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Abstract

The efficient solution of coupled PDEs/ODEs problems arising in cardiac electrophysiology is
of key importance whenever interested to study the electrical behavior of the tissue for several
instances of relevant physical and/or geometrical parameters. This poses significant challenges
to reduced order modeling (ROM) techniques – such as the reduced basis method – traditionally
employed when dealing with the repeated solution of parameter dependent differential equations.
Indeed, the nonlinear nature of the problem, the presence of moving fronts in the solution, and
the high sensitivity of this latter to parameter variations, make the application of standard ROM
techniques very problematic. In this paper we propose a local ROM built through a k-means
clustering in the state space of the snapshots for both the solution and the nonlinear term. Several
comparisons among alternative local ROMs on a benchmark test case show the effectivity of the
proposed approach. Finally, the application to a parametrized problem set on an idealized left-
ventricle geometry shows the capability of the proposed ROM to face complex problems.

Keywords: cardiac electrophysiology; parametrized monodomain model; local reduced order
model; reduced basis method; proper orthogonal decomposition; empirical interpolation method.

1. Introduction

The propagation of the electrical signal through the heart cells is the main responsible of their
contraction mechanism, finally resulting in atrial and ventricular contractions. At the macroscopic
level, the propagation of electrical potentials is described by means of partial differential equations
(PDEs) suitably coupled with ordinary differential equations (ODEs); the latter describe the ionic
currents in the cells, depending on a set of gating variables [1]. For instance, coupling the so-
called monodomain model for the transmembrane potential u = u(x, t) with a phenomenological
model for the ionic currents – involving a single gating variable w = w(x, t) – in a domain Ω
representing, e.g., a portion of the myocardium (or the whole left ventricle) results in the following
time-dependent nonlinear differential system

∂u

∂t
− div(D∇u) + Iion(u,w) = Iapp(x; t), x ∈ Ω, t ∈ (0, T )

∂w

∂t
+ g(u,w) = 0, x ∈ Ω, t ∈ (0, T )

∂u

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T )

u(x, 0) = u0, w(x, 0) = w0, x ∈ Ω

(1.1)
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where u represents the transmembrane potential for cardiac cells, w the recovery variable, and t
a rescaled time; n denotes the outward unit normal vector to the boundary ∂Ω, whereas Iapp is
an applied current representing the initial activation of the tissue. (1.1)1 is a nonlinear diffusion-
reaction equation; the reaction term Iion and the function g depend on both u and w, thus making
the PDE and the ODE two-ways coupled. The most common choices for the two functions Iion
and g in order to efficiently reproduce the action-potential are, e.g., the FitzHugh-Nagumo [2, 3],
the Aliev-Panfilov [4, 5] or the Mitchell and Schaeffer model [6]. The diffusivity tensor D usually
depends on the fibers-sheet structure of the tissue, affecting conduction velocities and directions.

When a full-order model (FOM) such as, e.g., the FE method, is used, the accurate solution of
such a coupled system is computationally demanding [7, 8, 9, 10], because (i) strong constraints
on the spatial mesh size have to be taken into account due to the propagation of very steep
fronts, and (ii) very small time steps are required to capture the fast dynamics characterizing the
propagation of the electrical signal. The same is true for the electrical potential of the atria [11].
The solution of the linear algebraic systems arising at each time step hinges upon the use of semi-
implicit methods or operator splitting-based ones for the whole coupled PDEs/ODEs problem,
requiring suitable preconditioning techniques [12, 13, 14, 15, 16].

1.1. The need of local reduced order models
Relying on full-order techniques is thus out of reach whenever a problem like (1.1) has to

be solved many times, by varying parameter-dependent features affecting operators and/or data.
These many-query problems can occur, for instance, when characterizing the evolution of the
electrical potential for different tissue conductivity tensors D, activation patterns Iapp, physical
coefficients in the expressions of Iion and g or domains Ω possibly accounting for inter-subject vari-
ability. Long-term relevant goals include, among others, the solution of uncertainty quantification
(UQ) problems [17, 18, 19, 20, 21] parameter estimation and inverse problems [22, 23, 24, 25].

Reduced basis (RB) methods and, more generally, reduced order models (ROMs) have been
deeply investigated in the last decade and applied to a broad range of parameter dependent PDEs
[26]. A possible approach to tackle nonlinear, time-dependent PDEs relies on:

1. proper orthogonal decomposition (POD) to generate a (unique, global) lower dimensional
subspace in which the solution of the ROM problem is sought; the reduced basis is then
provided by the first right singular vectors of a matrix Su collecting snapshots of the FOM
obtained for different parameter values, at different time instants;

2. Galerkin or Petrov-Galerkin projection to generate the reduced-order arrays, whence the
name of, e.g., POD-Galerkin ROM;

3. hyper-reduction techniques (such as the empirical interpolation (EIM) method, or its discrete
counterpart (DEIM) [27, 28, 29, 30]) to speed up the evaluation of nonlinear and nonaffine1

arrays, avoiding to access the FOM arrays and ensuring the overall ROM efficiency.

Such a global ROM strategy, however, might yield inefficient ROM approximations because of
the unaffordable large sets of global basis functions required to approximate both the solution and
the nonlinear terms. This happens, e.g., when the solutions manifold (that is, the set of all solu-
tions of the FOM for varying parameters) is characterized by large parameter variations, different

1A vector f(µ) and a matrix A(µ) depend affinely on µ if they are expressed as f(µ) =
∑Qf

q=j Θf
j (µ)fj , A(µ) =∑Qa

j=1 Θa
j (µ)Aj , for given µ-dependent functions {Θf

j }
Qf

j=1, {Θ
a
j }Qa

j=1, and µ-independent vectors {fq}
Qf

j=1 or matrices
{Aj}Qa

j=1; Qf and Qa are given integers, indicating the parametric complexity of f and A.
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physical regimes, or moving features such as fronts or discontinuities. This is indeed the case of
the monodomain problem (1.1), for which the transmembrane potential u is characterized by a
traveling wave (depolarization) which progressively covers the domain representing the portion of
cardiac tissue at hand. This mechanism, controlled by the ionic current, is then followed by a
repolarization phase where the potential returns to its resting value.

In such a situation, the solution can be better approximated in a lower-dimensional subspace
generated by local basis vectors, rather than in a unique subspace spanned by global basis vectors.
To enhance computational efficiency in these contexts, several strategies have been proposed,
relying on local reduced basis spaces (or local ROMs) possibly coupled with adaptive procedures for
their construction or enrichment. Being able to switch between different local bases by evaluating
quantities which only depend on the dimension of the local ROMs makes the whole procedure
computationally attractive.

1.2. The content of this paper and comparison with other existing approaches
Despite the RB method has been applied to several classes of problems in the last decade, a

reliable, efficient and accurate ROM for parametrized problems in cardiac electrophysiology like
(1.1) is still lacking. In this paper we show how to construct local ROMs for such a problem by
relying on different strategies to partition snapshot sets, assessing both the numerical accuracy and
the computational efficiency of the proposed techniques. When depending on a set of parameters,
problem (1.1) represents a new test-bed for ROM techniques, for several reasons. First of all,
only few works have addressed this kind of problems thus far; moreover, only the case of few
physical parameters has been considered, whereas our framework can also deal with geometrical
parameters, related to real applications. Furthermore, often ad-hoc procedures have been devised
to tackle problems in cardiac electrophysiology, without developing a general purpose framework
able to account for several parameters. Last, but not least, the methodological framework for the
problem at hand can be easily transferred to different time-dependent non-linear parametrized
PDEs, depending on the application at hand.

A first application of POD to the bidomain equations for cardiac electrophysiology has been
addressed in [24], limitedly to few parameters. In that paper POD is applied to compress snap-
shots over the time interval with the aim of reproducing online the dynamics of the system for
new parameters slightly different than those sampled offline. The following issues represent fur-
ther shortcomings in [24]: (i) no hyper-reduction technique has been employed, thus making the
computational speed up carried by the ROM almost negligible; (ii) the ROM is consistent, as
it is able to reproduce the solutions that have been used for its generation, however ROM ac-
curacy is not guaranteed for other parameter values, and (iii) error convergence with respect to
the ROM dimension has not been numerically assessed. A preliminary version of local ROM has
been introduced in [31], however performing an ad-hoc partition of snapshots in the parameter
space, without relying on a general clustering procedure. An alternative strategy, introduced in
[32, 33], is based on the Lax-Pairs approach: here the basis functions are moved in time according
to the traveling front. This approach entails additional online costs and, so far, is limited to
two-dimensional problems.

