−1
1 BT

1

0 1

α2 F̂
−1
2 BT

2 S1B2 − 1

α2 F̂
−1
2 BT

2 (αI − S1)B3 − 1

α
F̂−1
2 BT

2 (αI − S1)

0 1

α3 F̂
−1
3 BT

3 (αI − S2)S1B2
1

α3 F̂
−1
3 BT

3 [(αI − S2)S1 + αS2]B3 − 1

α2 F̂
−1
3 BT

3 (αI − S2)(αI − S1)
0 − 1

α4 (αI − S3)(αI − S2)S1B2 − 1

α4 (αI − S3)[(αI − S2)S1 + αS2]B3
1

α3 (αI − S3)(αI − S2)(αI − S1)









Proof. Let PRDF = 1

α2M1M2M3 with

M1 =









F1 0 0 BT
1

0 αI 0 0
0 0 αI 0

−B1 0 0 αI









, M2 =









αI 0 0 0
0 F2 0 BT

2

0 0 αI 0
0 −B2 0 αI









, M3 =









αI 0 0 0
0 αI 0 0
0 0 F3 BT

3

0 0 −B3 αI









, then we have

M−1
1 =









F̂−1
1 0 0 − 1

α
F̂−1
1 BT

1

0 1

α
I 0 0

0 0 1

α
I 0

1

α
B1F̂

−1
1 0 0 1

α
I − 1

α2S1









, M−1
2 =









1

α
I 0 0 0

0 F̂−1
2 0 − 1

α
F̂−1
2 BT

2

0 0 1

α
I 0

0 1

α
B2F̂

−1
2 0 1

α
I − 1

α2S2









, M−1
3 =









1

α
I 0 0 0
0 1

α
I 0 0

0 0 F̂−1
3 − 1

α
F̂−1
3 BT

3

0 0 1

α
B3F̂

−1
3

1

α
I − 1

α2S3









.

Therefore,

P−1
RDF =









F̂−1
1 0 0 − 1

α
F̂−1
1 BT

1

− 1

α
F̂−1
2 BT

2 B1F̂
−1
1 F̂−1

2 0 − 1

α2 F̂
−1
2 BT

2 (αI − S1)

− 1

α2 F̂
−1
3 BT

3 (αI − S2)B1F̂
−1
1 − 1

α
F̂−1
3 BT

3 B2F̂
−1
2 F̂−1

3 − 1

α3 F̂
−1
3 BT

3 (αI − S2)(αI − S1)
1

α3 (αI − S3)(αI − S2)B1F̂
−1
1

1

α2 (αI − S3)B2F̂
−1
2

1

α
B3F̂

−1
3

1

α4 (αI − S3)(αI − S2)(αI − S1)









.

Finally, direct computations give the result.
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We now state the following result:
Lemma 4.2. The trace of Tα and T ′

α is given by

Tr(Tα) = Tr(T ′
α) = Nu+

1

α
Tr(S1+S2+S3)−

2

α2
Tr(S1S2+S1S3+S2S3)+

2

α3
Tr(S1S2S3),

where Si = BiF̂
−1
ii BT

i , i = 1, 2, 3 and Nu is the number of degrees of freedom for the

discrete velocity.

Proof. It is obvious that Tα and T ′
α have the same trace. From Lemma 4.1, we

find

Tr(T ′
α) = Tr(I)−

1

α2
Tr(F−1

2 BT
2 S1B2)−

1

α3
Tr
(

F−1
3 BT

3 ((αIp − S2)S1 + αS2)B3

)

−
1

α3
Tr ((αIp − S3)(αIp − S2)(αIp − S1)) .

