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Abstract

Mathematical models of complex physical problems can be based on
heterogeneous differential equations, i.e. on boundary-value problems of
different kind in different subregions of the computational domain. In this
presentation we will introduce a few representative examples, we will illus-
trate the way the coupling conditions between the different models can be
devised, then we will address several solution algorithms and discuss their
properties of convergence as well as their robustness with respect to the
variation of the physical parameters that characterize the submodels.

1 Introduction and motivation

For the description and simulation of complex physical phenomena, combination
of hierarchical mathematical models can be set up with the aim of reducing
the computational complexity. This gives rise to a system of heterogeneous
problems, where different kind of differential problems are set up in subdomains
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(either disjoint or overlapping) of the original computational domain. When
facing this kind of coupled problems, two natural issues arise. The former is
concerned with the way interface coupling conditions can be devised, the latter
with the construction of suitable solution algorithms that can take advantage of
the intrinsic splitting nature of the problem at hand. This work will focus on
both issues, in the context of heterogeneous boundary-value problems that can
be used for fluid dynamics applications.
The outline of this presentation is as follows. After giving the motivation for
this investigation, we will present two different approaches for the derivation and
analysis of the interface coupling conditions: the one based on the variational for-
mulation, the other on virtual controls. For the former we will consider at first
advection-diffusion problems. After carrying out their variational analysis we
propose domain decomposition algorithms for their solution, in particular those
based on Dirichlet-Neumann, adaptive Robin-Neumann, or Steklov-Poincaré it-
erations. Then, we will focus on Navier-Stokes/Darcy or Stokes/potential cou-
pled problem presenting their asymptotic analysis together with possible solution
techniques.
For the virtual control approach, we will study the case of non-overlapping sub-
domains for advection-diffusion problems considering in particular possible tech-
niques to solve the optimality system and we will present some numerical results.
Then, we will consider the case of domain decomposition with overlap, namely
Schwarz methods with Dirichlet/Robin interface conditions. We will investigate
the virtual control approach with overlap for the advection-diffusion equations
including the case of three virtual controls and we will present some numerical
results. Finally, we will illustrate this framework for the case of the Stokes-Darcy
coupled problem, and for the coupling of incompressible flows.

In order to motivate our investigation, we begin to analyze the advection-
diffusion problem.
Let us consider a bounded domain Ω ⊂ Rd (d = 1, 2, 3) with Lipschitz boundary
and the advection-diffusion equation

{
Au ≡ div(−ν∇u+~bu) + b0u = f in Ω
u = g on ∂Ω,

(1)

where ν > 0 is a characteristic parameter of the problem,~b = ~b(~x) a d−dimensional
vector valued function, b0 = b0(~x) and f = f(~x) scalar functions, all assigned in
Ω, while g = g(~x) is assigned on ∂Ω.
The characteristic parameter ν can either represent the thermal diffusivity in
heat transfer problems, or the inverse of the Reynolds number in incompressible
fluid-dynamics, or another suitable parameter.
Denoting by

Peg(~x) =
|~b(~x)|
2ν

(2)
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Au = div(−ν∇u+~bu) + b0u = f

layer

Figure 1: A simple computational domain and the localization of the boundary
layer

the global Péclet number, we call (1) an advection-dominated problem when
Peg(~x) ≫ 1.
We are interested in treating advection dominated problems with boundary lay-
ers (see, e.g., Fig. 1), that arise when boundary data are incompatible with
the limit (as ν → 0) of the advection-diffusion equation. As an example, let us
consider the one-dimensional advection-diffusion equation

{
−νu′′(x) + bu′(x) = 0, 0 < x < 1,

u(0) = 0, u(1) = 1,
(3)

with ν > 0 and b > 0. Problem (3) can be solved exactly and its solution reads

u(x) =
ebx/ν − 1

eb/ν − 1
.

Such solution exhibits a boundary layer of width O(ν/b) near to x = 1 when the
ratio ν/b is small enough, that is when

Peg(~x) ≫ 1. (4)

In Fig. 2 we show the one-dimensional solution u(x) of (3) for two different
values of the Péclet number: Peg(~x) = 0.5 at left and Peg(~x) = 100 at right.
Only in the latter case a boundary layer occurs.
When (4) holds, the diffusive term is relevant only in a small part of the domain
near to the boundary layer, while it can formally be neglected in the rest of the
domain, where the advection phenomenon prevails.
The idea is then: to split the domain in two non-overlapping subdomains Ω1

and Ω2 where we denote by Γ = ∂Ω1 ∩ ∂Ω2 the interface between subdomains,
and then to solve a reduced problem as follows (see Fig. 3):





A1u1 ≡ div(~bu1) + b0u1 = f in Ω1

A2u2 ≡ div(−ν∇u2 +~bu2) + b0u2 = f in Ω2

boundary conditions on ∂Ω.

(5)

The main question that follows is: how to couple the subproblems?
To answer this question one should:
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Figure 2: The exact solution of problem (3).The solution at right exhibits a
boundary layer in x = 1.
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Figure 3: The reduced problem on the computational domain Ω ⊂ R2

4



1. find interface conditions on Γ so that the new reduced problem is well
posed and its solution is “close to” the original one; then

2. set up efficient solution algorithms to solve the reduced problem.

