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Abstract

The assessment of the vulnerability of a community endangerd by seis-
mic hazard is of paramount importance for planning a precision policy
aimed at the prevention and reduction of its seismic risk. We aim at mea-
suring the vulnerability of the Italian municipalities exposed to seismic
hazard, by analyzing the open data offered by the Mappa dei Rischi dei
Comuni Italiani provided by ISTAT, the Italian National Institute of Statis-
tics. Encompassing the Index of Social and Material Vulnerability already
computed by ISTAT, we also consider as referents of the latent social and
material vulnerability of a community, its demographic dynamics and the
age of the building stock where the community resides. Fusing the analyses
of different indicators, within the context of seismic risk we offer a tentative
ranking of the Italian municipalities in terms of their social and material
vulnerability, together with differential profiles of their dominant fragilities
which constitute the basis for planning precision policies aimed at seismic
risk prevention and reduction.

1 Introduction

After the tragic sequence of earthquakes near Amatrice in 2016, the Italian gov-
ernment set up the Casa Italia task force1 to develop a plan for housing and

1The task force Casa Italia of the Italian Presidency of the Council of Ministers was es-
tablished on September 23, 2016. Its members were Giovanni Azzone (Project Manager and
Scientific Director), Massimo Alvisi, Michela Arnaboldi, Alessandro Balducci, Marco Cammelli,
Guido Corso, Francesco Curci, Daniela De Leo, Carlo Doglioni, Andrea Flori, Manuela Grecchi,
Massimo Livi Bacci, Maurizio Milan, Alessandra Menafoglio, Pietro Petraroia, Fabio Pammolli,
Davide Rampello, Piercesare Secchi. The 3rd of July 2017, the Italian Presidency of the Coun-
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land care directed to the better protection of citizens, and public and private
goods, against natural risks. One of the first activities of Casa Italia was aimed
at integrating and enhancing the rich information on natural risks already avail-
able as the result of numerous and continuing investigations carried out by sev-
eral national institutions2. The action was devoted to identify the sources of
information and the data bases allowing for a unified and integrated vision of
the natural risks insisting on the Italian territory, with particular reference to
the three factors that compose risk, namely, hazard, vulnerability and exposure.
Consistent with the mission of Casa Italia, the survey was limited to databases
that (a) were elaborated by official and national research institutes, (b) had cov-
erage of the entire national territory, and (c) had a spatial resolution sufficient
to allow identification and comparison of local specificities. Believing that it is
the community, more than the single individual, which should be the collective
principal agent of the prevention endeavor against natural risks, the municipality
(Comune, in Italian) was identified as the smallest spatial statistical unit for the
actual analyses. The product of this action is the Mappa dei Rischi dei Comuni
Italiani3 (MRCI), which was presented to the public on February 18, 2019 by
the Department Casa Italia – a meanwhile established permanent division of the
Italian Government, derived from the positive experience of the Casa Italia task
force which terminated its activities in May 2018. The MRCI is a freely acces-
sible web portal implemented by ISTAT, the Italian institute providing official
statistics of the country. The portal supplies integrated information on different
natural risks of Italian municipalities – such as earthquake, flooding, landslide,
volcano eruption – in conjunction with socio-economic and demographic data.
With the aim of creating a widespread awareness of the fragility of the Italian
territory, the MRCI offers the possibility of viewing and downloading indicators,
charts and maps, together with guided interactive features for data searching and
filtering.

Amongst the indicators of natural risks available in the MRCI, the focus of
this work is on those allowing to quantify the risk from earthquake. As a matter of
fact, prevention of seismic risk can only act on the reduction of the vulnerability of
the communities endangerd by it, when the option of reducing their exposition by
moving them to a less hazardous territory is excluded [28]. To develop precision
policies for seismic risk prevention, it is therefore of paramount importance to
understand and quantify the distinctive vulnerability of each community facing
a seismic hazard, interpreted as its inability to withstand the consequences of a

cil of Ministers estabilished Casa Italia as one of its departments, committed to the prevention
against natural risks (http://www.casaitalia.governo.it/it/). The task force Casa Italia
finished its mission on May 31, 2018, while the department Casa Italia is still continuing its
activities. The authors acknowledge the task force Casa Italia for the scientific discussions that
were inspirational to the present work.

2The institutions consulted by the task force Casa Italia were, in alphabetical order: CNR -
Consiglio Nazionale delle Ricerche; ENEA - Agenzia nazionale per le nuove tecnologie, l’energia
e lo sviluppo economico sostenibile; INGV - Istituto Nazionale di Geofisica e Vulcanologia; IS-
PRA - Istituto Superiore per la Protezione e la Ricerca Ambientale; ISTAT- Isitituto Nazionale
di Statistica; MIBACT -Ministero per i beni e le attività culturali e per il turismo.

3 http://www4.istat.it/it/mappa-rischi
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catastrophic seismic event [32].
An emerging body of literature is devoted to the assessment of social vulner-

ability to natural hazards based on statistical indicators (see, e.g., [7, 34, 9, 10]
and references therein), but only a very small part of it is focused on the case of
Italy [11, 12, 13], although the country is amongst the most exposed to natural
risks [15]. To our knowledge, the recent study presented in [14] is the only avail-
able work that investigates social vulnerability to seismic hazard in Italy. To
capture social vulnerability, these authors studied a number of socio-economic
indicators made available by ISTAT, and related with age, employment, educa-
tion, anthropization. As highlighted in [11], social vulnerability should not be
interpreted as a stand-alone concept, but rather as context-dependent and asso-
ciated with the extreme event considered – earthquakes in this work. Considering
the community standing on a seismic landscape as made of humans interacting
with structures and infrastructures, is thus key to provide sensible assessments of
its vulnerability to seismic events and drive decision makers to policy planning.
In this work we explore the MRCI with the goal of eliciting from this database
the multidimensional aspects outlining the vulnerability of Italian municipalities
facing seismic hazard. Unlike previous works, to define and measure the vul-
nerability of a community endangered by seismic hazard, we believe it is of the
greatest importance to include a factor capturing the material vulnerability of
the dwelling occupied by the community. Hence, beside the consideration of the
socio-economic factors related to its poverty, employment and education, and
those related to its demographic dynamics, we will also consider the age distribu-
tion of the building stock lived in by the community as a key indicator influencing
both its social and material vulnerability, being the age of the building stock di-
rectly related to the safety and quality of the places where the community lives.
To emphasize this expanded concept of vulnerability in the face of seismic haz-
ard, we refer to it as the social and material vulnerability of a community and
we consider it to be the determinant on which precision policies can act upon for
the reduction of seismic risk.