Regarding error estimation, to the authors’ best knowledge no a posteriori error bounds have
been obtained for this class of problems. A priori error estimates for a POD-Galerkin ROM
for the monodomain system have been instead derived in [34], whereas a stability analysis of a
similar ROM strategy for the bidomain model has been recently addressed in [35]. In both cases,
however, reduction has only been performed with respect to time, and no parameter dependences
have been considered, thus circumventing the main difficulty inherent with the efficient handling
of parameter-dependent operators and matrices.
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The structure of the paper is as follows. In Sect. 2 we provide a formulation of the parametrized
problems we focus on, as well as of its full-order approximation. A POD-Galerkin-DEIM model is
detailed in Sect. 3, showing in particular how to enhance computational efficiency in the evaluation
of nonlinear ionic terms. Section 4 is devoted to the construction of local ROMs by presenting
different clustering procedures. Finally, in Sect. 5 we compare the numerical performances of
the different local ROMs on two test cases in both two and three spatial dimensions, in terms
of efficiency, accuracy and memory storage. A simple one-dimensional test case dealing with a
parametrized FitzHugh-Nagumo model is proposed in the Appendix for the sake of providing a
further comparison, in terms of error and convergence analysis, among the proposed techniques.

2. A parametrized monodomain model for cardiac electrophysiology

The bidomain equations [36, 16] characterize the behavior of the intra- and extra-cellular po-
tentials ui = ui(x, t) and ue = ue(x, t), respectively, resulting in a time-dependent parabolic PDE
coupled with an elliptic PDE. A suitable simplification of the bidomain model, which nevertheless
enables to provide accurate solutions in the case there is no injection of current in the extracellu-
lar region, yields the so-called monodomain model (1.1) for the (dimensionless2) transmembrane
potential u = ui − ue. The reaction term accounts for the ionic currents and depends on a vector
of gating variables, which represent the percentage of open channels per unit area of the mem-
brane. When a simple phenomenological ionic model is considered (e.g., FitzHugh-Nagumo or
Aliev-Panfilov), the ionic current takes the form of a cubic nonlinear function of u and a single
(dimensionless) gating variable plays the role of a recovery function, allowing to model refrac-
tariness of cells disregarding sub-cellular processes. In this paper, we focus on the Aliev-Panfilov
model, given by

Iion(u,w) = Ku(u− a)(u− 1) + wu,

g(u,w) =

(
ε0 +

c1w

c2 + u

)
(−w −Ku(u− b− 1))

(2.1)

where the parameters K, a, b, ε0, c1, c2 are related to the cell. In particular, a represents
an oscillation threshold. The additional weighting factor ε0 + c1w

c2+u , not present in the original
Fitzhugh-Nagumo model, was introduced in [4] to tune the restitution curve to experimental ob-
servations by adjusting the parameters c1 and c2. If other models of cellular bioelectrical activity
were considered, based on either a single ODE (such as Fitzhugh-Nagumo, Roger-McCulloch or
Mitchell-Schaeffer models) or a system of ODEs (such as the Fenton-Karma model), the construc-
tion of ROM would not change; see, e.g., [37, 16, 1] for a detailed review.

2.1. Parametrized formulation
We first state the weak formulation of problem (1.1)–(2.1), which stands at the basis of the

full-order approximation of the problem, obtained with the Galerkin-finite element (FE) method.
Hereon we denote by µ ∈ P ⊂ Rp a parameter vector listing the p input parameters of interest
characterizing physical and/or geometrical properties; P is a subset of Rp, denoting the parameter
space. For t > 0, the weak formulation of problem (1.1)–(2.1) reads: given Iapp(t;µ) ∈ L2(Ω(µ)),

2Dimensional times and potential are given by t̃[ms] = 12.9t and ũ[mV ] = 100u−80, see [4]. The transmembrane
potential indeed ranges from the resting state of −80 mV to the excited state of approximately +20 mV.
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find u(t;µ) ∈ X = H1(Ω(µ)) and w(t;µ) ∈ L2(Ω(µ)) such that∫
Ω(µ)

(
∂u

∂t
+ Iion(u,w;µ)

)
ψdx +

∫
Ω(µ)

D(µ)∇u · ∇ψdx =

∫
Ω(µ)

Iapp(t;µ)ψdx ∀ψ ∈ H1(Ω(µ)),∫
Ω(µ)

∂w

∂t
ηdx =

∫
Ω(µ)

g(u,w;µ)ηdω ∀η ∈ L2(Ω(µ)),

u(0;µ) = u0, w(0;µ) = w0,

where Ω(µ) is a Lipschitz domain of Rp, p = 2, 3, possibly depending on a set of geometrical
parameters. Here D(µ) = D(x;µ) represents the conductivity tensor, which can vary within
the myocardium due to fiber orientation and unhealthy conditions (e.g. the possible presence of
ischemic regions). Well-posedness results of this coupled problem based on semi-discretization
in time can be derived from the more general results established in [38] for the bidomain model
coupled with the FitzHugh-Nagumo model, and in [39, 40, 41] where a Faedo-Galerkin technique
is instead considered. In this work we focus on the case where a set of physical properties affect
the diffusivity matrix D (through the conduction velocities or the fibers’ structure), the gating
variable dynamics (through g) and the ionic current Iion.

2.2. Full-order model: Galerkin finite element approximation
We apply the Galerkin-FE method on a finite-dimensional space Xh ⊂ X(Ω) of (usually

very large) dimension dim(Xh) = Nh; h denotes a parameter related to the mesh size of the
computational grid. By denoting with {ϕi}Nh

j=1 a set of basis functions of the FE space Xh, we
express the discrete approximation to u(x, t;µ) and w(x, t;µ) by

uh(x, t;µ) =

Nh∑
i=1

ui(t;µ)ϕi(x), wh(x, t;µ) =

Nh∑
i=1

wi(t;µ)ϕi(x),

where the vectors uh = [u1, . . . , uNh
]T and wh = [w1, . . . , wNh

]T are obtained by solving the
following discrete system: given µ ∈ P, find uh = uh(t;µ) and wh = wh(t;µ) such that

M(µ)
∂uh

∂t
+ A(µ)uh + Iion(uh,wh;µ) = Iapp(t;µ), t ∈ (0, T )

∂wh

∂t
= g(uh,wh), t ∈ (0, T )

uh(0;µ) = u0(µ), wh(0;µ) = w0(µ).

Here we denote the µ-dependent mass matrix, the stiffness matrix and the activation term by

(M(µ))ij =

∫
Ω(µ)
ϕiϕjdx, (A(µ))ij =

∫
Ω(µ)

D(µ)∇ϕi·∇ϕjdx, (Iapp(t;µ))j =

∫
Ω(µ)
Iapp(t;µ)ϕjdx,

and the µ-dependent vectors accounting for the ionic terms by

(Iion(uh,wh;µ))j =

∫
Ω(µ)

Iion(uh,wh;µ)ϕjdx, (g(uh,wh;µ))j =

∫
Ω(µ)

g(uh,wh;µ)ϕjdx.

Regarding the treatment of nonlinear terms and time discretization, we use a semi-implicit,
first order, one-step scheme [15]. Given a partition (t(`), t(`+1)), ` = 0, . . . , Nt− 1 of (0, T ) into Nt

subintervals of length ∆t, at each time-step t(`+1) the nonlinear vector Iion is evaluated around the
solution already computed at time t(`). This decouples the PDE from the ODE leading to a linear
system to be solved at each time step. Moreover, a ionic current interpolation strategy is used
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to evaluate the ionic current term, so that only the nodal values are used to build a (piecewise
linear) interpolant of the ionic current. In conclusion, the full-order model (FOM) reads as: given
µ ∈ P, find u

(`+1)
h = u

(`+1)
h (µ) and w

(`+1)
h = w

(`+1)
h (µ) such that u

(0)
h = u0(µ), w

(0)
h = w0(µ)

and, for ` = 0, . . . , Nt − 1,
w

(`+1)
h −w

(`)
h

∆t
− g(u

(`)
h ,w

(`+1)
h ;µ) = 0,

M(µ)
u

(`+1)
h − u

(`)
h

∆t
+ A(µ)u

(`+1)
h + Iion(u

(`)
h ,w

(`+1)
h ;µ)− I(`+1)

app (µ) = 0.

(2.2)

The major computational costs are entailed by the assembling the terms Iion and g at each time
step and by the solution of the linear system (2.2)2. On its turn, the time step ∆t is required to be
sufficiently small to ensure the convergence of the method [42]. We outline that our main interest
is to solve problem (2.2) for several (order of hundreds, or even thousands) different values of the
parameter vector µ ∈ P, thus making the use of a FOM hardly infeasible, if not impossible.