By a singular perturbation analysis, Gastaldi et al. ([GQL90]) proposed the
following set of interface conditions:





u1 = u2 on Γin

~b · ~nΓu1 + ν
∂u2

∂nΓ
−~b · ~nΓu2 = 0 on Γ,

(6)

where ~nΓ is the normal versor to Γ oriented from Ω1 to Ω2 and Γin = {~x ∈ Γ :
~b(~x) · ~nΓ(~x) < 0} is the inflow interface for Ω1.
The coupled formulation (5)-(6) allows the independent solution of a sequence
of hyperbolic problems in Ω1 and elliptic problems in Ω2, in the framework of
iterative processes between subdomains. The different possible treatments of
the interface relations is what distinguishes one iterative method from another.
In this respect, a very natural approach is defined as follows. Given a suitable
initial guess λ(0) on Γin and a suitable relaxation parameter θ > 0, it iterates
between Ω1 and Ω2 until convergence as follows: for k ≥ 0 do

solve





A1u
(k+1)
1 = f in Ω1

u
(k+1)
1 = g on (∂Ω1 \ Γ)in

u
(k+1)
1 = λ(k) on Γin,

solve





A2u
(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 \ Γ

−ν ∂u
(k+1)
2

∂nΓ
+~b · ~nΓu

(k+1)
2 = ~b · ~nΓu

(k+1)
1 on Γ,

compute λ(k+1) = (1 − θ)λ(k) + θu
(k+1)
2 |Γin .

(7)

The coupled advection/advection-diffusion problem has been studied in [GQL90]
and alternative interface conditions have been proposed in [Dub93, GHJM07,
GHJ02]. In [GLQ01] the problem has been solved in the context of virtual
control approach. We refer to Sections 2.2, 2.3, 3.1 for a more detailed analysis
and solution of this problem.

Another problem which deserves our attention is the generalized Stokes equation
(see [QV99, Sect. 8.2.1]).
Let us refer to an idealised geometrical situation as depicted in Fig. 4 (left).
The bounded domain Ω ⊂ Rd, d = 2, 3, is external to a body whose boundary is
Γb and we set Γ∞ := ∂Ω \ Γb. The problem we are considering reads: find the
vector field ~u and the scalar field p such that





α~u− ν∆~u+ ∇p = ~f, div~u = 0 in Ω

~u = ~0 on Γb

B~u = ϕ∞ on Γ∞,

(8)
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Figure 4: The geometrical configuration for an external problem (left) and a
possible non overlapping decomposition of the computational domain (right)

where ~f and φ∞ are given functions, B denotes the boundary operator on Γ∞,
while α ≥ 0 is a given parameter. To take α = 0 corresponds to solve the
Stokes problem. Nevertheless, this problem may arise in the process of solving
the full Navier–Stokes equations, when the discretisation of the time derivative
is performed by means of a scheme that is explicit in the non-linear convective
term. In this case, the parameter α > 0 represents the inverse of the time-step
and the function ~f , in fact, depends on the solution at the previous step, i.e.
~f = ~f(~u(n)).
The boundary conditions on Γ∞ have to be prescribed in a suitable way for
assuring well-posedness. In this respect, on a portion Γin

∞ of Γ∞ an onset flow
~u = ~uin

∞ is given. However, assigning conditions on the outflow section Γout
∞

may not be simple. It is also clear that all interesting flow features occur in the
vicinity of the body due to the role of viscosity in this area.
For this reason, Schenk and Hebeker ([SH93]) have proposed the replacement of
problem (8) with a reduced one far from the obstacle.
The computational domain Ω is partitioned into a subdomain Ω2, next to the
body, and a far field subdomain Ω1; the interface between Ω1 and Ω2 is denoted
by Γ, ~nΓ is the unit normal vector on Γ directed from Ω1 to Ω2, and ~n the unit
outward normal vector on ∂Ω. The global Stokes equation (8) is replaced with
the following coupled problem, where the viscosity ν is set to 0 in Ω1:





α~u1 + ∇p1 = ~f, div~u1 = 0 in Ω1

~u1 = ~uin
∞ on Γin

∞

p1 = 0 on Γout
∞

α~u2 − ν∆~u2 + ∇p2 = ~f, div~u2 = 0 in Ω2

~u2 = ~0 on Γb,

(9)

or equivalently, by applying the divergence operator to equation (9)1:
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Figure 5: The domain decomposition configuration for an internal problem





∆p1 = div~f in Ω1

∂p1

∂n
= (~f − α~uin

∞) · ~n on Γin
∞

p1 = 0 on Γout
∞

α~u2 − ν∆~u2 + ∇p2 = ~f, div~u2 = 0 in Ω2

~u2 = ~0 on Γb.

(10)

Either problem (9) and (10) are incomplete, because the matching conditions
that have to be fulfilled on Γ are missing.
In [SH93] these conditions are recovered through a singular perturbation analysis
similar to that carried out for the advection–diffusion problem in [GQL90] and
they read:





∂p1

∂nΓ
= (~f − α~u2) · ~nΓ on Γ

p1~nΓ = −ν(~nΓ · ∇)~u2 + p2~nΓ on Γ.
(11)

The coupled problem (10)-(11) can be used also for the simulation of the fluid
motion inside a bounded domain, as depicted in Fig. 5. In this case the domain
Ω1, in which the reduced problem is solved, is non-connected and separates the
interior domain from both inflow and outflow interfaces.
We observe that the system (10)-(11) models two possible different coupled prob-
lems. The first one, when α = 0, is a Stokes/potential coupling, the vector field
~f is independent of the velocity ~u and the pressure p1 is indipendent of the
solution (~u2, p2). Such coupling can be used to model external flows.
The second one, when α > 0, corresponds to the single step of a time-dependent
Navier-Stokes/potential coupling where, as said above, the vector field ~f depends
on the solution at the previous step. This is the case of the simulation of either
the flow inside a channel (or the blood flow in the carotid) or a far field condition.
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As in the case of the advection–diffusion problem, the interface conditions (11)
could be used to set-up an iterative algorithm by subdomains as follows.