The remaining of the paper is organized as follows. In Section 2 we set out the
Italian seismic landscape through a summary indicator which is apt to describe
the seismic hazard faced by Italian municipalities. This is the landscape the social
communities live upon, and on this landscape we project our assessments of social
and material vulnerability. Section 3 introduces an index of social and material
vulnerability, IV SM , which is already produced by ISTAT. We will identify
the spatial hot spots of IV SM and segment them according to seismic hazard.
Arguing that IV SM is not sufficient to characterize the social and material
vulnerability of the Italian municipalities for the purpose of designing precision
policies for seismic risk prevention, we will then analyze two other factors which
we believe have an impact on a community’s fragility when confronted with a
seismic event: the demographic growth and age of the residents, and the age of
the building stock they live in. These analyses will be carried out in Section
4 and Section 5, respectively. Ultimately, in Section 6, we will aggregate this
analyses with the spatial analysis of IV SM to provide a tentative ranking of
Italian municipalities in terms of their social and material vulnerability to seismic
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hazard. A final section with further supporting arguments and analyses, and a
section with conclusions, will close the paper.

Data and code used to elaborate the results reported in this paper are freely
available at the following location: https://github.com/alexdidkovskyi/MRCI_
paper

2 The seismic hazard landscape

We cannot act on and change seismic hazard. This is a given landscape social
communities must live upon; on this landscape we should evaluate their vulner-
ability.

The seismic hazard at a given point on the Earth surface can be measured in
different ways. In engineering application, a commonly used quantity, often plot-
ted in seismic hazard maps, is the Peak Ground Acceleration (PGA), indicated in
the literature as a(g) [20]. This represents the maximum horizontal acceleration
on rigid soil which is exceeded with a given probability p, say p = 0.1, in 50
years. The unit of measure of a(g) is g, the acceleration due to Earth’s gravity.
In Italy, the values of a(g) are determined by the National Institute of Geophysics
and Vulcanology (INGV), through the analysis of a national catalogue collecting
the location and magnitude of the seismic events registered in Italy since AD
1000. INGV provides estimates of a(g) over a grid of step 0.02 degrees cover-
ing the entire Italian territory. Based on these estimates, the MRCI supplies
two aggregated summaries of a(g) at the municipality scale: AGMAX 50 and
AGMIN 50, quantifying the maximum and minimum value of a(g), respectively,
taken on the grid points lying within the boundaries of the municipality terri-
torial area. As suggested in [28], in this paper we shall conservatively consider
AGMAX 50 – in the following, named ag[max] as in [28] – to represent the
seismic landscape of the country.

Figure 1 shows the map of Italy where each municipality has been colored
according to ag[max]. The figure also shows the map contour lines partitioning
the seismic landscape of the country according to four classes of ag[max], as
defined in [28] based on the Italian regulation4:

1. Low hazard: 0 - 0.05

2. Moderate hazard: 0.05 - 0.15

3. Medium hazard: 0.15 - 0.25

4. High hazard: 0.25 +

4Opcm n. 3519 del 28 aprile 2006: criteri generali per l’individuazione delle zone sismiche e
per la formazione e l’aggiornamento degli elenchi delle stesse zone
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Figure (1) Map of Italy where each municipality has been colored according to
ag[max].

3 The baseline index of social and material vul-
nerability

For each municipality, the MRCI supplies the value of the Social and Material
Vulnerability Index (IV SM , for Indice di Vulnerabilità Sociale e Materiale, in
Italian), as defined for the Italian census 2011. IV SM is a scalar meta-index,
computed by ISTAT on the basis of seven different socio-economic indicators: the
incidence of population with age between 25 and 64 that is illiterate or without
qualification; the incidence of families with at least 6 members; the incidence of
single parent families (with age of parent up to 64) over the total of families;
the incidence of families with possible welfare poverty; the incidence of popula-
tion living in severely crowded conditions; the incidence of young people (15-29
years) without occupation; the incidence of families with children with potential
economic poverty. The index is an Adjusted Mazziotta-Pareto Index [18] which
allows for comparison of municipalities across space and time; for more details we
refer to [17, 16]. The IV SM index is an estimate of the overall socio-economic
vulnerability of a municipality. By construction, all values of IV SM range in
the interval (70,130). High values of the index indicate high vulnerability, while
low values indicate low vulnerability; the reference value of 100 corresponds to
the value of IV SM for the entire country in 1991.

We take IV SM to provide a baseline indication of the inability of the social
community (identified as the municipality) to withstand the adverse impacts
caused by catastrophic seismic events, and to be resilient to its risk. Figure 2
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Figure (2) Map of Italy where each municipality has been colored according to
its IV SM

shows the value of IV SM for all the Italian municipalities. One can observe the
spatial heterogeneity of the index across the country, although a general trend is
also apparent. In the North, values of IV SM are typically low, while its highest
values are located in the South of the peninsula and in Sicily. Our first analysis
aims at the identification of spatial hot spots for IV SM , i.e., areal clusters where
the local spatial correlation of the index is significant. For this purpose we use
the Local Indicator of Spatial Association (LISA) first introduced in [5]. To make
the paper self-consistent, a short recap on the measures of spatial association we
are going to use is in order.