3. Reduced-order model: POD-DEIM-Galerkin method

The goal of a (linear) ROM for parametrized PDEs is to approximate the solution of a FOM
by means of a linear combination of few, problem-specific, global basis functions (reduced basis)
obtained from a set of FOM snapshots. Here, the integro-differential nature of the FOM calls
into play a different treatment for the potential variable uh and the ionic variable wh. The
approximation of uh is sought under the form

u
(`)
h (µ) ≈ Vu(`)

n (µ), (3.1)

where the columns of V ∈ RNh×n (hopefully, n � Nh) yield (algebraically) the basis functions
of Xu

n [26]; how to construct V will be addressed in Sect. 4. The approximation of wh will be
instead obtained by evaluating the ODE only in a suitable subset of mesh nodes (the so-called
reduced mesh) involved in the efficient evaluation of Iion, as shown below.

3.1. POD-Galerkin method
Let us focus on the approximation to the PDE for the transmembrane potential using a

FOM approximation of the recovery variable; in particular, let us assume that this latter has
already been updated to its current value at time t(`+1) by solving (2.2)1. Inserting (3.1) into
(2.2)2 and performing a Galerkin projection, we obtain the following Galerkin-RB problem for
the monodomain equation: given µ ∈ P, find u

(`+1)
n , ` = 0, . . . , Nt − 1, such thatMn(µ)

u
(`+1)
n − u

(`)
n

∆t
+ An(µ)u(`+1)

n + VT Iion(Vu(`)
n ,w

(`+1)
h ;µ)−VT I(`+1)

app (µ) = 0,

u
(0)
n = VTu0(µ)

(3.2)

where the RB mass and stiffness matrices are obtained as follows:

An(µ) = VA(µ)VT , Mn(µ) = VM(µ)VT . (3.3)

The linear operators in the ROM are therefore obtained by a simple pre- and post-multiplication of
the corresponding FOM arrays at the algebraic level [26]. If both A(µ) and M(µ) depend affinely
on the parameter µ, assembling matrices (3.3) for each new parameter vector µ is very inexpensive
as we can make use of pre-computed arrays VTAqV, q = 1, . . . , Qa, VTMqV, q = 1, . . . , Qm.
In those cases where the µ-dependence is nonaffine, we rely on discrete EIM, or matrix DEIM
(MDEIM), to get an approximate affine expansion of a given vector or matrix, respectively.

6



3.2. Enhancing efficiency by hyper-reduction
Here we use DEIM to avoid the evaluation of the full-order array Iion ∈ RNh , which would

compromise the overall ROM efficiency. The problem is to find m � Nh functions θq : P 7→ R
and µ-independent vectors zq ∈ RNh , 1 ≤ q ≤ m, such that

Iion(Vu(`)
n ,w

(`+1)
h ;µ) ≈ Ĩion(µ) =

m∑
q=1

θq(t
(`);µ) zq.

During the offline stage of this procedure we apply DEIM as in [28] to a set of snapshots

SI = {Iion(Vu(`)
n ,w

(`+1)
h ;µk), k = 1, . . . , Ns, ` = 0, . . . , Nt − 1} (3.4)

in order to obtain the basis Φ = [z1 | . . . | zm] ∈ RNh×m and a set of m interpolation indices
I ⊂ {1, · · · , Nh}, with |I| = m. The former is computed by applying over the columns of SI

the same local POD technique used for the state space presented in Sect. 4, whereas the latter is
iteratively selected by employing the so-called magic points algorithm [27, 43].

During the online phase, given a new µ ∈ P, we can compute Ĩion(µ) as

Ĩion(µ) = Φθ(t(`);µ) with ΦIθ(t(`);µ) = Iion,I(Vu(`)
n ,w

(`+1)
h ;µ), (3.5)

where ΦI and Iion,I(µ) denote the matrix formed by the I rows of Φ and the vector Iion(µ)
evaluated at the I entries, respectively. The vector θ(t(`);µ) = [θ1(t(`);µ), . . . , θm(t(`);µ)] ∈
Rm is evaluated by solving the linear system in (3.5), encoding m interpolation constraints at
the mesh points selected in I. Denoting by P = [eI1 | . . . | eIm ] ∈ RNh×m, where eIi =
[0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn is the Ii-th column of the identity matrix I ∈ RNh×Nh , we can express

ΦI = PTΦ, Iion,I(µ) = Iion(PTVu(`)
n ,PTw

(`+1)
h ;µ).

The crucial step in the online evaluation of θ(t(`);µ) (that is, for any new parameter instance µ)
is the computation of Iion,I(µ); however, this quantity can be evaluated efficiently by employing
the same assembly routine used for the full-order problem on the reduced mesh associated to the
selected interpolation indices; see, e.g., [30] for further details. In conclusion, the ionic term in
the potential equation can be approximated by

VT Iion(Vu(`)
n ,w

(`+1)
h ;µ) ≈ VTΦ(PTΦ)−1︸ ︷︷ ︸

n×m

Iion(PTVu(`)
n ,PTw

(`+1)
h ;µ)︸ ︷︷ ︸

m×1

.

This means that the point-wise approximation of the ODE could be advanced in time only on the
m dofs I1, . . . , Im forming the reduced mesh, thus gaining an additional speedup in the resolution
of the problem. Hence, the hyper-reduced order model reads as follows:

PT w
(`+1)
h −w

(`)
h

∆t
− g(PTVu(`)

n ,PTw
(`+1)
h ;µ) = 0, ` = 0, . . . , Nt − 1,

Mn(µ)
u

(`+1)
n − u

(`)
n

∆t
+ An(µ)u(`+1)

n

+VTΦ(PTΦ)−1Iion(PTVu
(`)
n ,PTw

(`+1)
h ;µ)−VT I

(`+1)
app (µ) = 0, ` = 0, . . . , Nt − 1,

u
(0)
n = VTu0(µ).

(3.6)

Remark 1. The same DEIM procedure has been extended in [30] to deal with parameter-dependent
matrices; see, e.g., [44] for further details about the application of this procedure to nonlinear
problems in cardiac mechanics. This approach will be exploited in test case 2, where a nonaffine
µ-dependence affects any matrix or vector quantity because of the geometrical parametrization.
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Summarizing, during the offline stage the following operations must be performed:

1. from a set of snapshots Su = [uh(t(1),µk),uh(t(1),µk), . . . ,uh(t(Nt),µk)], k = 1, . . . , Ns, a
basis V for the potential variable is built through POD (see Sect. 4);

2. the linear ROM operators are obtained according to (3.3);

3. a first (still not efficient) ROM is built by evaluating the nonlinear term Iion exactly;

4. snapshots {Iion(Vu
(`)
n ,w

(`+1)
h ;µk), k = 1, . . . , Ns, ` = 0, . . . , Nt − 1} are computed, then a

basis Φ is built through POD;

5. the µ-independent matrix VTΦ(PTΦ)−1 is assembled and stored.

In a subsequent online phase, the ROM can then be exploited to efficiently approximate the
problem solution for each new parameter instance. At each time-step, a ROM query only requires
to assemble the nonlinear terms on the reduced mesh and to solve the nonlinear system (3.2). We
summarize this POD-DEIM-Galerkin approach in Algorithm 1.

Algorithm 1 Standard POD-DEIM procedure
1: procedure [ ROM arrays] = Offline(FOM arrays,Ptrain,εutol,ε

I
tol)

2: Full-order matrices:
3: {Θm

j (µ),Mj} ← affine decomposition of M(µ)
4: {Θa

j (µ),Aj} ← affine decomposition of A(µ)
5: {ΘI

j (µ), Iapp,j} ← affine decomposition of Iapp
6: Solution snapshots:
7: for µ ∈ Ptrain do
8: for ` = 1, . . . , Nt do
9: Su = [Su,u

(`)
h (µ)];

10: end for
11: end for
12: V← POD(Su, ε

u
tol);

13: Reduced-order matrices:
14: {Mn,j , An,j , (Iapp,n)j} ← projection of the full order arrays onto V
15: Nonlinear term snapshots:
16: for µ ∈ Ptrain do
17: for ` = 1, . . . , Nt do
18: SI = [SI , Iion(Vu

(`)
n ,w

(`+1)
h ;µ)];

19: end for
20: end for
21: DEIM reduced-order arrays:
22: Φ← POD(SI , ε

I
tol); P← DEIM-indices(Φ);

23: end procedure
24:
25: procedure [ un] = Online query(ROM arrays,µ, un,0, PTw0)
26: Reduced-order matrices:
27: Mn(µ) =

∑
j Θm

j (µ)Mn,j ; An(µ) =
∑

j Θa
j (µ)An,j ; Iapp,n =

∑
j ΘI

j (µ)(Iapp,n)j ;
28: for ` = 1, . . . , Nt do
29: PTw

(`+1)
n ← solve ODE system in (3.6);

30: assemble over the reduced mesh Iion(PTVu
(`)
n ,PTw

(`+1)
h ;µ);

31: DEIM approximation ← VTΦ(PTΦ)−1Iion(PTVu
(`)
n ,PTw

(`+1)
h ;µ);

32: u
(`+1)
n ← solve PDE linear system in (3.6);

33: end for
34: end procedure
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4. Local Reduced basis method

Parametrized problems in cardiac electrophysiology might easily yield solutions showing a
remarkable variability over the parameter space. For instance, the fibers direction and their
maximum angle have a large impact on both the direction and the speed of the wave front; the
same conclusion holds when some of the parameters affecting the cell model are varied. This
causes the solution manifold Mh,∆t = {uh(t(`),µ) : ` = 0, . . . , Nt − 1, µ ∈ P} to be highly
nonlinear; as a matter of fact, its (linear) approximation by means of a single linear subspace
yields accurate approximation only at the price of considering very large dimensions (up to some
hundreds) n and m of the POD expansion and of the DEIM approximation, respectively, thus
preventing the ROM from ensuring a considerable speed-up compared to the FOM.