Assume that λ̂
(0)

is given and satisfies

∫

Γ
λ̂

(0) · ~nΓ = 0; for any k ≥ 0 solve





∆p
(k+1)
1 = div~f in Ω1

∂p
(k+1)
1

∂n
= (~f − α~uin

∞) · ~n on Γin
∞

p
(k+1)
1 = 0 on Γout

∞

∂p
(k+1)
1

∂nΓ
= (~f − αλ̂

(k)
) · ~nΓ on Γ,

(12)

then solve




α~u
(k+1)
2 − ν∆~u

(k+1)
2 + ∇p(k+1)

2 = ~f, div~u
(k+1)
2 = 0 in Ω2

~u
(k+1)
2 = ~0 on Γb

ν(~nΓ · ∇)~u
(k+1)
2 − p

(k+1)
2 ~nΓ = −p(k+1)

1 ~nΓ on Γ

(13)

and finally set

λ̂
(k+1)

= (1 − θ)λ̂
(k)

+ θ~u
(k+1)
2|Γ , (14)

where θ > 0 is a relaxation parameter.

Since div~u
(k+1)
2 = 0 in Ω2, the trace ~u

(k+1)
2|Γ satisfies

∫

Γ
~u

(k+1)
2|Γ · ~nΓ = 0,

whence

∫

Γ
λ̂

(k) · ~nΓ = 0 for each k ≥ 0.

The analysis of the coupled problem (10)-(11) and the proof of convergence of
the above iterative process (12)-(14) are reported in [SH93]. The analysis can
be performed also by writing the problem in terms of the associated Steklov–
Poincaré operators, and then proving convergence by applying an abstract result
(see [QV99, Thm 4.2.2]).

Finally, we introduce a coupled free/porous-media flow problem.
The computational domain is a region naturally split into two parts: one occu-
pied by the fluid, the other by the porous media. More precisely, let Ω ⊂ Rd

(d = 2, 3) be a bounded domain, partitioned into two non intersecting subdo-
mains Ωf and Ωp separated by an interface Γ, i.e. Ω̄ = Ω̄f ∪ Ω̄p, Ωf ∩ Ωp = ∅
and Ω̄f ∩ Ω̄p = Γ. We suppose the boundaries ∂Ωf and ∂Ωp to be Lipschitz con-
tinuous. From the physical point of view, Γ is a surface separating the domain
Ωf filled by a fluid, from a domain Ωp formed by a porous medium. We assume
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Figure 6: Representation of a 2D section of a possible computational domain for the
Stokes/Darcy coupling

that Ωf has a fixed surface, i.e., we neglect here the case of free-surface flows.
The fluid in Ωf can filtrate through the adjacent porous medium.
The Navier-Stokes equations describe the motion of the fluid in Ωf : ∀t > 0,

{
∂tuf − div T(uf , pf ) + (uf · ∇)uf = f in Ωf

div uf = 0 in Ωf ,
(15)

where T(uf , pf ) = ν(∇uf +∇Tuf )− pf I is the Cauchy stress tensor, I being the
identity tensor. ν > 0 is the kinematic viscosity of the fluid, f a given volumetric
force, while uf and pf are the fluid velocity and pressure, respectively.
The filtration of an incompressible fluid through porous media is often described
by Darcy’s law. The latter provides the simplest linear relation between velocity
and pressure in porous media under the physically reasonable assumption that
fluid flows are usually very slow and all the inertial (non-linear) terms may be
neglected.
Darcy’s law introduces a fictitious flow velocity, the Darcy velocity or specific
discharge q through a given cross section of the porous medium, rather than the
true velocity up with respect to the porous matrix:

up =
q

n
, (16)

with n being the volumetric porosity, defined as the ratio between the volume of
void space and the total volume of the porous medium.
To introduce Darcy’s law, we define a scalar quantity ϕ called piezometric head
which essentially represents the fluid pressure in Ωp:

ϕ = z +
pp
g
, (17)

where z is the elevation from a reference level, accounting for the potential energy
per unit weight of fluid, pp is the ratio between the fluid pressure in Ωp and its
viscosity ρf , and g is the gravity acceleration.
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Then, Darcy’s law can be written as

q = −K∇ϕ, (18)

where K is a symmetric positive definite diagonal tensor K = (Kij)i,j=1,...,d,
Kij ∈ L∞(Ωp), Kij > 0, Kij = Kji, called hydraulic conductivity tensor, which
depends on the properties of the fluid as well as on the characteristics of the
porous medium. Let us denote K = K/n.
In conclusion, the motion of an incompressible fluid through a saturated porous
medium is described by the following equations:

{
up = −K∇ϕ in Ωp

div up = 0 in Ωp.
(19)

Finally, to represent the filtration of the free fluid through the porous medium,
we have to introduce suitable coupling conditions between the Navier-Stokes and
Darcy equations across the common interface Γ. In particular we consider the
following three conditions.

1. Continuity of the normal component of the velocity:

uf · n = up · n, (20)

where we have indicated n = nf = −np on Γ. This condition is a conse-
quence of the incompressibility of the fluid.