Consider a spatial domain D partitioned in n areal spatial units. The goal
is to measure the spatial association between the values of a variable of interest
observed at nearby spatial units. Let xi be the value of the variable observed at
the spatial unit i. For instance, xi is the value of IV SM for the i-th municipality.
For any pair (i, j) of spatial units, let wij be a weight representing the degree of
proximity between i and j. The Moran’s global index [21] of spatial association
is defined as

I =
n∑

i,j wi,j

∑
i

∑
j(xi − x̄)wij(xj − x̄)∑

i(xi − x̄)2
.

where x̄ = (1/n)
∑
i xi is the sample mean of the variable x taken over all the n

areal spatial units. The analysis of spatial association is commonly based on stan-
dardized variables and on row-wise normalized spatial weights, i.e.

∑n
j=1 wij = 1

for all i. In this paper, we will adopt the common practice to set wij = 1/ni
if there is a common border between the units i and j, ni being the number of
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neighbouring units of the unit i, and wij = 0 otherwise. Let x̃i be the weighted
average (named spatial lag) of the values of the standardized variable x in the
neighbour of the spatial unit i. Then the expression of Moran’s I statistic is
simplified to

I =
1

n

∑
i

xix̃i (1)

which is the correlation coefficient between the values of the variable x and their
spatial lags.

The Local Indicator of Spatial Association map (LISA map) [5] identifies
spatial units significantly contributing to the global Moran’s I index. Indeed
consider the term

Ii = xix̃i (2)

appearing in the sum defining Moran’s I index (1), as the measure of the lo-
cal spatial association for the variable x. On a LISA map the spatial unit i is
highlighted if the local association quantified by the statistic Ii is significantly
positive or negative, i.e., the null hypothesis of no autocorrelation is rejected at
a certain level of significance. The hypothesis is tested via a permutation scheme
[5, 6] where observed values of x are randomly reallocated to the areal units,
except for the value xi which is kept fixed. For each random pattern, the statis-
tic Ii is recomputed; the resulting empirical distribution is used as the reference
distribution for the statistic under the null hypothesis of no autocorrelation, i.e.
to quantify how extreme is the observed value of Ii under the complete spatial
randomness (CRS, see, e.g., [8]) assumption. Note that significance of the local
autocorrelation depends only on the significance of the spatial lag x̃i (with respect
to the null distribution of CSR), since the value xi is kept fixed. Significance of
the local autocorrelation leads to four possible occurrences: (i) High-High, (ii)
Low-Low, (iii) Low-High, (iv) High-Low. High-High (Low-Low) singles out a hot
spot, a spatial unit where the value of xi is positive (negative) and the spatial
lag x̃i is significantly high (low) with respect to the null distribution. On the
contrary, Low-High (High-Low) indicates an outlier spatial unit, where the value
of xi is negative (positive) but the spatial lag x̃i is significantly high (low) with
respect to the null distribution.

Hereafter, Moran’s I global indexes are computed using the R-package ape

[23]. To compute LISA maps along the approach provided in the Python library
PySAL [30], we built an ad-hoc R-code, available in the github account indicated
in the Introduction. For the LISA maps presented in this work, the level of
significance is always set to be α = 0.05.

The Moran‘s I global statistic measuring the spatial autocorrelation of IV SM
is equal to 0.644. Figure 3a shows the LISA map of IV SM for Italy. The High-
High red hot spots where IV SM assumes significant high values are spreading
inside the country from the coast in Lazio and in the Southern part of the penin-
sula. Sizable red areas cover also most of Sicily; notably, the only High-High
hot spots in the North of Italy are in Alto Adige. The rest of Northern Italy is
characterized by a diffuse presence of blue Low-Low clusters of significantly low
values of IV SM . To enhance interpretation in terms of seismic risk, contour-lines
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(a) (b)

Figure (3) LISA maps for IV SM : (a) is the univariate LISA map for IV SM ,
(b) the High-High, Low-Low hot-spots of the univariate LISA map stratified by
ag[max] class

of ag[max] have been superimposed to the LISA map in Figure 3a, identifying
through dashed lines the regions of high, medium, moderate and low seismic haz-
ard (see Section 2). Figure 3b shows the stratification of the High-High and Low-
Low hot spots displayed in Figure 3a, according to two macro-classes of ag[max],
namely severe hazard (high/medium) and mild hazard (moderate/low). Here,
the spatial clusters colored in red identify municipalities where significantly high
values of IV SM are associated to a severe seismic hazard, their compounded
action thus increasing the overall seismic risk. These are most of the municipal-
ities of the South of Italy already detected in the LISA map of IV SM because
of their high vulnerability. Exceptions are the yellow-colored municipalities of
Figure 3b, where seismic hazard is mild. Note also the green hot spots in the
North, notably in Friuli and Veneto, where a severe seismic hazard is associated
with significantly low values of IV SM . For these municipalities, the low value of
IV SM partially compensates the seismic hazard and contributes to the overall
decrease of seismic risk.

4 Population growth and ageing, and social vul-
nerability

Almost a quarter of the Italian population lives in an Inner Area [31]. These
are rural areas characterized by their distance from the main centers of services
(education, health and mobility) and including almost half of the Italian munic-
ipalities. In the last decades, Italian Inner Areas have experienced a pronounced
demographic decline and population ageing. These phenomena provide further
indications of a fragile community which we believe should be taken into account
when evaluating seismic risk and precision policies for reducing it. IV SM does
not include such factors, which therefore deserve a separate analysis.