Multiple local subspaces can be generated when performing the RB approximation of the PDE
solution, and the DEIM approximation can be used for the nonlinear term. Approximating the
manifold by a series of subspaces of smaller dimension results in a more efficient approach than
building a single subspace of larger dimension. With this aim, we employ a four-step procedure
as proposed in [45]:

1. we collectNs = Nt×Ntrain snapshots {uh(t(1),µk),uh(t(2),µk), . . . ,uh(t(Nt),µk)}k=1,...,Ntrain
,

into a matrix Su by solving the FOM over time for suitably chosen parameter values;

2. for a given Nc we group snapshots into clusters Sk
u, k = 1, . . . , Nc; each column of Su is thus

assigned to a cluster accordingly to a given criterion;

3. we construct a local reduced basis for each cluster through POD;

4. we construct a ROM for each cluster by projecting the original FOM onto each reduced
subspace Vk, k = 1, . . . , Nc, as in the classical POD-Galerkin method.

As soon as the local ROMs for the state solution have been built, snapshots of the nonlinear
term are computed to form the matrix SI defined in (3.4). Then, also the columns of SI are
partitioned into Nc clusters Sk

I , k = 1, . . . , Nc and the DEIM procedure of Section 3.2 is applied
to each cluster, yielding a set of Nc bases Φk, k = 1, . . . , Nc, to be used to approximate the
nonlinear term efficiently. The same number Nc of clusters is chosen for both approximations,
although in principle a different number of clusters could be selected to partition both column
sets Su and SI .

The online query to the ROM is then performed by exploiting the local RB matrices and
vectors, as well as the local DEIM approximation associated to the reduced-subspace selected at
step 2; note that switching from a local ROM to a new one must be done inexpensively during
the online stage. In this paper we compare several strategies to perform snapshot clustering,
employing in any case a Galerkin projection to construct a ROM for each cluster. Neighboring
snapshots can be either added or not to each cluster to obtain overlapping clusters; in our examples
we do not consider any overlap among clusters, although in principle this can also be done [45, 46].

The approach described above was firstly proposed in [45] to address the construction of local
ROMs in the state space – although without constructing a ROM to be systematically queried
over the parameter space – and further extended in [47, 48, 46]. It was also applied in [49] for the
sake of approximating nonlinear quantities by DEIM. Other options we are going to explore to
build multiple approximations rely on a partition of the time interval or the parameter space as
well. In order to compare these options, we will consider as main criteria the efficiency in terms
of speed-up regarding CPU time with respect to the FOM solution, accuracy (by measuring the
error between the ROM and FOM solutions) and memory storage.
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4.1. Time-based clustering
Since the system dynamics consists of a traveling front which characterizes the depolarization

mechanism of the electrical potential, a natural clustering of Su can be obtained by considering
clusters related to different temporal windows. For the sake of simplicity we consider the same
length for each time window, although an adaptive procedure could also be set. See, e.g., [50, 51]
for the original development of this technique, and [52, 44] for further applications to more involved
problems. In [52] a more advanced version of time-based subdivision is suggested, consisting of
the combination of global and local modes selected for (non overlapping) subintervals of time in
a goal-oriented way, in order to better capture small temporal scales.

To perform a time-based clustering, for a large K > 1 we introduce a coarse partition of the
time interval (0, T ) into Nc windows (τ (k), τ (k+1)) of length ∆τ = K∆t, k = 0, . . . , Nc − 1 (see
Fig. 1). Following this approach, the index ` of the time-step t(`) becomes the cluster indicator,
that is, each solution u

(`)
h (µ) is assigned to a specific cluster k if t(`) ∈ (τ (k−1), τ (k)].

t(0)
T

t(1) t(2) t(3) t(K) t(2K) t(3K)

τ (0) τ (1) τ (2) τ (3)

Figure 1: A partition of the time interval in windows of length ∆τ = K∆t, K = 4.

Then, the matrices Vk ∈ RNh×nk , k = 1, . . . , Nc, collecting the local basis functions computed
by the POD technique, enable to approximate the full-order solution as

u
(`)
h (µ) ≈ Vku

(`)
nk

(µ), k : t(`) ∈ (τ (k−1), τ (k)].

Similarly, the matrices Uk ∈ RNh×mk , k = 1, . . . , Nc collecting the local basis functions of the
DEIM approximation of the nonlinear term Iion, allow to express the non-linear term as

Iion(u(`)
n ,w

(`)
h ;µ) ≈ VT

k Uk(PT
k Uk)−1︸ ︷︷ ︸

nk×mk

Iion(PT
k Vku

(`)
n ,PT

k w
(`)
h ;µ)︸ ︷︷ ︸

mk×1

, k : t(`) ∈ (τ (k−1), τ (k)].

This approach is effective if the propagation velocity of the signal is constant with respect to the
parameters. If not (e.g. when the conductivity field is parametrized), similar solutions could be
assigned to different clusters, thus affecting the overall efficiency of the local ROM.

4.2. Parameter-based clustering
An alternative approach is obtained by considering the vector of parameters as cluster indi-

cator, that is, by assigning each solution u
(`)
h (µ) of Su to a specific cluster k if µ ∈ Pk, where

P = ∪kPk is a suitable partition of the parameter space. Except for this new criterion used for
subdividing the snapshots matrix Su, the offline procedure is similar to the time-based clustering
of Sect. 4.1: for each cluster the basis functions of the solution and of the nonlinear term are
computed through the POD technique and consequently stored (see Algorithm 2).

The problem is then shifted to finding the optimal subdivision {Pk}Nc
k=1 to obtain low dimen-

sional local ROMs. A sequential partitioning has been firstly proposed in [53], by dividing the
parameter domain using grid-adaptive refinement until each partition satisfies a given accuracy
and size of the local reduced space. The hp refinement of RB methods has been considered in
[54, 55, 56] by subdividing the original parameter domain into smaller regions (h-refinement) and
then constructing individual RB approximation spaces spanned by snapshots restricted to param-
eter values within each of these parameter subdomains (p-refinement). An alternative strategy
exploiting an anistropic notion of measure in the parameter space has also been proposed [57].
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A parameter-based clustering could easily lead to a high number of clusters, hence to high
offline computational costs. Moreover, this partitioning also neglects the possibility that differ-
ent parameters could generate similar solutions for different time-steps. An approach aiming at
partitioning the parameter domain in cardiac electrophysiology has been first proposed in [31]: it
is based on the empirical observation of the approximation error between the FOM and a POD-
DEIM-Galerkin ROM. This construction of the local ROMs might generate a large number of
small subregions, and other drawbacks similar to the sequential partitioning proposed in [53].

4.3. State-based clustering
In this third approach the snapshot matrix Su is partitioned into (non overlapping) subregions

constructed with respect to the state vector u
(`)
h by minimizing its distance from preselected

centroids {ck}. In the online stage, at each time step ` = 0, . . . , Nt − 1 the subregion where the
current state lies is first identified. Then, the local reduced arrays associated to the selected cluster
are used for the approximation of u

(`+1)
h in the space spanned by the local basis functions. In the

following we will focus on two possible techniques for partitioning Su: the k-means algorithm and
a new partitioning techniques based on a binary tree recently developed in [46].

4.3.1. Case a: k-means clustering
The k-means algorithm [58, 59] is a well-known unsupervised statistical learning technique for

finding clusters and cluster centers in an unlabeled dataset. The clusters are constructed in such
a way that the snapshots within each group are similar to each other, while snapshots in different
groups are different from each other with respect to a chosen metric.