2. Continuity of the normal stresses across Γ (see, e.g., [JM96]):

−n · T(uf , pf ) · n = gϕ. (21)

Remark that pressures may be discontinuous across the interface.

3. Finally, in order to have a completely determined flow in the free-fluid re-
gion, we have to specify a further condition on the tangential component of
the fluid velocity at the interface. An experimental condition was obtained
by Beavers and Joseph stating that the slip velocity at the interface differs
from the seepage velocity in the porous domain and it is proportional to
the shear rate on Γ [BJ67]:

ναBJ√
K

(uf − up)τ − (T(uf , pf ) · n)τ = 0. (22)

By (v)τ we indicate the tangential component to the interface of v:

(v)τ = v − v · n. (23)

Since the seepage velocity up is far smaller than the fluid slip velocity uf
at the interface, Saffman proposed to use the following simplified condition
(the so-called Beavers-Joseph-Saffman condition) [Saf71]:

ναBJ√
K

(uf )τ − (T(uf , pf ) · n)τ = 0. (24)
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This condition was later derived mathematically by means of homogeniza-
tion by Jäger and Mikelić [JM96, JM00, JMN01].

The three coupling conditions described in this section have been extensively
studied and analysed also in [DMQ02, DQ09, LSY03, PS98, RY05].
In conclusion, the coupled Navier-Stokes/Darcy model reads:





∂tuf − div T(uf , pf ) + (uf · ∇)uf = f in Ωf

div uf = 0 in Ωf

up = −K∇ϕ in Ωp

div up = 0 in Ωp

uf · n = up · n on Γ
−n · T(uf , pf ) · n = gϕ on Γ
ναBJ√

K
(uf )τ − (T(uf , pf ) · n)τ = 0 on Γ.

(25)

Using Darcy’s law we can rewrite the system (19) as an elliptic equation for the
scalar unknown ϕ:

−∇ · (K∇ϕ) = 0 in Ωp. (26)

In this case, the differential formulation of the coupled Navier-Stokes/Darcy
problem becomes:





∂tuf − div T(uf , pf ) + (uf · ∇)uf = f in Ωf

div uf = 0 in Ωf

−div (K∇ϕ) = 0 in Ωp,
(27)

with the interface conditions on Γ:




uf · n = −K
∂ϕ

∂n
−n · T(uf , pf ) · n = gϕ
ναBJ√

K
(uf )τ − (T(uf , pf ) · n)τ = 0.

(28)

We refer to Sections 2.6, 2.7, 3.4 for a more exhaustive analysis of the Stokes/Darcy
coupling.

2 Variational formulation approach

The reduced problems presented above will be analysed in this Section in a
variational setting, in order to deduce suitable interface conditions which can be
rigorously justified. Moreover, different iterative algorithms to solve the reduced
problems will be presented.
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2.1 The advection-diffusion problem

We consider an open bounded domain Ω ⊂ Rd (d = 2, 3) with Lipschitz boundary
∂Ω, and we split it into two open subsets Ω1 and Ω2 such that

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅. (29)

Then, we denote by
Γ = ∂Ω1 ∩ ∂Ω2 (30)

the interface between the subdomains (see Fig. 3) and we assume that Γ is of

class C1,1;
◦
Γ will denote the interior of Γ.

Given two scalar functions f and b0 defined in Ω, a positive function ν defined

in Ω2 ∪
◦
Γ, a d−dimensional vector valued function ~b defined in Ω satisfying the

following inequalities:

∃ν0 ∈ R : ν(~x) ≥ ν0 > 0 ∀~x ∈ Ω2 ∪
◦
Γ,

∃σ0 ∈ R : b0(~x) +
1

2
div~b(~x) ≥ σ0 > 0 ∀~x ∈ Ω,

(31)

we are interested in finding two functions u1 and u2 (defined in Ω1 and Ω2,
respectively) such that u1 statisfies the advection-reaction equation

A1u1 ≡ div(~bu1) + b0u1 = f in Ω1, (32)

while u2 satisfies the advection-diffusion-reaction equation

A2u2 ≡ −div(ν∇u2) + div(~bu2) + b0u2 = f in Ω2. (33)

For each subdomain, we distinguish between the external (or physical) boundary
∂Ω ∩ ∂Ωk = ∂Ωk \ Γ (for k = 1, 2) and the internal one, i.e. the interface Γ.
Moreover, for any non-empty subset S ⊆ ∂Ω1, we define:

the inflow part of S : Sin = {~x ∈ S : ~b(~x) · ~n(~x) < 0}, (34)

where ~n(~x) is the outward unit normal vector on S,

the outflow part of S : Sout = {~x ∈ S : ~b(~x) · ~n(~x) ≥ 0}. (35)

Boundary conditions for problem (32) must be assigned on ∂Ωin
1 .

For a given suitable function g defined on ∂Ω, we denote by g1 and g2 the
restriction of g to (∂Ω1 \Γ)in and ∂Ω2 \Γ, respectively, and we set the following
Dirichlet boundary conditions on the external boundaries:

u1 = g1 on (∂Ω1 \ Γ)in,

u2 = g2 on ∂Ω2 \ Γ.
(36)

Finally, let us denote by ~nΓ the normal versor to Γ oriented from Ω1 to Ω2, so
that ~nΓ(~x) = ~n1(~x) = −~n2(~x), ∀~x ∈ Γ.