The MRCI captures the demographic dynamics of each municipality by re-
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(a) V AR PERC between 2011 and 2018 (b) ETA Q3 in 2018

Figure (4) Maps of Italy where each municipality has been colored according
to its V AR PERC and ETA Q3, respectively

porting the percentage variation of the number of its residents in 2018 and 2011,
that is the proportion between the difference of number of residents in the two
years and the number of residents in 2011, multiplied by 100. In the MRCI this
index is called V AR PERC. The age distribution of the residents of a munici-
pality is instead described through its quartiles, as of 2018. Figure 4 shows two
maps of Italy: on the left, each municipality is colored according to V AR PERC
whereas on the right the color of each municipality corresponds to the value of
the third quartile of the age distribution of its residents, called ETA Q3. The
values of the global Moran’s I statistic for V AR PERC and ETA Q3 are equal
to 0.401 and 0.623, respectively. By inspecting the two maps, it is immediately
obvious that the two indexes are strongly correlated, the demographic decline
of the population being correlated with its ageing. A different perspective on
this first qualitative observation, is given by Figure 5 where, for each municipal-
ity, V AR PERC and ETA Q3 are plotted against the value of seismic hazard
ag[max], and each municipality is colored according to the log10 of its current
resident population size (log10(POP )). One may notice that municipalities with
a larger population have a higher growth rate and a younger population (i.e.,
a lower value of ETA Q3). In general, municipalities with a small number of
residents appear older and affected by a pronounced demographic decline. The
charts also show that these fragile communities characterize the landscape sub-
ject to high seismic hazard.

Aiming at the identification of significant spatial hot spots, we plot the LISA
maps of V AR PERC and ETA Q3 in Figure 6. In Figure 6a, the High-High
hot spots of V AR PERC indicate a significantly positive growth rate for the
population size. They are located in proximity of major urban attractors, in the
North East of Italy with the notable addition of areas in Trentino and Alto Adige,
in some coastal areas of the South of Italy and the main islands. Low-Low hot
spots are instead located in the inner areas of the country. The picture is almost
replicated in Figure 6b, with colors of opposite sign, where the LISA map for
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(a) (b)

Figure (5) Demographic decline and ageing of Italian municipalities projected
on the seismic landscape: in map (a) each municipality is represented by its
ag[max] and the value of V AR PERC, in map (b) each municipality is repre-
sented by its ag[max] and the value of ETA Q3. The color of each municipality
corresponds to the log10 of its resident population.

ETA Q3 is shown. Hot spots of significantly high values for ETA Q3 indicate
areas of ageing populations and are in good agreement with those identifying
areas of population decline in Figure 6a. The Low-Low hot spots indicating
areas with a younger resident population often correspond to areas characterized
by a positive growth in Figure 6a.

To project this analysis on the seismic landscape, we plot in Figure 7 the
LISA maps of Figure 6 stratified according to the two macro-classes of ag[max]
identifying severe and mild seismic hazard. Areas where a severe seismic hazard
(high or medium values of ag[max]) are associated with a negative growth rate
of the population are of particular concern for seismic risk prevention and reduc-

(a) (b)

Figure (6) Univariate LISA maps: in map (a) that for V AR PERC, in map
(b) that for ETA Q3.
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(a) (b)

Figure (7) The High-High, Low-Low hot-spots of univariate LISA maps strat-
ified by ag[max] class: in map (a) that for V AR PERC, in map (b) that for
ETA Q3.

tion; these are the green hot spots in Figure 6a. The same concern applies to
the red hot spots in Figure 6b, identifying areas where a severe seismic hazard
is significantly associated to an ageing population. For many of these areas, par-
ticularly those belonging to the inner areas of the Appenine, there is a complete
overlap with the green hot spots in Figure 6a, thus indicating communities where
old age and a decreasing population add up to the their fragility in the face of a
relevant seismic hazard.

5 The building stock age

Human communities live in buildings, and building vulnerability is the first and
most important component of any assessment of seismic risk. In this vein, the
main efforts of the Casa Italia project was to envision the quantitative basis to
design efficient and effective precision policies incentivizing the reduction of vul-
nerability of the heterogenous building stocks of the Italian municipalities [28],
thus promoting the safety of their communities against seismic risk. We argue
that building stock vulnerability, as measured by its age distribution, should also
be considered when evaluating the social and material vulnerability of a com-
munity. An old building stock – in Italy, often composed of historical buildings
which cannot be demolished and reconstructed – requires large interventions for
enhancing its quality against seismic shaking. The inability of a community to
put in place such preventive actions, favoured by its demographic decline and
ageing, adds to its overall fragility.

For each municipality, the MRCI summarizes the age of its building stock by
reporting the relative frequencies of buildings constructed in each of the following
nine disjoint time classes: before 1919; 1919-1945; 1946-1960; 1961-1970; 1971-
1980; 1981-1990; 1991-2000; 2001-2005; after 2005. See, for instance, Figure 8 for
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Figure (8) Building stock distribution for the municipality of Milan

the distribution of time-of-construction of the building stock of Milan. Time-of-
construction is an important indicator of building vulnerability since anti-seismic
regulations, enforcing higher standards for building quality against earthquake
shaking, have been introduced in Italy between 1981 and 1984 and then again in
2003: see [28].

For the analysis of the variability of the time-of-construction distributions of
the building stock of the Italian municipalities, we note that these are composi-
tional data which belong to the simplex of R9. Indeed, the time-of-construction
distribution for the buildings of the i-th municipality is a vector of p = 9 positive
components xi = (x1, ..., xp)

′ summing up to 1. The vector xi belongs to the
simplex Sp, a subset of Rp:

Sp =

x = (x1, . . . , xp)
′ ∈ Rp : xj > 0 for j = 1, ..., p,

p∑
j=1

xj = 1

 .

Aitchison (1982) [1] firstly proposed the use of a log-ratio approach to the
analysis of compositional data, defining a set of principles that such analyses
should fulfill (see [25, 24, 26]). These principles led to the definition of a spe-
cific geometry for Sp, named Aitchison geometry, which is built upon two main
operations, perturbation and powering defined, for x, y ∈ Sp, as

(x⊕ y)j =
xjyj∑p
k=1 xkyk

; (α� x)j =
xαj∑p
k=1 x

α
k

,

and an inner product

〈x, y〉 =
1

2p

p∑
j=1

p∑
k=1

ln
xj
xk

ln
yj
yk
,
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implying a norm and a distance within the space. Note that the neutral element
of perturbation is the uniform composition, i.e., 0⊕ = (1/p, ..., 1/p)′.