Thanks to the property Tr(XY ) = Tr(Y X) for X ∈ RN×M and Y ∈ RM×N , simple
computations lead to

Tr(F−1
2 BT

2 S1B2) = Tr(B2F
−1
2 BT

2 S1), and

Tr
(

F−1
3 BT

3 ((αIp − S2)S1 + αS2)B3

)

= Tr
(

B3F
−1
3 BT

3 ((αIp − S2)S1 + αS2)
)

,

and this concludes the proof.
The computation of Tr(Si), Tr(SiSj) or Tr(S1S2S3) for i = 1, 2, 3 in Lemma 4.2 is

the most expensive part of this approach and we would like to avoid it. More generally,
computing or estimating the trace of a product of matrices or the trace of the inverse of
a matrix are challenging problems with no easy solution. To simplify the computation,
we approximate F̂i = Fi +

1

α
BT

i Bi by Fi and Si by S̃i := Bidiag(Fi)
−1BT

i . Then, we

can explicitly form S̃i for i = 1, 2, 3 and find αT by minimizing the function

φ(α) := Nu +
1

α
a−

2

α2
b+

2

α3
c,

where

a := Tr(S̃1 + S̃2 + S̃3), b := Tr(S̃1S̃2 + S̃1S̃3 + S̃2S̃3), c := Tr(S̃1S̃2S̃3),

are independent of α. To further reduce the cost of this computation, we make use of
the two following formulas valid for A,B ∈ RN×N :

Tr(A+B) = Tr(A) + Tr(B),

Tr(AB) =
N
∑

i,j=1

(A ◦BT )ij , (4.5)

where ◦ denotes the Hadamard product.
Finally, we observe that it is inexpensive to evaluate φ(α) once a, b, and c have

been computed. Indeed, one can simply evaluate the function for α in a given range
to find an approximation of the minimum value, i.e., αT .

5. Numerical results. We now focus on testing the efficiency of the RDF pre-
conditioner. In particular, we study the different techniques that we introduced in
Section 4 to estimate αopt. The numerical experiments are split into two parts. The
first one shows some Matlab experiments that allow us to compare how the new es-
timates for α compete against the Fourier analysis estimate introduced in [5]. The
second one shows some numerical experiments using up to 8192 cores on the aneurysm
benchmark problem introduced in [14].
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5.1. Three simple benchmark tests. In this section, we want to compare the
iterations count using the new estimates with those obtained using the parameter (4.1)
yielded by Fourier Analysis (FA). We consider the same settings as in [5]: we solve the
Oseen equations using two test problems. First, we consider the steady 2D lid–driven
cavity problem discretized by Q2 − P1 finite elements, which satisfy the Babus̆ka–
Brezzi (inf–sup) condition [11], on uniform grids. In particular, we consider three
values for the viscosity ν = 0.1, ν = 0.01, and ν = 0.001, and four different space
discretizations corresponding to 16 × 16, 32 × 32, 64 × 64, and 128 × 128 structured
meshes. Next, we consider a 3D Marker–and–Cell (MAC) discretization of the Oseen
problem [20].

Unless otherwise specified, the linear system arising from the Oseen problem
is solved using a right preconditioned restarted GMRES; the maximum subspace
dimensions is set to 20. We use a zero initial guess and the stopping criterion is based
on the norm of the residual scaled by the right hand side, i.e.,

‖r‖2
‖b‖2

≤ 10−6.

All the simulations are carried out with Matlab [27]. The problems are generated
using the IFISS 3.0 software package [17].

For each problem, we report the number of iterations for different choices of α
stemming from the strategies presented in Section 4, as well as an optimal value
obtained experimentally by an expensive “brute force search”. In all the examples,
the subproblems involved in the application of the RDF preconditioner are solved by
direct methods. Note that we are only interested in a good choice for α to lower the
number of iterations. For that, we only report the iterations count for GMRES. We
refer to [5] for numerical experiments involving the use of subiterations to apply F̂−1

i ,
i = 1, 2, 3, instead of direct methods.

5.1.1. The 2D leaky lid driven cavity problem discretized by Q2-P1

finite elements. This test problem describes the behavior of a fluid standing into a
cavity and driven by a current at the top (the lid) of the domain. For example, one
can think of a cavity in the bed of a river where the fluid starts moving due to the
river flowing at the top. The computational domain Ω is the square [−1, 1]2. ux = 1
is imposed on the upper side of the square. No–slip boundary conditions are imposed
on the lower, left and right sides.