12
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Figure 7: The viscosity ν∗ε for the regularized problem. νε|Ω2
→ ν when (ε→ 0)

2.2 Variational analysis for the advection-diffusion equation

The basic steps of the analysis carried out in [GQL90] are summarized here.
1. Given a positive function ν in Ω, we denote by PΩ(ν) the advection-diffusion
problem (1) in Ω. For any ε > 0, we introduce a smooth function νε defined in
Ω2, which is a regularization of ν according with continuity to ε on Γ. Then, ν∗ε
is the globally defined viscosity defined as (see Fig. 7)

ν∗ε =

{
ε in Ω1

νε in Ω2 .

We denote by PΩ(ν∗ε ) ≡ [PΩ1
(ε)/PΩ2

(νε)] the following advection-diffusion prob-
lem





−ε∆u1,ε + div(~bu1,ε) + b0u1,ε = f in Ω1

div(−νε∇u2,ε +~bu2,ε) + b0u2,ε = f in Ω2

ǫ
∂u1,ǫ

∂nΓ
−~b · ~nΓu1,ǫ = νǫ

∂u2,ǫ

∂nΓ
−~b · ~nΓu2,ǫ on Γ

u1,ǫ = u2,ǫ on Γ

u = g on ∂Ω.

(37)

2. For any ε > 0, let VΩ(ε) be the variational formulation associated to PΩ(ε).
Solving VΩ(ε) means to look for the solution uε ∈ V of

aε(uε, wε) = F (wε), ∀wε ∈ V. (38)

If we take g ≡ 0, this means to set V = H1
0 (Ω) and to solve

aε(uε, wε) =

∫

Ω

[
(ε∇uε −~buε) · ∇wε + b0uεwε

]
d~x, F (wε) =

∫

Ω
fwεd~x

(39)
for any wε ∈ V .
Otherwise, if g 6= 0 the formulation is the same, however the right hand side has
to be modified as follows:

Fg(wε) = F (wε) − aε(Rg, wε)

13



where Rg is a suitable lifting of the boundary data g, so that the final solution
reads uε +Rg (see [Qua09]).
3. By asymptotic analysis on VΩ1

(ε), recover the reduced problem PΩ1
(0), so

that

PΩ(ν∗ε ) → [PΩ1
(0)/PΩ2

(ν)] when ε→ 0 .

The new coupled problem [PΩ1
(0)/PΩ2

(ν)] inherits from the limit process a
proper set of interface conditions.
According to the analysis performed in [GQL90], u1,ǫ converges weakly in L2(Ω1)
and u2,ǫ converges weakly in H1(Ω2) when ǫ→ 0, moreover the limit (u1, u2) ∈
L2(Ω1) ×H1(Ω2) satisfies the following reduced coupled problem:





div(~bu1) + b0u1 = f in Ω1

div(−ν∇u2 +~bu2) + b0u2 = f in Ω2

−~b · ~nΓu1 = ν
∂u2

∂nΓ
−~b · ~nΓu2 on Γ

u1 = u2 on Γin

u1 = g1 on (∂Ω1 \ Γ)in

u2 = g2 on ∂Ω2 \ Γ.

(40)

The interface conditions (40)3,4 express the continuity of the flux across the
whole interface Γ and the continuity of the solution across the inflow interface
Γin, respectively. No continuity condition is imposed on Γout, as a matter of fact,
u1 and u2 exhibit a jump across Γout which is proportional to ν|Γ.
Note that the interface conditions (40)3,4 can be equivalently expressed as:

u1 = u2 on Γin,

~b · ~nΓu1 + ν
∂u2

∂nΓ
−~b · ~nΓu2 = 0 on Γout

ν
∂u2

∂nΓ
= 0 on Γin.

(41)

In order to proceed with the analysis of the coupled problem, we introduce the
following notations. Let A be an open bounded subset in Rd, with Lipschitz
continuous boundary. For any open subset Γ ⊂ ∂A, we define the weighted
L2-space

L2
~b
(Γ) = {ϕ : Γ → R :

√
|~b · ~nΓ|ϕ ∈ L2(Γ)}, (42)

and the trace space

H
1/2
00 (Γ) = {ϕ ∈ L2(Γ) : ∃ϕ̃ ∈ H1/2(∂A) : ϕ̃|Γ = ϕ, ϕ̃|∂A\Γ = 0}. (43)
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The space L2
~b
(Γ) endowed with the norm

‖ϕ‖L2
~b
(Γ) =

(∫

Γ
|~b · ~nΓ|ϕ2dΓ

)1/2

is a Hilbert space.
The following result has been proved in [GQL90]:

Theorem 2.1 Assume the following regularity properties on the data: ∂Ω1 and
∂Ω2 are Lipschitz continuous, piecewise C1,1; Γ is of class C1,1;

ν ∈ L∞(Ω2), ~b ∈
[
W 1,∞(Ω)

]2
, b0 ∈ L∞(Ω), f ∈ L2(Ω), (44)

g ∈ H−1/2(∂Ω) : g1 ∈ L2
~b
((∂Ω1 \ Γ)in), g2 ∈ H1/2(∂Ω2 \ Γ).

Finally assume (31).
Then there is a unique pair (u1, u2) ∈ L2(Ω1)×H1(Ω2) which solves (40), where:
equations (40)1 and (40)2 hold in the sense of distributions in Ω1 and Ω2, re-
spectively; interface condition (41)1 holds a.e. on Γin, interface condition (41)2

holds in (H
1/2
00 (Γout))′; interface condition (41)3 holds in (H

1/2
00 (Γin))′. Finally,

problem (40) is limit of a family of globally elliptic variational problems.