The simplex Sp endowed with the Aitchison’s geometry is a finite-dimensional
Hilbert space, which is isometrically isomorphic to the linear space M ⊂ Rp,
of dimension p − 1, consisting of those vectors of Rp whose components sum
up to 0. The isomorphism is, for instance, provided by the centered log-ratio
transformation (clr) defined, for x ∈ Sp, as

clr(x) =

[
ln

(
x1

(
∏p
j=1 xj)

1/p

)
, ..., log

(
xp

(
∏p
j=1 xj)

1/p

)]′
. (3)

Since building stock data are constrained objects, the overall effect of the
seismic hazard factor, whose levels are the four classes listed in Section 2, on
the distribution of building stock compositions is here assessed through a com-
positional one-way ANOVA. For the time-of-construction composition xis of the
building stock of the i-th municipality in the s-th class of seismic hazard, we thus
consider the model

xis = µ⊕ τs ⊕ εis, (4)

with µ the overall mean, τs the effect of the s-th level of the seismic hazard
factor, and εis zero-mean i.i.d. errors. To test the significance of the τs, we set
the hypothesis

H0 : τ1 = ... = τ4 = 0⊕ against H1 : at least one τs 6= 0⊕, (5)

and we perform a permutational ANOVA test, that allows coping with the non-
Gaussianity of the errors [4, 27]. From the computational standpoint, the test
is run by first transforming the data thorough the clr function defined in (3),
which yields a set of (constrained) data {clr(xis), i = 1, ..., ns, s = 1, ..., 4} in the
linear space M ⊂ Rp, where ns stands for the number of municipalities belonging
to the s-th level class of seismic hazard. Due to the isometric nature of the clr
transformation, the following model in Rp for the clr(xis)’s is consistent with (4)

clr(xis) = clr(µ) + clr(τs) + clr(εis). (6)

On the transformed model, the hypotheses (5) read

H0 : clr(τ1) = ... = clr(τ4) = 0 against H1 : at least one clr(τs) 6= 0. (7)

The test is run using the pseudo-F statistic

F =
(SST − SSW )/(4− 1)

SSW /(n− 4)
,

where SST is the total sum-of-squares and SSW is the within groups sum-of-

13



squares:

SST =
1

n

n−1∑
i=1

n∑
j=i+1

d2ij ,

SSW =
1

n

n−1∑
i=1

n∑
j=i+1

d2ijδij .

Here dij indicates the Euclidean distance between clr-transformed observations i,
j, while δij = 1 if observations i and j belong to the same group and 0 otherwise
[3][4].

The distribution of F under H0 is obtained by permuting the transformed
data, as advocated in [27]. Under H0, the pseudo-F statistic exceeds its observed
value F0 = 54.35 in the sample with an estimated frequency equal to 0.001.
The routines that implement the test performed with the R package vegan [22]
are freely available in the github account indicated in the Introduction; they
have been run by setting the number of permutations equal to 1000. The result
supports the claim that the effect of the seismic hazard factor on the distribution
of the time-of-construction compositions is significant.

We further investigate this issue, by exploring the spatial distribution of the
time-of-construction compositions of the building stock through effective compo-
sitional summaries. Indeed, we reduce the dimensionality of the of the time-of-
construction compositions by eliciting the main direction of their variability via a
Compositional Principal Component Analysis [2] performed with the R package
compositions [33].

Figure 9 shows the first principal component scores - a variable called PC1 in
the following - and projections, this principal component explaining the 45% of
the variability of the time-of-construction compositions. The guide chart in Fig-
ure 9b reports in black the average building stock composition for Italian munic-
ipalities, computed according to the Aitchison geometry in S9. This barycentric
distribution has score equal to 0 in the direction of the first principal component.
The colored distributions appearing in the same chart correspond to distributions
lying on the first principal component direction and identified by a score ranging
from −5

√
λ1 to +5

√
λ1,
√
λ1 = 1.67 being the standard deviation of the data

scores along the first principal component. Low score values (cold colors) indi-
cate time-of-construction distributions concentrated on more recent years (i.e.
a young building stock) whereas high score values (hot colors) correspond to
time-of-construction distributions more concentrated in the long past (i.e. an
old building stock). This chart guides the reading of the Italian map in Figure
9a, where each municipality is colored according to PC1. Colors indicate the
correspondence between scores, as represented on the Italian map in Figure 9a,
and time-of-construction distributions plotted in the guide chart in Figure 9b.
Municipalities with a cold color have a younger building stock, those colored with
hot colors an older one.

To emphasize the impact of anti-seismic regulations, we aggregate the time
classes defining the time-of-construction distributions in three macro time in-
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(a)
(b)

Figure (9) Building stock age: in map (a) each municipality has been col-
ored according to the PC1 score of the time-of-construction distribution of its
building stock, map (b) reports the guide chart associating scores with time-of-
construction distributions.

tervals: before 1919 (very old buildings), between 1919 and 1980 (more recent
buildings, constructed before the anti-seismic regulations), after 1980 (build-
ings constructed while or after anti-seismic regulations were introduced in Italy).
These time-of-construction ternary distributions, one for each Italian municipal-
ity, can be represented as points belonging to the simplex S3. The data cloud
appears in Figure 10a. Reported on the simplex are also the directions of their
two principal components, which define a basis for S3 and which intersect at
the barycentric distribution, corresponding to the average ternary distribution
of time-of-construction for Italian municipalities. The first principal component
(PC1) explains 86% of the data variability; by moving along the PC1 direction,
passing from positive (hot) scores to negative (cold) scores, one visits time-of-
construction ternary distributions first concentrated on the “before 1919” class
and then more and more concentrated on the “after 1980” class, as is also shown
in the guide chart in Figure 10b. Figure 10c represents each Italian municipality
colored according to the score of its time-of-construction ternary distribution on
the PC1 represented in Figure 10a and 10b. One could consider this map of Italy
as a coarse summary of the map in Figure 9. Notice, in particular, the areas of
the country where the building stocks are of more recent time of construction
(colored in blue); among the obvious metropolitan areas, the Irpinia region and
some areas of Friuli stand out, both regions having been vastly reconstructed
after the tragic earthquakes of 1976 and of 1980, which prompted the Italian
Parliament to pass anti-seismic regulations.