In this example ‖Bi‖1 and ‖Bi‖∞ are equal, which is to be expected since they
represent discretizations of partial derivatives. Therefore, the estimates using the two
norms are identical and we only report the estimates computed with the 1-norm in
the tables that follow. Tables 5.1 to 5.3 show the number of GMRES iterations to
converge. When ν = 0.1 (see Table 5.1) we observe that the LFA, GEM1, and the
strategy based on trace estimates provide the best results. The BEM1 estimate give
acceptable results, however the number of iterations increases as the mesh is refined.
BEMF , and GEMF estimates are the least efficient techniques in this case. The
results for ν = 0.01 are reported in Table 5.2. The worst estimates are again those
obtained using BEMF and GEMF . Then, using the 16× 16 and 32× 32 meshes the
new methods introduced in this work perform better than the LFA estimates, while
in the case of the 64× 64 and 128× 128 the trace and the LFA estimates are better.
This is consistent with the fact that, as ν becomes small, it is only guaranteed that
LFA produces physically consistent solutions with fine meshes. Finally, the result for
ν = 0.001 are reported in Table 5.3. In this context, only results with fine meshes,
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Grid 16× 16 32× 32 64× 64 128× 128
α Iter α Iter α Iter α Iter

RDF optimal 0.101-0.161 8 0.031-0.051 8 0.011 8 0.001-0.011 9
RDF LFA estimate 0.073 9 0.025 8 0.008 8 0.002 7
RDF trace estimate 0.119 8 0.032 8 0.008 8 0.002 7
RDF BEM1 estimate 0.609 11 0.304 13 0.152 14 0.076 15
RDF BEMF estimate 0.798 12 0.579 15 0.415 16 0.295 15
RDF GEM1 estimate 0.370 10 0.093 10 0.023 9 0.006 8
RDF GEMF estimate 0.798 12 0.579 15 0.415 16 0.295 15

Table 5.1

Preconditioned GMRES on steady Oseen problems with different grid sizes (Q2 − P1 FEM,
uniform grids), viscosity ν = 0.1

Grid 16× 16 32× 32 64× 64 128× 128
α Iter α Iter α Iter α Iter

RDF optimal 0.401-0.731 12 0.131-0.201 11 0.041 10 0.011 10
RDF LFA estimate 0.126 21 0.057 17 0.024 13 0.010 10
RDF trace estimate 1.188 15 0.321 14 0.083 12 0.021 11
RDF BEM1 estimate 0.609 12 0.304 13 0.152 17 0.076 22
RDF BEMF estimate 0.798 13 0.579 19 0.415 28 0.295 37
RDF GEM1 estimate 0.370 13 0.093 13 0.023 13 0.006 12
RDF GEMF estimate 0.798 13 0.579 19 0.415 28 0.295 37

Table 5.2

Preconditioned GMRES on steady Oseen problems with different grid sizes (Q2 − P1 FEM,
uniform grids), viscosity ν = 0.01

i.e., with 64 × 64 and 128 × 128 are relevant for the LFA estimate. The strategy
based on trace estimates do not work well in this situation; the iterations count is
too large. However, the number of iterations decreases as the mesh is refined. The
BEM1 and GEM1 estimates give iteration counts that remains stable as long as the
mesh is not too fine, whereas the LFA estimate gives the best results on the finest
mesh. Note that on this problem, the strategies based on the 1-norm and those based
on the infinity norm coincide, since ‖Bi‖1 = ‖Bi‖∞. All in all, the strategy based
on the trace estimate works equally well as the one based on LFA estimate as long
as ν ≥ 0.01. BEM1 works surprisingly well in all the tested configurations. The
performance of GEM1 is very sensitive to the viscosity. Finally, GEMF and BEMF

are the least effective techniques.