From now on, the solution (u1, u2) of the heterogeneous problem (40) will be
named heterogeneous solution.

Other interface conditions have been proposed in the literature to close system
(32), (33), (36). For instance, the conditions

−~b · ~nΓu1 = ν
∂u2

∂~nΓ
−~b · ~nΓu2 on Γout

u1 = u2,
∂u1

∂~nΓ
=
∂u2

∂~nΓ
on Γin,

(45)

have been proposed in [Dub93] and are based on absorbing boundary condition
theory. The following set (see [GHJ02, GHJM07])

u1 = u2 on Γ

∂u1

∂~nΓ
=
∂u2

∂~nΓ
on Γin

(46)

takes into account the requirement of glueing the solutions across the interface
with high regularity.
However, the coupled problem with either one of these set of conditions ((45),
(46)) cannot be regarded as a limit of the original complete variational problem
as the viscosity ε tends to zero in Ω1.
Another possible approach to set suitable interface conditions was proposed in
[GHJM09] for the one-dimensional case with constant coefficients and it is based
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on the factorization of the differential operator. To briefly explain it, let us take
Ω = (x1, x2) and let x0 ∈ Ω denote the position of the interface between Ω1 and
Ω2, i.e. Ω1 = (x1, x0) and Ω2 = (x0, x2). The method consists in the following
steps:
- factorize the differential operator A2· = −ν∂2

x · +b∂x · +b0· as

A2 = (b∂x − bλ+)
(
−ν
b
∂x +

ν

b
λ−
)
,

where λ± = (b±
√
b2 + 4νb0)/(2ν), with λ+ > 0 and λ− < 0;

- compute the function ũ1(x) = ũ1(x1)e
λ+(x−x1) + 1

b

∫ x
x1
f(t)eλ

+(x−t)dt, which is

the solution of the modified advection-reaction equation Ã1ũ1 = bũ′1−bλ+ũ′1 = f
in Ω1 with a suitable boundary condition at x = x1;
- solve the advection diffusion problem A2u2 = f in Ω2 with the following inter-
face condition at x = x0:

−ν
b
u′2(x0) +

ν

b
λ−u2(x0) =

(
−ν
b
u′1(x1) +

ν

b
λ−u1(x1) − ũ1(x1)

)
e−λ

+x1 + ũ1(x0)

- solve the advection reaction problem A1u1 = bu′1 + b0u1 = f in Ω1 with either
u1(x0) = u2(x0) if b < 0, or a suitable boundary condition at x = x1 if b > 0.
It is shown in [GHJM09] that the L2−norm error between the heterogeneous
solution and the global elliptic one behaves like ν (for ν → 0) in the domain Ω1,
while in Ω2 it exponentially decreases with ν when b < 0 and it behaves like
νm (m = 1, 2, . . .) when b > 0. The integer m depends on the accuarcy of the
boundary condition imposed at x = x1.

2.3 Domain decomposition algorithms for the solution of the
reduced advection-diffusion problem

In this Section we will present two iterative domain decomposition methods to
solve the coupled problem (40), starting from the interface conditions (40)3,4.
Moreover we will reformulate the heterogeneous problem in terms of the Steklov-
Poincaré equation at the interface.

2.3.1 Dirichlet-Neumann algorithm

The interface conditions (40)3 and (40)4 provide, respectively, Dirichlet or Neu-
mann data at the interface Γ. Then we can use the condition (40)3 as an inflow
(Dirichlet) condition for the advection problem in Ω1 and the condition (40)4
as a Neumann condition for the elliptic problem in Ω2. The algorithm, named

Dirichlet-Neumann (DN) method, produces two sequences of functions {u(k)
1 }

and {u(k)
2 } converging to the solutions u1 and u2, respectively, of the heteroge-

neous problem as follows.
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Given λ(0) ∈ L2
~b
(Γin), for k ≥ 0 do:

solve





A1u
(k+1)
1 = f in Ω1

u
(k+1)
1 = g on (∂Ω1 \ Γ)in

u
(k+1)
1 = λ(k) on Γin,

solve





A2u
(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 \ Γ

−ν ∂u
(k+1)
2

∂nΓ
+~b · ~nΓu

(k+1)
2 = ~b · ~nΓu

(k+1)
1 on Γ,

compute λ(k+1) = (1 − θ)λ(k) + θu
(k+1)
2 |Γin ,

(47)

where θ > 0 is a suitable relaxation parameter.

The convergence properties of this method are analysed in [GQL90], while several
numerical results can be found in [FPQ93]. The convergence of DN method is
guaranteed by the following theorem ([GQL90]).

Theorem 2.2 Let us consider the assumptions of Theorem 2.1. There exists

δ > 0 such that, if λ(0) ∈ L2
~b
(Γin) and θ ∈ (0, 1+δ), then the sequence (u

(k)
1 , u

(k)
2 )

converges to a limit pair (u1, u2) in the following sense:

u
(k)
1 → u1 in L2(Ω1), u

(k)
2 → u2 in H1(Ω2).

The limit pair provides the unique solution to the coupled problem (40).

Other research papers connected with this approach are [GQ89, Scr90, CM94,
AL94].
We note that, when Γout = Γ, the DN algorithm (47) converges in one iteration,
since the solution in Ω1 is independent of the solution in Ω2 and, once u1 is
known, the solution in Ω2 is obtained by a single “Neumann step”.
On the contrary, when Γin = Γ, the coupled problem (40) can be solved without
iterations. As a matter of fact, by re-writing the interface condition (47)6 as in
(41), we note that the solution in Ω2 is uniquely determined, independently of
a trace function λ on Γ. Consequently, the solution in Ω1 is uniquely defined by
the interface condition (41)1.