Coming back to the analysis of the complete time-of-construction distribu-
tions of the building stocks, data points of S9, the global Moran‘s I statistic
measuring the spatial association of their PC1 scores is equal to 0.506. To single
out the country’s hot spots with respect to the age of their building stock, we
represent, in Figure 11a, a univariate LISA map of the PC1 scores pictured in Fig-
ure 9a. The map clearly points out the Low-Low clusters of more recent building
stock: the large metropolitan attractors of demographic expansion around Milan
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(a) (b)

(c)

Figure (10) Building stock age: each point in the simplex shown in map (a) rep-
resents the ternary distribution of the time-of-construction of the building stock
of an Italian municipality. The basis formed by the two principal components
is shown; PC1 and PC2 cross at the average ternary distribution. The colors
of the scores identifying points on the PC1 axis correspond to the colors of the
distributions appearing in the guide chart (b) on the right. In map (c) each
municipality is colored according to the PC1 score of the ternary distribution of
the time-of-construction of its building stock.
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(a) (b)

Figure (11) Building stock age. (a) Univariate LISA map of the PC1 scores
of the complete time-of-construction distributions; dashed lines represent the
boundaries among classes of seismic hazard. (b) the High-High, Low-Low hot-
spots of the univariate LISA map of the PC1 scores of the complete time-of-
construction distributions stratified by ag[max] class.

and Rome, the North East, the coasts of Sardinia witnessing the development of
its tourism industry, the already mentioned reconstructed Irpinia and Friuli re-
gions, and notable spots in Sicily, Puglia and Calabria. The High-High hot spots
identifying areas characterized by an ageing building stock run along the inner
areas of the Appenines and also single out large portions of Piedmont, with the
exception of the territory surrounding Turin, of Liguria and of Tuscany. Figure
11b segments these hot spots according to the two macro-classes of seismic haz-
ard (severe/mild). Whereas the green Low-Severe clusters indicate areas of the
country where seismic hazard is severe but seismic risk is attenuated by a more
recent building stock, concern is generated by the red High-Severe areas where a
medium or high seismic hazard is associated with an ageing building stock. Once
again these red areas belong to the inner regions of the country characterized by
small communities, already suffering from a demographic decline and ageing of
their residents. To elaborate on this point, consider Figure 12. Each municipality
appears as a point colored according to the log10 of its resident population; on the
abscissa the seismic hazard associated to the municipality, on the ordinate axis
the PC1 score. One notices immediately the overwhelming presence of commu-
nities with less than 10000 residents among those with extremely low values for
the PC1 score and therefore an ageing building stock. This evidence is even more
compelling for those municipalities with a high seismic hazard (ag[max] > 0.25g).

6 An aggregated analysis

Given the bounded resources constraint, policy makers need to prioritize their
interventions against social and material vulnerability if they want to implement
efficient precision policies. Indeed, “the necessity to develop methods and indi-
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Figure (12) Building stock age: PC1 versus ag[max].

cators (to assess social vulnerability)... which can be used in policy and decision-
making processes” has been stressed also in [7]. With this goal in mind, we try
in this section to aggregate the results of the previous analyses with the aim of
eliciting a conceivable global picture of social and material vulnerability in the
face of seismic hazard for the Italian municipalities.

One obvious line of attack would be to single out those municipalities si-
multaneously troubled by a high IV SM value, demographic decline and an old
building stock. To this effect, we set the threshold tIV SM = 100.29 equal to
the third quartile of the IV SM distribution over the Italian municipalities, the
threshold tg = −4.64% equal to the first quartile of V AR PERC and finally the
threshold tb = 1.18 equal to the third quartile of the PC1 score of the complete
time-of-construction distributions of the building stock. Given the collinearity
between V AR PERC and ETA Q3 we decided to use only one of the two vari-
ables in the criterion for selecting municipalities; we settled on the former because
it allows a better outlook on the future fragility of a community as it captures the
demographic dynamics of its resident population. We then highlight in Figure
13 those municipalities with:

IV SM ≥ tIV SM and V AR PERC ≤ tg and PC1 ≥ tb. (8)

Out of 7953 municipalities, 247 pass the selection criterion (8). This sup-
ports the assumption of a very mild dependence for the three variables IV SM ,
V AR PERC and PC1 since, in case of independence, we expect only 125 ± 23
municipalities to pass 8. The selected municipalities, highlighted in Figure 13,
are colored according to their membership to one of the four classes of seismic
hazard as defined in Section 2, and identified by the contour lines on the plot.
Their distribution in the four seismic classes is reported in Table 1; one may
notice that for almost 70% of them, the seismic hazard is medium or high.

A second line of attack aims at a global ranking of the Italian municipali-
ties in line with the three indexes we have so far considered for capturing social
and material vulnerability; for this, we will use the Copeland method illustrated
in [19]. First, we separately rank the municipalities consistently with IV SM ,
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Figure (13) Map of Italy where each
selected municipality has been colored
according to ag[max] class.

ag[max] class Proportion
(0,0.05] 0.07
(0.05,0.15] 0.26
(0.15,0.25] 0.46
(0.25,0.35] 0.21

Table (1) Proportion of munic-
ipalities being selected for each
class of ag[max].

V AR PERC and the PC1 scores of their complete time-of-construction distri-
butions of building stock. For ranking municipalities according to IV SM and
PC1, we proceed in ascending order, attributing rank 1 to the municipality with
the smallest index, that is the best in terms of IV SM or PC1 score, respec-
tively. Ranking of municipalities according to V AR PERC proceeds instead in
descending order, rank 1 being attributed to the municipality having highest
V AR PERC, that is the best in terms of demographic growth. Ties are sorted
by population size, a smaller population size inducing a larger rank number. In
other words, in each of the three rankings, larger rank numbers are indicative
of a higher vulnerability, as captured by the indexes analyzed in the previous
sections of this paper. To obtain a final global ranking, we then consider all pair-
wise competitions between municipalities. When municipality i competes against
municipality k, let ril and rkl be their respective rank numbers in the rankings
l = 1, 2, 3, described above and set the result of the competition to be

si,k =

{
1, if #{l ∈ {1, 2, 3} : ril > rkl} ≥ 2;
−1, if #{l ∈ {1, 2, 3} : ril > rkl} ≤ 1.