5.1.2. The 3D leaky lid driven cavity problem discretized by Marker-
and-Cell method. We now consider again a leaky lid driven cavity problem but
in 3D and using Marker–and–Cell (MAC) discretization [20]. As in the 2D leaky lid
driven cavity problem, the 1-norm and the infinity norm of B1, B2 and B3 coincide.
Therefore, we report only the estimates computed with the 1-norm in the tables that
follow. Tables 5.4 to 5.6 show the number of GMRES iterations to converge. The LFA
technique does not work well in the 3D case and is therefore not mentioned in what
follows. Using ν = 0.1, all the methods result in acceptable iteration counts although
the trace estimate leads to a convergence requiring half the number of iterations of the
other ones. If ν = 0.01, BEM1 gives an estimate for α that is about twice that of αopt

but the number of iterations remains acceptable. On the contrary, BEMF , GEM1, and
GEMF provide an estimate that is totally inaccurate. Overall, the approximate trace
estimate gives a value for α that is very close to the optimal one. Using ν = 0.005, the
same observation holds. In summary, only the strategy based on the trace technique is
able to provide a good approximation of αopt, while the others appear to overestimate
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Grid 16× 16 32× 32 64× 64 128× 128
α Iter α Iter α Iter α Iter

RDF optimal 0.651-1 30 0.281-0.321 29 0.091-0.121 27 0.031 25
RDF LFA estimate 0.126 80 0.063 71 0.032 44 0.016 29
RDF trace estimate 11.898 238 3.212 215 0.833 135 0.212 110
RDF BEM1 estimate 0.609 31 0.304 29 0.152 30 0.076 47
RDF BEMF estimate 0.798 30 0.579 43 0.415 84 0.295 281
RDF GEM1 estimate 0.370 39 0.093 52 0.023 55 0.006 51
RDF GEMF estimate 0.798 30 0.579 43 0.415 84 0.295 281

Table 5.3

Preconditioned GMRES on steady Oseen problems with different grid sizes (Q2 − P1 FEM,
uniform grids), viscosity ν = 0.001

Grid 16× 16× 16 32× 32× 32
α Iter α Iter

RDF optimal 1.7-2.8 11 1.5-3.1 12
RDF trace estimate 1.265 13 1.306 13
RDF BEM1 estimate 55.4 22 110.9 24
RDF BEMF estimate 303.6 24 1038.0 27
RDF GEM1 estimate 2048 26 8192.0 28
RDF GEMF estimate 230.7 23 788.7 26

Table 5.4

Preconditioned GMRES on 3D steady Oseen problems with different grid sizes (MAC discretiza-
tion, uniform grids), viscosity ν = 0.1

it.

5.2. Large-scale experiments. For large-scale 3D problems, exact application
of the RDF preconditioner is too expensive and inexact variants must be used [5].
The approximation of the RDF preconditioner uses the factorization of the RDF
preconditioner from Section 3 as a starting point. Here, inverses of the algebraic
operators are replaced by some suitable approximations denoted by a “tilde” over the
corresponding operators. The approximate RDF preconditioner can then be defined
in factored form, as follows:

P−1
aRDF =









I 0 0 0
0 I 0 0
0 0 I 0
0 0 1

α
B3 I
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,

where, as before, F̂i = Fi+
1

α
BT

i Bi for i = 1, 2, 3. In our experiments we use GMRES

with an algebraic multigrid (AMG) preconditioner to approximate the action of F̂−1
i

for i = 1, 2, 3. We use two sweeps of symmetric Gauss–Seidel iterations to perform
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Grid 16× 16× 16 32× 32× 32
α Iter α Iter

RDF optimal 13.8-20.1 17 12.4-15 18
RDF trace estimate 12.651 18 13.064 18
RDF BEM1 estimate 55.4 29 110.9 44
RDF BEMF estimate 303.6 63 1038.0 84
RDF GEM1 estimate 2048 87 8192.0 94
RDF GEMF estimate 230.7 56 788.7 82