We employ k-means to partition the snapshots matrix Su into Nc submatrices {S1
u, . . . ,S

Nc
u }

in order to minimize the distance between each vector in the cluster and the cluster sample mean.
In other words, the objective is to find:

{S1
u, . . . ,S

k
u} = arg min

Su

Nc∑
k=1

∑
uh∈Sk

u

‖uh − ckh‖2X, ckh =
1

|Sk
u|
∑

uh∈Sk
u

uh, k = 1, . . . , Nc,

during the offline stage. Here, {ckh}Nc
k=1 are the so-called centroids (i.e. the cluster centers) selected

by the k-means algorithm with respect to the selected norm ‖·‖X. Hereon, we denote by ‖·‖X the
algebraic counterpart of the X-norm defined at the continuous level; X ∈ RNh×Nh is a symmetric
positive definite matrix defining the chosen metric. For the case at hand, X = H1(Ω(µ)), so that
X results from the sum of the stiffness matrix and the mass matrix, that is,

(X)ij =

∫
Ω(µ)

(∇ϕi · ∇ϕj + ϕiϕj)dx, i, j = 1, . . . , Nh;

we omit the µ-dependence in the definition of X for the sake of notation.
In the online stage a local ROM is selected at each time step ` = 0, . . . , Nt − 1 with respect

to the current solution of the system Vu
(`)
n (µ) by minimizing the distance between Vu

(`)
n (µ) and

the centroids:
k̄ = arg min

k
‖Vu(`)

n (µ)− ckh‖2X. (4.1)

The main advantage of the k-means approach is the automatic detection of the similarities
between the snapshots, which is not guaranteed in the time- and parameter-based localization
strategies. The additional cost of solving the minimization problem (4.1) decreases when the
reduced arrays are considered: indeed the objective in (4.1) can be rewritten as:

‖Vu(`)
n (µ)− ckh‖2X = (Vu(`)

n (µ)− ckh)TX(Vu(`)
n (µ)− ckh), k = 1, . . . , Nc. (4.2)
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We then rewrite the right-hand side of (4.2) as

(Vu(`)
n (µ)−ckh)TX(Vu(`)

n (µ)−ckh) = (u(`)
n (µ))T (VTXVT )u(`)

n (µ)−2(u(`)
n (µ))T (VTXckh)+‖ckh‖2X,

in order to separate the constant term from the ones depending on the RB solution. As a conse-
quence, during the offline phase the norms ‖ckh‖2X can be precomputed for each k = 1, . . . , Nc and
the reduced matrices VTXVT and VTXckh can be preassembled. Then, the online evaluation of
the k norms in (4.2) can be performed efficiently only relying on low-dimensional arrays.

4.3.2. Case b: projection error based local ROM (PEBL-ROM)
An alternative approach, firstly developed in [46], builds up a hierarchical partitioning of the

state space based on a binary tree structure and the projection error

EΠ(u, c) = ‖u−Πcu‖X,

where Πc : RNh → RNh is the orthogonal projection operator of the state u along the direction
spanned by c. This different metric is adopted in order to better capture scale-invariances, which
are completely ignored when the standard Euclidean distance is considered.

During the offline phase the snapshots set Su is sequentially divided into {Sk
u}Nc

k=1 with a
bisection procedure yielding a binary tree T . Each node contains an anchor point c (associated
to the orthogonal projector operator) and the relative subset of the training snapshots resulting
from the scanning of T . This recursive bisection of Su is obtained by comparing the projection
errors EΠ(u, c) of each vector u ∈ Su over the corresponding spaces spanned by the anchor points
contained in the leafs (see Figure 2 for a schematic representation).

Su

EΠ(u, c1) > EΠ(u, c2)EΠ(u, c1) ≤ EΠ(u, c2)

c1, S1
u c2, S2

u

c3, S3
uc2, S2

u

EΠ(u, c2) ≤ EΠ(u, c3) EΠ(u, c2) > EΠ(u, c3)

Figure 2: Example of construction of the PEBL binary tree T during the offline phase: the snapshot matrix Su

is sequentially divided into {Sk
u}3k=1 with a bisection procedure.

Starting from the anchor point c1, selected as the solution in Su with maximum norm, each
step of the recursive construction of the tree T includes the following operations:

1. select the node to be branched as the one which maximizes the leaf projection error:

k̄ = arg max
k=1,...,|T |

(
max
u∈Sk

u

EΠ(u, ck)

)
;

2. search for the next anchor point cnew as

cnew = max
u∈Sk̄

u

EΠ(u, ck̄);
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3. divide Sk̄
u into Snew

u = {u ∈ Sk̄
u|EΠ(u, ck̄) > EΠ(u, cnew)} and Sk̄

u = Sk̄
u \ Snew

u .

When the recursive construction of the tree is completed, the local basis functions are computed
by applying POD on {Sk

u}Nc
k=1 contained in the leafs (see algorithm 2). During the online phase,

at each time step the bisection tree is scanned with respect to the minimum projection error along
the two candidate anchor points. When a leaf node is reached, the associated local arrays are
used for approximation of the state at the following time-step.

5. Numerical results

In this section we investigate the numerical performances of the different strategies for the con-
struction of the local ROMs described in the previous Section. We present a detailed comparison
of the numerical results by looking at the basic features that in our opinion should be respected
in the design and development of a ROM: efficiency, accuracy and low memory storage3.

5.1. Test case I: monodomain equation
We first consider a two-dimensional monodomain model describing the behavior of the car-

diac potential in presence of an ischemic region over a simplified slab of the myocardial tissue
Ω = (0, 1)2. We assume an isotropic conductivity tensor D = σv(x;µ)I, being σv(x;µ) a non-
homogeneous parametrized conductivity field:

σv(x;µ) = σhρ(x;µ) + σi(1− ρ(x;µ)) ρ(x;µ) = 1− exp
(
−(x1 − µ1)2 + (x2 − µ2)2

2µ2
3

)
,

where µ1 ∈ [0.25, 0.75] and µ2 ∈ [0.25, 0.75] are two parameters representing the coordinates of
the center of the ischemic area, and µ3 ∈ [0.05, 0.4] its size. Here, we neglect the role of the
recovery variable w: as a consequence, the model is only able to describe depolarization patterns,
which are represented in Figure 3 for different choices of the parameters vector µ = (µ1, µ2, µ3)T .
The simplified model consists of (1.1)1 in which Iion(u;µ) = ρ(x;µ)u(u− a)(u− 1) is the model
for the ionic current (obtained by neglecting the term wu in (2.1)) and

Iapp(x,t) = C exp

(
−x

2
1 + x2

2

0.02

)
1[0,∆t](t)

the initial applied stimulus4. Despite the simplifying assumptions that we have made, the solution
of the problem shows a great variability due to the different propagation patterns caused by the
location and dimensions of the ischemic region (see Figure 3). As a consequence, this problem
represents a very challenging test case for developing efficient ROM techniques.

In this case, the matrix A(µ) is non-affine because of the presence of the term ρ(x;µ). The
vector ρ(µ), obtained by evaluating ρ(x;µ) on the mesh nodes, can be approximated by the
DEIM method (see Section 3.2) thus yielding:

ρDEIM (µ) =

mD∑
j=1

βj(µ)ζj .

3The numerical simulations have been performed on a desktop computer equipped with an Intel Xeon CPU E5.
The code has been developed in Matlab using as external library the RB package redbKIT [60].

4Here 1 denotes the indicator function, defined as

1(a,b)(t) =

{
0 if t 6∈ (a, b)

1 if t ∈ (a, b).

13



Algorithm 2 Offline procedure: local ROMs construction

1: procedure [ ROM arrays] = Offline(FOM arrays,Ptrain,εtol,Nc)

2: if case 1: time-based clustering : then
3: for k = 1, . . . , Nc do
4: for µ ∈ Ptrain do
5: for t(`) ∈ (τ (k−1), τ (k)] do
6: Sk

u = [Sk
u,u

(`)
h (µ)]; Sk

I = [Sk
I , Iion(u

(`)
h ,w

(`)
h ;µ)];

7: end for
8: end for
9: end for

10: end if
11: if case 2: parameter-based clustering : then
12: for k = 1, . . . , Nc do
13: for µ ∈ Pk do
14: for ` = 1, . . . , Nt do
15: Sk

u = [Sk
u,u

(`)
h (µ)]; Sk

I = [Sk
I , Iion(u

(`)
h ,w

(`)
h ;µ)];

16: end for
17: end for
18: end for
19: end if
20: if case 3: state-based clustering : then
21: for µ ∈ Ptrain do
22: for ` = 1, . . . , Nt do
23: Su = [Su,u

(`)
h (µ)];

24: end for
25: end for
26: if case 3-a: k-means clustering : then
27: {ck

h} ← compute centroids(Su)
28: for µ ∈ Ptrain do
29: for ` = 1, . . . , Nt do
30: k̄ = arg mink ‖uh − ck

h‖2

31: Sk̄
u = [Sk̄

u,u
(`)
h (µ)]; Sk̄

I = [Sk̄
I , Iion(u

(`)
h ,w

(`)
h ;µ)];