(9)

Finally, for i = 1, ..., n, we compute the Copeland score of the municipality i as
the sum over the results of all pairwise competitions,

Ci =
∑
k 6=i

si,k.

Figure 14 shows the map of Italy where each municipality has been colored
according to its Copeland score, hot colors for the units with a high score, i.e.
worse off in our global ranking of social and material vulnerability, cold colors
for those municipality with a low Copeland score, better off in terms of social
and material vulnerability. The contours defining the four classes of seismic
hazard are also reported. We can see that the ranking provided by the Copeland
score highlights vulnerable areas in Piedmont, in Friuli and in the inner regions
of Apennines and of the main islands, consistently with our previous analyses.
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Figure (14) Map of Italy where each municipality has been colored according
to the Copeland score.

One may also notice that the areas characterized by high Copeland scores are
frequently concurrent with the areas of severe seismic hazard. To elaborate on
this consider Figure 15 which depicts as boxplots the conditional distributions of
the Copeland score, given the values of ag[max] defining the four seismic classes
listed in Section 2. There is a clear stochastic order among the four distributions,
those associated to larger values of ag[max] dominating those corresponding to
less hazardous areas. Therefore, for municipalities belonging to the medium
or high seismic hazard classes, social and material vulnerability is acting as an
amplifier of seismic hazard, contributing to the increase of risk instead of dimming
it.

Ultimately, ranking through the Copeland’s score allows to prioritize the pub-
lic intervention on Italian municipalities, with the goal of reducing their vulner-
ability to seismic hazard. Each community is however different, and the multi-
dimensional analysis carried out in the previous sections allows to discriminate
among the components which differentially contribute to the social and material
vulnerability of Italian municipalities, profiling each municipality in terms of its
dominant fragilities when exposed to a seismic event, and allowing decision mak-
ers to plan tailored precision policies to fight them. This is in contrast to the
actual policies designed to reduce seismic risk, which focus only on the hazard
factor and cluster the municipalities in terms of the four hazard classes listed in
Section 2, promoting and incentivizing prevention against the risk by means of
equal measures shared by all municipalities belonging to the same cluster.
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Figure (15) Conditional distributions of Copeland score, given ag[max].

(a) (b)

Figure (16) Temporal population dynamics: in (a) each municipality is repre-
sented by the log growth curve, colored according to the ag[max]. In (b) curves
are year-wise medians of the log growth rates for the four ag[max] classes. Note
that different scales are used for the y-axes in plots (a) and (b), to enhance
visibility of the curves.

7 Discussion and further supporting analyses

In the previous section, we claimed that V AR PERC allowed a better outlook
on the future fragility of a community because it captures the demographic dy-
namics of its resident population. We thus used this variable, instead of the
correlated ETA Q3, when building a global ranking of the Italian municipalities
in terms of social and material vulnerability. Although MRCI provides, through
V AR PERC, the variation of the number of residents between 2011 and 2018,
the resident population of every municipality is constantly monitored by ISTAT.
In fact, based on the data made public by ISTAT, for every Italian municipality
we know the annual demographic growth between 1992 and 2012.

Figure 16, on the left, shows for each Italian municipality the log of the ra-
tio between its population size in a given year and its population size in 1992,
taken as reference year, that is the log of its demographic proportional growth
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(a)
(b)

Figure (17) Proportional growth curves: in (a) each municipality has been col-
ored according to the the score of its log proportional growth curve on the first
Functional Principal Component. The score color identifies the corresponding
log proportional growth curve on the guide chart (b).

with respect to 1992. Each curve is colored according to the ag[max] associated
to the municipality. One might notice that for many municipalities troubled
by a medium or high seismic hazard the population is not increasing, when it
is not steadily declining. Indeed this is confirmed by the graph on the right
where, for the four seismic hazard classes, the medians of the log proportional
growths are represented for every year. After smoothing the log of the demo-
graphic proportional growth curves by means of 11 cubic B-splines, we performed
a Functional Principal Component Analysis [29]. The first principal component
captures 95.4% of the data variability, thus supporting their projection on a 1-
dimensional linear subspace, where each curve is encapsulated in a real number,
its score on the first principal component. Figure 17 shows the map of Italy,
where each municipality has been colored according to these scores; on the right
the guide chart for interpreting the values of the scores, cold colors being associ-
ated to declining log proportional growth curves, hot colors otherwise. The black
curve is the average log proportional growth curve for the entire country. These
scores are correlated (ρ = 0.94) to the variation index V AR PERC reported in
the MRCI and analyzed in the previous sections, thus supporting the claim that
V AR PERC is tracking a long term trend of the local demographic dynamics.

A second point worth of discussion is the spatial variability of the index
IV SM , analyzed in Section 3. It was already noted that IV SM shows a marked
trend moving from the North to the South of the peninsula. Although less obvi-
ous, the careful reader of Figure 2 will also notice that the variability of IV SM
between municipalities sharing a similar latitude is also changing when moving
form North to South. To better support this claim, we looked at the IV SM
data at a different spatial scale, considering provinces instead of municipalities.
In fact, for each Italian province we may compute the distribution density of
the value of IV SM observed for its municipalities. For better visualization and
treatment, these distributions are then smoothed via kernel smoothing (Gaussian
kernel, bandwidth = 0.527); they are depicted in Figure 18.
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(a) (b)

Figure (18) IV SM distributions for the Italian provinces. In (b) the six largest
Italian provinces in terms of resident population, year 2018

A shift from dark purple to yellow corresponds to a shift from North to South,
the colors being assigned on a regional basis. One may notice a strong spatial
trend for both the location of the densities and their scale, when moving from
North to South. This implies a large variability between provinces in terms of
IV SM , provinces in the South of Italy and Sicily being associated to larger values
of mean IV SM , but also an increasing heterogeneity within the provinces, the
provinces in the South being characterized by a larger variability of the IV SM
of their municipalities. To make this trend even more manifest, we ultimately
explore the classification of provinces based on the distribution of IV SM among
their municipalities. For any pair of provinces (P,Q), we compute the Wasserstein
distance between the cumulative distributions FP and FQ of the IV SM for their
municipalities:

dW (P,Q) =

√∫ 1

0

[F−1P (t)− F−1Q (t)]2dt.