2.3.2 Adaptive Robin Neumann algorithm

Another iterative algorithm, that can be invoked to solve the reduced advection-
diffusion problem (40) reads as follows. Given the functions λ(0) ∈ L2

~b
(Γin),

µ(0) ∈ L2
~b
(Γout) and u

(0)
2 ∈ H1(Ω2), for k ≥ 0 do:
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solve





div(~bu
(k+1)
1 ) + b0u

(k+1)
1 = f in Ω1

u
(k+1)
1 = g on (∂Ω1 \ Γ)in

−~b · ~nΓu
(k+1)
1 = ν

∂u
(k)
2

∂nΓ
−~b · ~nΓλ

(k) on Γin,

solve





div(−ν∇u(k+1)
2 +~bu

(k+1)
2 ) + b0u

(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 \ Γ

ν
∂u

(k+1)
2

∂nΓ
−~b · ~nΓu

(k+1)
2 = −~b · ~nΓµ

(k) on Γout

ν
∂u

(k+1)
2

∂nΓ
= 0 on Γin,

compute

{
λ(k+1) = (1 − θ)λ(k) + θu

(k+1)
2 on Γin

µ(k+1) = (1 − θ)µ(k) + θu
(k+1)
1 on Γout.

(48)

The algorithm (48) is obtained as the limit, when ε→ 0, of the Adaptive-Robin-
Neumann (ARN) method proposed in [CQ95] for the homogeneous global elliptic

problem (37). In its original form, ARN method reads: given λ(0), µ(0) and u
(0)
2 ,

for k ≥ 0 do

solve





−ε∆u(k+1)
1,ε + div(~bu

(k+1)
1,ε ) + b0u

(k+1)
1,ε = f in Ω1

u
(k+1)
1,ε = g on (∂Ω1 \ Γ)in

ε
∂u

(k+1)
1,ε

∂nΓ
−~b · ~nΓu

(k+1)
1,ε = νε

∂u
(k)
2,ε

∂nΓ
−~b · ~nΓλ

(k) on Γin
1 = Γin

ε
∂u

(k+1)
1,ε

∂nΓ
= νε

∂u
(k)
2,ε

∂nΓ
on Γout

1 = Γout,

solve





div(−νε∇u(k+1)
2,ε +~bu

(k+1)
2,ε ) + b0u

(k+1)
2,ε = f in Ω2

u
(k+1)
2,ε = g on ∂Ω2 \ Γ

νε
∂u

(k+1)
2,ε

∂nΓ
−~b · ~nΓu

(k+1)
2,ε = ε

∂u
(k+1)
1,ε

∂nΓ
−~b · ~nΓµ

(k) on Γin
2 = Γout

νε
∂u

(k+1)
2,ε

∂nΓ
= ε

∂u
(k+1)
1,ε

∂nΓ
on Γout

2 = Γin,

compute

{
λ(k+1) = (1 − θ)λ(k) + θu

(k+1)
2,ε on Γin

µ(k+1) = (1 − θ)µ(k) + θu
(k+1)
1,ε on Γout.

(49)
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The idea of this method is to impose a Robin interface condition on the local
(i.e. referred to that subdomain) inflow interface Γin

i (i = 1, 2) and a Neumann
interface condition on the local outflow interface Γout

i (i = 1, 2).
Coming back to the heterogeneous coupling, it is straightforward to prove that,
if the choice of θ guarantees the convergence of ARN method, then the limit
solution of ARN (48) coincides with the solution of the heterogeneous problem

(40). Moreover, if u
(0)
2 is chosen with null normal derivative on the interface Γ

and θ = 1, then ARN (48) and DN (47) methods coincide.
When either Γin = Γ or Γout = Γ we can conclude that no iterations are need
for ARN method, as for DN.

Remark 2.1 We want to remark here that in the Dirichlet/Neumann method,
the Neumann condition (47)6 is in fact a conormal derivative associated to the
differential operator A2. On the contrary, in the ARN method the Neumann con-
dition (as (48)7) is a pure normal derivative on the interface, while the conormal
derivative (48)6 is called Robin condition, in agreement with the classical defi-
nition of Robin boundary condition. Following the latter notation, actually the
Dirichlet/Neumann method should be a Dirichlet/Robin method.

2.3.3 Steklov-Poincaré based solution algorithms

Let us consider the heterogeneous problem (40) with homogeneous Dirichlet

conditions on ∂Ω, i.e., g ≡ 0. Let λ ∈ H
1/2
00 (Γ) denote the unknown trace of the

solution u2 on Γ. Thanks to the interface condition (40)4, the solution (u1, u2)
of (40) can be written as

u1 = uλ1 + w1, u2 = uλ2 + w2,

where:
w1 and w2 depend on the assigned function f and are the solution of

{
A1w1 = f in Ω1

w1 = 0 on ∂Ωin
1 ,

{
A2w2 = f in Ω2

w2 = 0 on ∂Ω2,
(50)

while uλ1 and uλ2 are the solutions of





A1u
λ
1 = 0 in Ω1

uλ1 = 0 on (∂Ω1 \ Γ)in

uλ1 = λ|Γin on Γin,





A2u
λ
2 = 0 in Ω2

u2 = 0 on ∂Ω2 \ Γ
uλ2 = λ on Γ.