32: end for
33: end for
34: end if
35: if case 3-b: PEBL clustering : then
36: c1 = arg maxu∈Su ‖u‖, T = {c1}
37: S1

u = Su, ε1 = maxu∈Su ‖u−Πc1u‖
38: while |T | > Nc do
39: search maximum error leaf index k̄ = arg maxk=1,...,|T | ε

k

40: search next anchor point cnew = maxu∈Sk̄
u
‖u−Πck̄

u‖
41: divide Sk̄

u into Snew
u = {u ∈ Sk̄

u|‖u−Πck̄
u‖ > ‖u−Πcnewu‖} and Sk̄

u = Sk̄
u \ Snew

u

42: insert (ck̄, cnew) into T as children of leaf anchor point ck̄;
43: recompute leaf errors εk = maxu∈Sk

u
‖u−Πcku‖ for k = 1, . . . , |T |

44: end while
45: end if
46: end if

47: Compute local basis functions:
48: for k = 1, . . . , Nc do
49: Vk ← POD(Sk

u, εtol); Uk ← POD(Sk
I , εtol); Pk ← DEIMindices(Uk);

50: {Mj
nk
, Aj

nk
, Ijapp,nk

} ← projection of the full order matrices onto Vk

51: end for
52: end procedure
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Figure 3: Depolarization time [ms] for three different values of the parameter vector µ. The velocity of the
depolarization front slows down when the signal reaches the ischemic region.

Here, ζj , j = 1, . . . ,mD, are the basis functions used to express the non-affine term ρ, computed
using the POD technique; in this case, mD = 60 satisfies the following criterium (see Figure 4):

m = arg min
k

( ∑k
i σ

2
i∑Ns

i σ2
i

≥ 0.99.

)
,

related to the accuracy of the truncated approximation given by the POD [26]. Then, an affine
approximation of the matrix A(µ) is obtained in this case as A(µ) =

∑60
j=1 βj(µ)Aj , where the

Aj , j = 1, . . . , 60, are full-order matrices assembled considering as diffusive term (σh−σi)ζj +σi.

Figure 4: Left: ratio between the truncated sum of the retained singular values squares and their total sums.
Center and right: ρ(µ) and its DEIM approximation ρDEIM (µ) for µ = [0.39, 0.26, 0.22].

5.1.1. Global ROM
Here we show how the standard POD-DEIM-Galerkin approach, based on a unique global

basis, is not feasible for the solution of the problem at hand, since the solutions manifold is
considerably complex. In fact, the lack of conductivity substantially modifies the shape of the
traveling front, which differs from a parameter to another (see the activation times reported in
Figure 3). This difficulty affects both the dimensionality of the training set {µ1, . . . ,µNtrain}
(and, as a consequence, the dimensionality of Su) and the resulting number m of POD-DEIM
basis functions.

We first evaluate the singular values decay by varying the dimensionNtrain = {20, 40, 60, 80, 100}
of the training set (the corresponding snapshots matrix Su is formed by Ns = NtNtrain full-order
vectors, being Nt = 300 the number of time-steps adopted by the semi-implicit time-advancing
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scheme). The decay of the singular values for the solution and the nonlinear term, reported in
Figure 5, shows that the training set needs to be sufficiently rich (Ntrain = 80, at least) in order to
correctly capture the variability of the solution over the parameter space. To test our procedure
in the online phase we select additional Ntest = 50 values of the parameter vector and we compute
the mean relative error (over the Ntest trials) between the ROM and the FOM solution by varying
the number n of basis functions for the solution and m for the nonlinear term (see right Figure 6).
In this case we observe that the varying m dramatically affects the efficiency of the ROM, while
varying n improves remarkably its accuracy, without affecting the overall efficiency. The need of a
high-dimensional database of pre-computed solutions of the problem poses non negligible issues:
the construction of the database and of POD-DEIM basis functions are extremely demanding both
in terms of CPU time and memory storage (even in this simple case we cannot use a common
laptop to perform the offline phase). Moreover, the CPU time required for the online solution
increases, as a larger dimensional POD-DEIM approximation is considered. In the case where the
POD-DEIM ROM is built on a snapshots matrix of dimension Nh×300Ntrain, with Ntrain = 100,
we require n = 160 basis functions for u and m = 220 basis functions for Iion to reach a relative
error lower than 10−2 over the test sample.

As a matter of fact, the resulting global POD-DEIM ROM only entails a speedup of 5.6x with
respect to the FOM: this is mainly due to the high dimensionality of the reduced mesh used to
assemble the nonlinear term during the DEIM-procedure (see Figure 7). In fact, the parametrized
ischemic region could be centered in all the different points of the domain, as shown in Figure 3.
This clearly motivates the need of local reduced spaces to approximate both the solution and the
nonlinear term within the ROM.

5.1.2. Local ROMs
Here, we present a detailed comparison of the different strategies described in Section 4:

1. Time-based clustering : the subdivision of the snapshots matrix Su of dimensions Ns =
300Ntrain, withNtrain = 100, is obtained by considering as cluster indicator the time variable
t(`). In this case, the cluster which generates the local ROM with the smallest dimension
is the one corresponding to the first time window [0, t(1)]: here the solution does not show
a great variability since the initial impulse Iapp is not parametrized. As a matter of fact,
we end up with n1 = 50 basis functions for the state solution and m1 = 17 terms for
the DEIM approximation of the nonlinear term, when Nc = 6 windows are considered.
By increasing Nc, less basis functions are required in the initial windows (n1 = 43 and
m1 = 11 for Nc = 16). Unfortunately, the subsequent time windows contain solutions
showing much higher variability, since the wave fronts are modified by the possibly different
locations of the ischemia. As a consequence, the DEIM approximation of the nonlinear
term is no longer assembled on a small reduced mesh: for instance, in the case Nc = 6
we have m3 = 118, m4 = 175 and m5 = 162 (see Figure 8). By increasing Nc, error
propagation becomes more relevant, resulting from the approximation error arising from the
change of local ROMs during the online simulation. To minimize this error propagation, it
is possible to use overlapping windows by enriching consequently the dimensionality of the
local ROMs. Despite these drawbacks, we obtain a speedup of 10.8x for Nc = 15, mainly
due to the considerable computational savings obtained in the initial time windows (see
Figure 9 for a comparison of the performances when different numbers Nc of clusters are
considered).

2. Parameter-based clustering : in this case we partition the snapshots matrix by considering
the vector of parameters µ as cluster indicator. The results are similar to the ones obtained
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Figure 5: Decay of the singular values of the solution (left) and the nonlinear term (right). The decay changes
considerably when additional snapshots are considered, confirming the great variability with respect to the param-
eters of this test case.
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Figure 6: Relative mean H1-error over the online test sample vs the CPU time for different dimensions n and
m of the ROM solution and the DEIM approximation of the nonlinear term.

Figure 7: Left: sparse mesh employed by the POD-DEIM ROM based on a global reduced space. Right:
comparison between CPU times required by the finite element FOM and the POD-DEIM ROM (online).
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through the previous approach: we still find out a cluster with a large number of basis
functions (see Figure 8, top) and the error evaluated on the test sample increases when a
large number of clusters is considered (see Figure 9). This latter drawback is motivated by
the fact that solutions corresponding to parameters which are on the boundary of a cluster
Pk might be poorly approximated by the local ROM. Also in this case, clusters overlapping
could represent a possible way to fix the problem, sacrificing however the computational
efficiency. Moreover, in this case we are not able to build a local ROM of substantially
low-dimension: indeed, we end up respectively with a minimum number of basis functions
for the DEIM approximation of 118 (46) when Nc = 6 (16) clusters are considered (see
Figure 8, bottom) and we need to construct 16 local subspaces to reach a speedup of 9.1x.
As a consequence, the computational resource that is mainly involved is memory, since
all the RB matrices of dimensions nk × nk and nk × mk are not sparse. For this reason,
parameter-base clustering seems not to be as promising as the previous one.

3. State-based clustering : we finally test the k-means and the PEBL algorithms for clustering
the snapshots matrix Su. We highlight that both approaches lead to a smaller error on
the test sample with respect to the time- and parameter-based local ROMs (see Figure 9);
moreover, the state-based ROMs are less affected by error propagation.

The minimum (maximum) number of basis functions selected for a cluster provided by the k-
means algorithm are always (often) smaller than the ones resulting from the other approaches
(see Figure 8, bottom). In the case Nc = 5 the minimum number of basis functions for the
solution is n = 16 for the k-means against n = 55 of the time-based, n = 78 of the PEBL and
n = 84 of the parameter-based clustering; see Figure 8, top. As a consequence, the state-
based approach employing the k-means algorithm is the one with the highest speedup (12.8x
in the case Nc = 16) and the lowest memory storage (36.4 MB for Nc = 10). By looking at
the centroids selected by the algorithm (see Figure 11), we notice that a primal subdivision is
done with respect to time (case Nc = {4, 6, 8}). Nevertheless, this approach is more flexible
with respect to the time-based one, because the front propagation velocity is taken into
account automatically by the k-means algorithm since the cluster is assigned with respect
to the current state. Also the pattern of the reduced mesh clearly reflects this subdivision
for most of the clusters. Moreover, when considering a larger number of subdivisions, the
variation of physical parameters starts playing an important role: for Nc = 12 we have two
centroids that describe two situations where the ischemic region is not on the main diagonal.