We then run the Agglomerative Hierarchical Clustering Algorithm with Ward
linkage to obtain the dendrogram plotted in Figure 19. Cutting the dendrogram
to obtain four clusters, we get the clusters of provinces represented in Figure
20, on the left, which seems to be in strong connection with the representation
of IV SM offered by Figure 2. On the right of Figure 20, the barycentric dis-
tributions of the three clusters are reported; they clearly support the claim of a
North-South regional trend for the IV SM provincial distributions, both in terms
of location and of scale. The claim is also quantitatively supported by Table 2
where mean, standard deviations, and quartiles of these barycentric distributions
are reported.

8 Conclusion

Social vulnerability is an abstract construct having multiple referents, none of
which is fully comprehensive. By analyzing the data stored in the MRCI, we tried
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Figure (19) IV SM : the dendrogram clustering provinces

(a)
(b)

Figure (20) IV SM : provinces clustering using Wasserstein distance. In (b)
barycenters of the four clusters

Cluster Mean sd Q1 Q2 Q3
1 97.09 1.74 96.13 96.93 97.80
2 98.80 1.44 97.92 98.72 99.54
3 100.29 1.58 99.29 100.20 101.13
4 102.43 2.67 100.68 102.08 103.76

Table (2) Summary indices of IV SM within the clusters of provinces.
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to capture a concept of social and material vulnerability which is functional to the
design of precision policies for the prevention and reduction of the seismic risk of
Italian municipalities. Encompassing IV SM, we also considered as referents of
social and material vulnerability the demographic dynamics of the communities
and the age of the building stock where the community resides, grounding our
argument on the belief that an aging and demographically declining community,
living in buildings requiring significant improvements to be brought to safety, is
more fragile and vulnerable when confronted with a seismic catastrophic event.
Fusing measurements of different factors associated to the latent social and ma-
terial vulnerability, we formulated a tentative ranking of Italian municipalities
apt to prioritize the public intervention for prevention and reduction of their seis-
mic risk by means of precision policies rooted in their different fragility profiles,
elicited by our multidimensional analysis.

References

[1] Aitchison, J., The Statistical Analysis of Compositional Data. Journal of
the Royal Statistical Society: Series B (Methodological), No. 44: 139–160
(1982)

[2] Aitchison, J., Principal Component Analysis of Compositional Data.
Biometrika, Vol. 70, No. 1. 57–65 (1983)

[3] Anderson, M.J., A new method for non-parametric multivariate analysis of
variance. Austral Ecology, 26: 32-–46. (2001)

[4] Anderson, M.J.. Permutational Multivariate Analysis of Variance (PER-
MANOVA).Wiley StatsRef: Statistics Reference Online (2017)

[5] Anselin, L., Local Indicators of Spatial Association—LISA. Geographical
Analysis. Vol. 27, No. 2, 93 —-115 (1995)

[6] Anselin, L., Syabri, I., Kho. Y., GeoDa, an Introduction to Spatial Data
Analysis. Geographical Analysis No. 38, 5-–22 (2006)

[7] Birkmann, J. Measuring vulnerability to promote disaster resilient societies:
conceptual frameworks and definitions. In Measuring vulnerability to nat-
ural hazards: Towards disaster resilient societies, ed. J. Birkmann, 9–54.
Tokyo: United Nations University Press (2006).

[8] Cressie, N.. Statistics for Spatial data. John Wiley & Sons, New York (1993).

[9] Cutter, S.L., B.J. Boruff, and W.L. Shirley. Social vulnerability to environ-
mental hazards. Social Science Quarterly 84(2): 242-–261 (2003).

[10] Fatemi, F., A. Ardalan, B. Aguirre, N. Mansouri, I. Mohammadfam. Social
vulnerability indicators in disasters: Findings from a systematic review.
International Journal of Disaster Risk Reduction Vol. 22, 219-–227 (2017).

25



[11] Frigerio, I., Carnelli, F, Cabinio, M., De Amicis, M. Spatiotemporal Pat-
tern of Social Vulnerability in Italy. International Journal of Disaster Risk
Science, Vol. 9, No. 2, 249–262 (2018).

[12] Frigerio, I., De Amicis, M. Mapping social vulnerability to natural haz-
ards in Italy: A suitable tool for risk mitigation strategies. Environmental
Science & Policy, Vol. 63, 187–196 (2016).

[13] Frigerio, I., Strigaro, D. , Mattavelli, M., Mugnano, S., and De Amicis, M..
Construction of a social vulnerability index in relation to natural hazardous-
ness for the Italian territory. Rendiconti Online Societa Geologica Italiana
39: 68–71 (2016).

[14] Frigerio, I., S. Ventura, D. Strigaro, M. Mattavelli, M. De Amicis, S. Mug-
nano, and M. Boffi. A GIS-based approach to identify the spatial variability
of social vulnerability to seismic hazard in Italy. Applied Geography Vol.
74, 12-–22 (2016).

[15] Garschagen, M., M. Hagenlocher, M. Comes, M. Dubbert, R. Sabelfeld,
Y.J. Lee, L. Grunewald, M. Lanzendörfer, et al. World risk report 2016.
World Risk Report. Bündnis Entwicklung Hilft and UNU-EHS (2016).

[16] ISTAT (Italian National Institute of Statistics). Il calcolo dell’indice di
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