Table 5.5

Preconditioned GMRES on 3D steady Oseen problems with different grid sizes (MAC discretiza-
tion, uniform grids), viscosity ν = 0.01

Grid 16× 16× 16 32× 32× 32
α Iter α Iter

RDF optimal 23.2-30.2 24 23.2-29.8 24
RDF trace estimate 25.982 24 26.133 24
RDF BEM1 estimate 55.4 35 110.9 56
RDF BEMF estimate 303.6 100 1038.0 158
RDF GEM1 estimate 2048 182 8192.0 199
RDF GEMF estimate 230.7 87 788.7 147

Table 5.6

Preconditioned GMRES on 3D steady Oseen problems with different grid sizes (MAC discretiza-
tion, uniform grids), viscosity ν = 0.005

pre-smoothing only, and an LU factorization to solve the coarse problem. AMG
works remarkably well in this case because F̂i is dominated by its symmetric part
1

2
(Fi + FT

i ) + 1

α
BT

i Bi.

The three-dimensional simulations have been coded in LifeV [1], a C++ fi-
nite element library under the LGPL license. This library makes intensive use of
Trilinos [23], which contains many distributed packages. In particular, the multigrid
algorithm relies on the ML package, and GMRES is based on the Belos package. When-
ever mesh coarsening is required, aggregates are computed using METIS/ParMETIS [24,
25]. To perform the LU factorization required by the coarse solve of multigrid, we
chose to use KLU [13] rather than UMFPACK [12]. Although KLU has been devel-
oped primarily for solving sparse linear systems from circuit simulations and not the
ones arising in finite element modeling, we found that the time to compute the fac-
torization is smaller than that of UMFPACK and this makes the total costs (time to
build the preconditioners and time for the preconditioned iterations) smaller. All the
computations are carried out using Monte Rosa, a Cray XE6 supercomputer at the
Swiss National Supercomputing Centre (CSCS), cf. Table 5.7. The reported results
are obtained using as many cores as possible on each node, without multithreading
enabled.

5.2.1. Flow in a cerebral aneurysm. We consider the simulation of blood
flow in a cerebral aneurysm, which is a localized blood–filled deformation in a blood
vessel wall. The computational domain Ω represents an artery where an aneurysm
has developed (see Figure 5.1(a)). The geometry of the cerebral aneurysm was first
used in the research project Aneurisk [31]. Detailed informations on the meshes are
provided in Table 5.9. The diameter of the inlet Γin measures 0.35 cm and is chosen as
characteristic length. Figure 5.1(a) shows the mesh used to perform the simulations,
for a time step ∆t = 10−3. Blood flow is modeled by the Navier–Stokes equations
with density ρ = 1 g/cm3 and viscosity µ = 0.035 g/(cm·s), i.e., ν = 0.035 cm2/s. An
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Number of service nodes 40
Number of compute nodes 1’496
Number of processors per node 2x 16-core AMD Opteron Interlagos
Processors frequency 2.1 GHz
Processors shared memory per node 32 GB DDR2
Peak performance 402 Teraflop/s.
Network Gemini 3D torus

Table 5.7

Monte Rosa Cray XE6 technical data

(a) Mesh of the cerebral aneurysm (b) Flux evolution with respect to the time

Fig. 5.1. Mesh and inflow for the cerebral aneurysm

approximation of the flow rate at the inlet Γin has been provided in [2] as

ϕ(t) = a0 +
7
∑

k=1

ak cos

(

2πkt

T

)

+ bk sin

(

2πkt

T

)

, (5.1)

where T denotes the period of the cardiac cycle, and ak and bk are given in Table 5.8
(the coefficients have been scaled to correspond to our geometry). The function ϕ(t)
is presented in Figure 5.1(b). For our computations, we take T = 1 and the flow rate
is imposed by a flat inlet profile on Γin. Homogenous Neumann boundary conditions
are imposed on Γout, and no–slip boundary conditions are imposed on the vessel wall
Γwall.