The PEBL clustering does not provide the same performance of the k-means algorithm: the
trade-off between accuracy, efficiency and memory storage is not as good as in the k-means
case (see Table 1). As a matter of fact, the speedup ranges from 6.2x for Nc = 2 to 10x
for Nc = 16, while memory storage goes from 22.9 MB for Nc = 2 to 43.8 MB for Nc = 16.
By looking at the partitioning tree (see Figure 12), we observe in the case Nc = 12 that
the subdivision is more focused on the location of the ischemia than on the time variable
as done by the k-means clustering. The variability of the solutions related to the first 100
time-steps of the simulation is described only by one cluster (the fifth one), affecting in this
way the overall performance The speedup obtained by a faster online identification of the
current cluster enabled by the tree structure is neutralized by the dimensions of the local
ROM arrays. On the other hand, the remaining eleven clusters capture the variability of the
solution induced by the different position of the ischemic region, leading to a more accurate
ROM with respect to the previous approaches.

In conclusion, among the proposed local ROMs, the state-based strategy implemented in the
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Figure 8: Test case I. Minimum and maximum number of basis functions for each local ROM.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10−2.2

10−2

10−1.8

10−1.6

CPU time [s]

re
la

ti
ve

er
ro

r

Online performance

global ROM
parameter

time

k-means

PEBL

Figure 9: Test case I. Average online relative error over the test sample vs the CPU time for the different local
ROM methods. The values in Table 1 are marked in this graph with black circles.

19



PEBL algorithm is the best option in terms of accuracy, but not in terms of CPU time and
memory storage (see Table 1). This also has an impact on the evaluations of outputs of interest,
such as the activation time, for which a full agreement between the FOM (see Figure 3) and the
ROM (see Figure 10) quantities can be observed.

The state-based k-means ROM is overall the best option in the case at hand: the k-means
algorithm provide a way to select automatically clusters of the snapshots set, for which the corre-
sponding local ROMs feature a small number of basis functions. Moreover, the error propagation
is minimized by the fact that there is a smooth transition from one cluster to another, and finally,
it achieves the second best speedup among the considered schemes.

speedup mean relative error memory storage

global POD-DEIM 6.1x 1.3 · 10−2 29.4 [MB]
time-based LROM (Nc = 10) 10.1x 1.4 · 10−2 47.6 [MB]

parameter-based LROM (Nc = 10) 8x 1.64 · 10−2 55.8 [MB]
k-means-based LROM (Nc = 10) 11.9x 1.27 · 10−2 36.4 [MB]
PEBL-based LROM (Nc = 10) 9.5x 1.13 · 10−2 39.2 [MB]

Table 1: Test case I. ROMs ranking. We highlight the performances using colors from red (worst) to green
(best).

Figure 10: Test case I. Depolarization time [ms] computed with the k-means local ROM with Nc = 10 for the
same parameter vectors of Figure 3.

5.2. Test case II: idealized left ventricle
In this second case we consider the monodomain model (1.1) with the Aliev-Panfilov model

(2.1) to describe the electrical activation of an idealized left ventricle aiming at estimating the
effect of fibers orientation on the electric signal conduction. As a matter of fact, the cardiac tissue
is composed of fibers (the cardiomyocites) whose orientation varies from the epicardium to the
endocardium due to the laminar organization in sheets of the tissue [61]. At the macroscopic level,
this structure yields preferential directions for the action potential traveling front [62, 7].

Therefore, at any point x, it is possible to identify an orthonormal local reference system
described by the principal axes f0(x), s0(x), and n0(x), with f0(x) parallel to the fiber direction,
s0(x) and n0(x) orthogonal and tangent to the sheet direction. Denoting by σl and σt and σv the
conductivity coefficients measured along the corresponding directions f0(x), s0(x), and n0(x), the
anisotropic conductivity tensor can be expressed as

D(x) = σl f0(x)⊗ f0(x) + σt s0(x)⊗ s0(x) + σv n0(x)⊗ n0(x).
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Figure 11: Test case I. Centroids obtained with the k-means algorithm applied to the snapshot matrix Su and
associated reduced meshes for Nc = 6, 8, 10, 12 clusters (from left to right). We observe a perfect match between
the outputs calculated with FOM and the local ROM.
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Figure 12: Snapshot subdivision tree related to the PEBL algorithm

Under the assumption that the left-ventricle tissue is an axisymmetric anisotropic medium (σt =
σv), the previous relation simplifies as follows,

D(x) = σt I + (σl − σt) f0(x)⊗ f0(x).

In this case we have considered an idealized left ventricle domain, whose inner and outer surface
are described by the ellipsoids

{x = (x, y, z) ∈ R3 : x = ri cos(ξ) cos(ω), y = ri cos(ξ) sin(ω), z = ri sin(ξ), i = 1, 2},
where r1 = 2.7 cm for the endocardium and r2 = 3.6 cm for the epicardium. The final geometry is
obtained by truncating the ellipsoid to have an apex-to-base distance of 7 cm. We then represent
the sheets direction as

s0(x) =

(
x√

x2 + y2
,

y√
x2 + y2

, 0

)
,

while the fibers direction f0 is obtained imposing the orthogonality constrains to s0 in the planes
({x ∈ R3 : z = cz}), with cz constant. Finally, f0(x) is rotated from an angle θepi on the
epicardium to an angle θendo on the endocardium with the following relationship:

θ = (θepi − θendo)
r − r1

r2 − r1
+ θendo.

We consider four parameters for this test case: the two conductivities σl ∈ [0.1, 0.25] and
σt ∈ [0.01, 0.1] and the two angles θepi ∈ [30, 70] and θendo ∈ [−70,−30]. The fiber angles
determine the preferential directions for the signal propagation (see Figure 13), while the ratio
between the values of the two conductivities is directly related to the anisotropic behaviour of
the conduction (see Figure 14). The other physical parameters have been fixed, accordingly to
[63], to K = 8, a = 0.15, c1 = 0.1, c2 = 0.3 and ε0 = 0.013. The geometry has been discretized
using a three-dimensional mesh with Nh = 31765 vertices and 140271 elements. In this example
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the full-order numerical approximation, based on linear finite elements, takes 64 minutes to be
computed. This CPU time is mainly motivated by the fact that the semi-implicit time-advancing
scheme requires a large number of time-steps (Nt = 1800), each of which entails the assembling
of the nonlinear term.

Figure 13: Fibers orientation for different values of θepi and θendo (first row) and activation times measured over
the idealized left ventricle (second and third row). Here σl = 0.25 and σt = 0.025. The numerical approximation
of the electric potential is performed using the full-order finite element model.

Figure 14: Activation map for different values of the conductivities σl and σt (here θepi = 50 and θendo = −50).
The numerical approximation of the electric potential is performed using the full-order finite element model.
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The complexity of the parametrized solution of the problem is increased with respect to the
previous test case by the presence of the polarization front shaped by the recovery variable w
(1.1). We consider a training set formed by Ntrain = 50 parameter vectors (the corresponding
snapshots matrix Su is formed by Ns = NtNtrain full-order vectors), while additional Ntest = 30
values are used to test the online performances of the ROMs.

In the case of the POD-DEIM ROM, based on a unique global reduced space, we require
n = 275 basis functions for the solution u and m = 1956 basis functions for the nonlinear term
Iion. This large value of m compromises the efficiency of the ROM: the reduced mesh does not
present a sparse pattern, making the construction of DEIM nonlinear term very cumbersome; as
a result, only a modest speedup of 3.4x is reached. Local ROMs are mandatory to improve the
modest performance of such a global ROM.

First, we compare the local ROMs built by considering the four options described in Section 4
at fixed Nc = 15, by looking at the trade-off between accuracy, efficiency and memory storage (see
Table 2). In this test case we observe that the parameter-based clustering yields the worst overall
performance, with a maximum memory storage and the second largest speedup and relative error
among all the strategies. In this case it is not possible to build a local ROM of substantially
low-dimension due to the fact that for each new parameter we use a unique reduced subspace to
approximate the evolution of the front. The k-means clustering leads instead to the best overall
performance in terms of speedup (35.5x) and the second smallest relative error on the test sample
(9.6 · 10−3). Also in this test case the centroids selected by the k-means algorithm (see Figure
15) are principally divided with respect to time (this also motivates the good performances of
the time-based local ROMs). Time is pivotal also in constructing the partitioning tree for the
PEBL clustering (see Figure 16, case Nc = 15), with 11 leafs related to the depolarization phase
and only 4 to the polarization phase. This unbalanced subdivison enhances the performance of
the local ROM in the depolarization phase, however by decreasing the efficiency of the numerical
approximation in the polarization phase (with an overall performance lower than the one obtained
with the k-means clustering).

speedup mean relative error memory storage

global POD-DEIM 3.4x 0.99 · 10−2 108.1 [MB]
time-based LROM (Nc = 15) 28.8x 1.86 · 10−2 192.1 [MB]

parameter-based LROM (Nc = 15) 21.2x 1.18 · 10−2 224.8 [MB]
k-means-based LROM (Nc = 15) 35.5x 0.96 · 10−2 213.1 [MB]
PEBL-based LROM (Nc = 15) 21.6x 0.81 · 10−2 214.4 [MB]

Table 2: Test case II. ROMs ranking. We highlight the performances using colors from red (worst) to green
(best).

Next, we consider the effect of changing the number of clusters Nc on the online performance.
With this goal, we compare the mean relative error on the test sample and the CPU time obtained
with the different reduction strategies described in Section 4 by using Nc = 5, 10, 15, 20 clusters
(see Figure 17). The state-based clustering based on the k-means algorithm is the best in terms
of the trade-off between efficiency and accuracy. State-based local ROMs show more robustness
with respect to changes in the number of clusters: the relative errors on the test sample are
comparable and the speedup increase progressively with Nc. Instead, note that for Nc = 5 the
time- and parameter-based local ROMs exhibit a large CPU time of 342.7 and 384.7 seconds,
respectively. These numerical results emphasize the fact that state-based local ROMS are better
suited for clustering snapshots of time-dependent problems with parameter dependent moving
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Figure 15: Test case II. Centroids obtained with the k-means algorithm applied to the snapshot matrix Su

Figure 16: Test case II. Snapshot subdivision tree resulting from the PEBL algorithm
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Figure 17: Test case II. Average online relative error over the test sample vs the CPU time for the different
local ROM methods. The values in Table 2 are marked in this graph with black circles.

fronts.
Finally, we compute the depolarization time map for two parameter vectors in the test sample

(see Figure 18) to compare the overall activation pattern generated by the finite element full-order
model and the k-means-based local ROM with Nc = 15. The propagation of the signal along the
idealized left ventricle appears similar between the two models: the depolarization time difference
map is indeed smaller than 0.5 ms in every points of the computational mesh.

Figure 18: Test case II. Depolarization time [ms] computed with the finite element FOM (left) and the k-means
local ROM with Nc = 15 (center) for the two parameter vectors from the test sample. Right: depolarization time
difference map between the FOM and the k-means local ROM.
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6. Conclusions

A detailed comparison of different local ROMs applied parameter-dependent problems arising
in cardiac electrophysiology is presented in this work. Special emphasis has been put on the
enhancement of the computational efficiency of local ROMs, built on clustering techniques for
partitioning the snapshot matrix, and a POD-DEIM-Galerkin strategy for the construction of the
reduced arrays. The online efficiency of local ROMs is ensured by the relatively small dimension
of local reduced arrays and the ability to switch between local reduced spaces by evaluating only
quantities which depend on the reduced dimension n andm of the POD state space and the DEIM
approximation of nonlinear terms, respectively.

Our numerical tests show that the the k-means clustering outperforms the other clustering
approaches. In particular, the local ROM based on k-means clustering realizes the best speedup,
improving the performance of a global ROM of a factor 2 in the first test case and 10 in the second
one. Increasing the number of clusters has two competing effects: it can improve the speedup, but
also lead to an increase of error propagation. This trade-off is clearly visible in the results related
to parameter- and time-based local ROMs, while the state-based clustering techiniques enable to
better manage the error propagation drawback, justifying their better overall performance.

On the basis of the results on cardiac electrophysiology problems we expect local ROMs,
and more in general nonlinear dimensionality reduction techniques, to be a viable strategy for
efficiently solving nonlinear unsteady parametrized problems showing complex dynamics.
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7. Appendix

In this Appendix we provide further numerical results5 on the comparison of the proposed tech-
niques on a simple one-dimensional parameter-dependent problem, whose solutions show moving
sharp fronts. We aim at better investigating accuracy and efficiency of the methodologies ad-
dressed in the paper.

5For the sake of reproducibility of the proposed results, the Matlab code used to generate these results is the
package LocalROM has been released and is freely available at https://stefanopagani.github.io/LocalROM/.
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We consider the following coupled PDE-ODE model set on a one-dimensional spatial domain
(0, L), with L = 1:

ε
∂v

∂t
− ε2 ∂

2v

∂x2
+ f(v) + w = 0, x ∈ (0, L), t ∈ (0, 2)

∂w

∂t
+ (γw − bv) = 0, x ∈ (0, L), t ∈ (0, 2)

∂v

∂x
(0, t) = −i0(t) = 50000t3e−15t, t ∈ (0, 2)

∂v

∂x
(L, t) = 0, t ∈ (0, 2)

v(x, 0) = 0, w(x, 0) = 0, x ∈ (0, L).

(7.1)

Here
f(v) = v(v − 0.1)(v − 1), γ = 2, b = 0.5

whereas
µ = ε ∈ (0.005, 0.05)

is a parameter which can be varied. This system represents a parametrized version of the Fitzhugh-
Nagumo membrane model, in which the ionic current is a cubic function in v and is linear in the
recovery variable w. Such a model is widely used to describe excitation-relaxation of a cardiac
cell, as well as neurons, and can be derived from a simplified electrical circuit model of the cell
membrane (see, e.g., [16, Sect. 2.9.8], [2, 3]); in this respect, v plays the role of electrical potential.
Problem (7.1) has been discretized in space using linear finite elements on a partition of Nh = 1024
elements of the domain (0, 1). Regarding the treatment of nonlinear terms and time discretization,
we use a semi-implicit, first order, one-step scheme, similar to the one discussed in Sect. 2. The
solutions of the system above are characterized by parameter-dependent traveling waves which
exhibit sharp fronts (see Figure 19). Note that for very small values of ε the solutions to the system
can be seen as an approximation to the one of the corresponding purely hyperbolic system, in the
vanishing viscosity limit.

Figure 19: Test case 1D. Full-order model solution for different values of the parameter ε
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We have compared the proposed techniques in terms of error decay with respect to the max-
imum number of basis functions in each cluster, also in presence of different levels of hyper-
reduction. Numerical results show that also in this case state-based clustering methods, such as
k-means and PEBL clustering, yield a remarkable error reduction when the number of clusters Nc

increases. As shown in Fig. 20, state-based clustering techniques allow to reduce of about three
times the number of basis functions in each cluster, decreasing from 246 (in the case of a global
basis) to about 90 (when Nc = 10 clusters are employed) and an accuracy of 10−5 on the state
solution is achieved. From the convergence analysis, it clearly results that more remarkable gains
in terms of basis dimension are obtained when reaching smaller errors.

The time-based clustering also shows a good performance in this case, due to the substantial
time-driven nature of the problem; a reduction, similar to the one provided by state-based clus-
tering techniques, is obtained regarding the basis dimensions. On the other hand, the parameter-
based clustering does not provide any computational gain when increasing the number of clusters,
because of the mild parameter dependence of the problem at hand.
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Figure 20: Test case 1D. H1-error decay with respect to the maximum number of basis functions among all
clusters.
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A further aspect taken into consideration deals with the effect of hyper-reduction on the error
decay. Indeed, it is well-known in the framework of ROM techniques for (nonaffine and/or nonlin-
ear) parameter-dependent PDE systems that a large number of (M)DEIM terms and RB functions
has to be considered to achieve a good accuracy with respect to the high-fidelity approximation.
For the case at hand, we apply DEIM to approximate the nonlinear term f(v).

At some extent, hyper-reduction requires an even higher level of accuracy compared to state
reduction. This is evident from Fig. 21, showing that DEIM must be performed by selecting basis
functions (and corresponding interpolation points in the physical domain) until the approximation
error on f(v) reaches about 10−5, if we pursue a decay of reduction errors which is not hampered
by the further level of approximation introduced by DEIM. It is also evident that this fact is
independent of the clustering technique used to perform both state reduction and hyper-reduction
of nonlinear terms – we recall that the same clustering technique employed on solutions’ snapshots
(before performing POD) is then used on snapshots of nonlinear terms before performing DEIM
as well.
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Figure 21: Test case 1D. H1-error decay with respect to the maximum number of basis functions among all
clusters on varying the POD tolerance for the DEIM approximation of the non-linear term.
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