The problem is discretized in time using a fully implicit scheme linearized with
Picard–Oseen iterations with ∆t = 10−3 and in space using the P2−P1 finite elements
on a tetrahedral mesh. The tolerance ǫNL for the nonlinear iterations of the implicit
scheme is set to 10−6. Flexible GMRES (FGMRES) without restart is used to solve
the linear problem at each time step [30]. The preconditioner is recomputed at each
time iteration. The stopping criterion is based on the residual scaled by the right
hand side,

‖rk‖2 ≤ 10−6 ‖b‖
2
.

We evaluate four versions of the approximate RDF preconditioner: each of them
corresponds to the tolerance that is used to apply F̂−1

i , i = 1, 2, 3 using the inner
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0 1 2 3 4 5 6 7
ak 1.36 -0.207 -0.152 0.059 0.039 0.00286 -0.0371 -0.000759
bk 0.176 -0.0429 -0.117 0.0385 0.0139 0.0166 -0.0359

Table 5.8

Coefficients for the flow rate function, [2]

Mesh Velocity DoF Pressure DoF hmin haverage hmax

Coarse 597’093 27’242 0.015 0.035 0.059
Medium 4’557’963 199’031 0.005 0.018 0.051
Fine 35’604’675 1’519’321 0.0026 0.0097 0.0277

Table 5.9

Aneurysm test case: Number of Degrees of Freedom (DoF) and mesh size

AMG-preconditioned GMRES method, namely 10−1, 10−2, 10−4, and 10−10. For
this reason, at each Oseen–Picard iteration, the system is solved using FGMRES. We
first discuss the efficiency of the strategy based on the trace estimation technique.
Table 5.10 shows the approximate value for αopt computed by successive trials, the
value obtained using the trace estimation technique as well as the average number of
iterations over the Picard iterations, indicated in parenthesis, to solve one timestep.
Using the medium mesh, we see that we are close to αopt. We have not computed an
estimation for αopt using the fine mesh to save resources and since the iteration count
is already even better than for the medium mesh. Figure 5.2 gives more details about
how the iterations count behaves with respect to α using the coarse and the medium
meshes.

We first report the time to build the RDF preconditioner in Figure 5.3. With the
coarse mesh, strong scalability is observed up to 512 cores. With the medium and
fine meshes, the time is superlinear, thanks to the LU factorization which involves the
assembly of the coarse level of the multigrid preconditioners for F̂i, i = 1, 2, 3.

We report in Table 5.11 the time needed to compute αT (in parenthesis, we report
the fraction w.r.t. the total time), the time to compute F̂1 and the total time to build
the RDF preconditioner. With all the meshes, we note that computing αT does not
scale at all with an increasing number of processors. In fact, the time is even increas-
ing. However, the value of αT does not vary much during the simulation. Therefore,
in practice, one can compute it once and for all using a lower number of cores than
the number used to do the simulations, at a negligible cost. The computation does
not scale because the entries of the matrices B and BT are stored by rows, which
are owned by different parallel tasks. Therefore, when we compute the product as in
Equation (4.5), a lot of communication is required to transpose the matrix, i.e., the
rows of the matrix become the columns and the row entries have to be sent to the
appropriate parallel task.

Building the RDF preconditioner is fairly expensive, because the number of entries
contained in the matrices F̂i, i = 1, 2, 3 compared to those of the matrix Fi, is high.
We examined a sparse version of F̂i where only the entries that are already in the
pattern of F are kept. Therefore, the number of nonzero entries of the sparse F̂i is
the same as that of F . Unfortunately, the resulting preconditioned FGMRES method
exhibits poor convergence, but this version of the RDF preconditioner can be built
very quickly. Future research should be aimed at finding a version that leads to good
convergence rates of FGMRES using sparse approximations of F̂i, i = 1, 2, 3. In this
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Mesh αopt Iteration count for αopt α Iteration count for α
Coarse ∼ 10−5 50 7 · 10−5 137.33 (6)
Medium ∼ 5 · 10−6 16.4 1.5 · 10−6 17.25 (4)
Fine - - 1.76 · 10−6 9.75 (4)

Table 5.10

Aneurysm test case: comparison between α and αopt

Fig. 5.2. Aneurysm test case: number of GMRES iterations with respect to the choice of α

direction, we mention a promising variant of the augmented Lagrangian approach
where a Grad–Div stabilization technique is used to build the augmented matrix;
see [22, 21]. In this approach the augmentation is performed at the continuous level,
before discretization. Experiments show that this reduces the number of entries while
preserving the convergence rates. A similar approach may work well in the context of
RDF preconditioning.

Figure 5.4 reports the number of iterations of FGMRES. With the coarse mesh
the number of iterations remains constant for the range of number of cores that we
considered. Nevertheless, the iterations count is quite large for all the precisions with
which we apply the RDF. It is possible that this is due to the mesh being too coarse to
yield physically meaningful solutions, and to the onset of instabilities (“wiggles”) in
the corresponding discrete solution. Using the medium or the fine mesh, however, the
number of iterations is much lower than with the coarse mesh and remains constant.
We note that applying less accurately the RDF preconditioner slightly increases the
number of iterations, but in all the considered cases, the number of iterations remains
almost constant.

Finally, we show the scalability curves of the time needed to solve the linear system
(FGMRES iterations) in Figure 5.5. With the coarse mesh the strong scalability is
observed up to 512 cores, while the scalability is almost perfect with the medium
and fine mesh. The accuracy used to apply the RDF preconditioner is here again
not affecting the slope of the scalability curves. Therefore, it is suitable to apply the



Solution of a problem relevant to hemodynamics simulations using the RDF preconditioner 17

(a) Coarse mesh (b) Medium mesh

(c) Fine mesh

Fig. 5.3. Aneurysm test case: CPU time needed to build the preconditioners

inexact version using the inner tolerance 0.1, which is about 10 times faster than when
using the tolerance 10−10. Overall, the RDF preconditioner, while expensive to build,
is very robust and is able to produce solutions even for very difficult cases.

To summarize, the RDF preconditioner built using α computed with the trace
estimate leads to a robust and scalable preconditioning technique. The main issue
remains the high computation time to build it due to the number of nonzero entries
in F̂i, i = 1, 2, 3. Therefore, finding a sparse approximation to F̂i, i = 1, 2, 3, will be
the key to obtain a more efficient version of the RDF preconditioner.

6. Conclusion. In this paper, we considered various techniques to estimate the
parameter α in the RDF preconditioner. In particular, the approach based on the
trace of the preconditioned matrix results in very good convergence rates for both 2D
and 3D cases. The efficiency of the preconditioner can still be improved. Numerical
experiments on a large 3D hemodynamics problem show that RDF scales very well
with increasing core counts. Future work should focus on improving the efficiency of
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Mesh Cores Computation of αT Preconditioner for F̂1 Total time
Coarse 128 1.09 (0.12) 2.61 9.13

256 0.9 (0.22) 1.0 4.1
512 1.0 (0.34) 0.59 2.95
1024 1.72 (0.43) 0.64 3.97

Medium 128 4.77 (3.57 · 10−3) 268.3 1336.85
256 3.16 (0.02) 52.0 158.73
512 2.48 (0.07) 10.74 35.33
1024 2.57 (0.19) 3.42 13.49
2048 4.29 (0.36) 1.91 11.89

Fine 1024 6.97 (5.38 · 10−3) 240.12 1296.21
2048 7.18 (0.04) 54.48 172.55
4096 13.0 (0.22) 14.47 60.34
8192 23.22 (0.41) 9.41 56.25

Table 5.11

Aneurysm test case: time to build the RDF preconditioner

the preconditioner. In particular, techniques to reduce fill-in in the sub-matrices that
comprise the RDF preconditioner should be investigated.
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