(51)

Given λ ∈ H
1/2
00 (Γ), we define the Steklov-Poincaré operators S1 and S2 such

that

S1λ =

{
~b · ~nΓu

λ
1 on Γout

0 on Γin
(52)
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and

S2λ =





ν
∂uλ2
∂nΓ

−~b · ~nΓu
λ
2 on Γout

ν
∂uλ2
∂nΓ

on Γin.

(53)

Actually, S1λ depends only on the values of λ on Γin.
Then the interface conditions (40)3 can be equivalently expressed in terms of
Steklov-Poincaré operators as

Sλ ≡ S1λ+ S2λ = χ, (54)

where

χ =





−~b · ~nΓw1 − ν
∂w2

∂nΓ
+~b · ~nΓw2 on Γout

−ν ∂w2

∂nΓ
on Γin.

(55)

The operator S : H
1/2
00 (Γ) → (H

1/2
00 (Γ))′ is the so-called Steklov-Poincaré oper-

ator and the equation (54) is the Steklov-Poincaré equation associated to the
heterogeneous problem (40). The solution of (40) can be reached by sequentially
solving the problems (50), (54) and (51).
Several methods may be invoked to solve the Steklov-Poincaré equation (54).
To start, let us consider the preconditioned Richardson method

{
λ(0) given

P (λ(k+1) − λ(k)) = θ(χ− Sλ(k)), for k ≥ 0,
(56)

where P is the preconditioner and θ > 0 an acceleration parameter.
Thanks to the well-posedness of the ellitpic problem in Ω2, the operator S2 is
invertible and we can use it as preconditioner, so that (56) becomes:

{
λ(0) given

λ(k+1) = (1 − θ)λ(k) + θS−1
2 (χ− S1λ

(k)), for k ≥ 0.
(57)

By comparing (57) with (47), we recognize that the Dirichlet-Neumann method
is equivalent to the Richardson iterative method applied to the Steklov-Poincaré

equation (54) with preconditioner S2, since the identity u
(k+1)
2 |Γ = S−1

2 (χ −
S1λ

(k)) holds.
After a discretization of the heterogeneous problem (by, e.g., finite elements or
spectral methods) it is possible to write the discrete counterpart of both the
Steklov-Poincaré equation (54) and the Dirichlet-Neumann algorithm (47).
It can be be proven that the Dirichlet-Neumann algorithm converges, for suit-
able choices of the relaxation parameter θ, independently of the discretization
parameter h for finite elements or N for spectral methods (see, e.g., [GQL90] for
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a proof in the spectral method context). This because the local Steklov-Poincaré
operator S2 is spectrally equivalent to the global Steklov-Poincaré operator S.
Krylov methods are valid alternatives to Richardson iterations to solve the pre-
conditioned Steklov-Poincaré equation

S−1
2 Sλ = S−1

2 χ. (58)

In the next section we will provide numerical results about the numerical so-
lution of the coupled problem (40) by using either Dirichlet-Neumann method
(47), Adaptive Robin-Neumann method (48) and the preconditioned Bi-CGStab
([vdV92]) on the equation (58).

2.4 Numerical results for the advection-diffusion problem

In this Section we will provide the numerical solution of a test case in two-
dimensional computational domains. The discretization of the differential equa-
tion inside each subdomain is performed by quadrilateral conformal Spectral
Element Methods (SEM). We refer to [CHQZ07] for a detailed description of
these methods, while here we recall in brief their basic features.
Let T = {Tm}Mm=1 be a partition of the computational domain Ω ⊂ Rd, where
each element Tm is obtained by a bijective and differentiable transformation Fm
from the reference (or parent) element Ω̂d = (−1, 1)d. On the reference element
we define the finite dimensional space Q̂N = span{x̂j11 · · · x̂jdd : 0 ≤ j1, . . . , jd ≤
N} and, for any Tm ∈ T : Tm = ~Fm(Ω̂d), set hm = diam(Tm) and

VNm(Tm) = {v : v = v̂ ◦ ~F−1
m for some v̂ ∈ Q̂Nm}.

The SEM multidimensional space is

Xδ = {v ∈ C0(Ω) : v|Tm
∈ VNm(Tm), ∀Tm ∈ T }

where δ is an abridged notation for “discrete”, that accounts for the local geo-
metric sizes {hm} and the local polynomial degrees {Nm}, for m = 1, . . . ,M .
Let us consider the variational formulation (38) and, for simplicity, impose the
homogeneous Dirichlet condition on the boundary (i.e. g ≡ 0). The SEM
approximation of the solution of (38) is the function uδ ∈ Vδ = Xδ ∩ H1

0 (Ω),
such that ∑

m

aTm(uδ, vδ) =
∑

m

(f, vδ)Tm ∀vδ ∈ Vδ (59)

holds, where aTm and (f, v)Tm denote the restrictions to Tm of the bilinear form
and the L2-inner product (respectively) defined in (39).
Since the high computational cost in evaluating integrals in (59), the bilinear
form aTm and the L2-inner product (f, v)Tm are often approximated by a dis-
crete bilinear form aNm,Tm and a discrete inner product (f, v)Nm,Tm, respectively,
in which exact integrals are replaced by Numerical Integration (NI) based on
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Figure 8: Test case #1. The data of the test case (left) and the heterogeneous
solution for ν = 0.01 (left) and ν = 0.001 (right)

Legendre-Gauss-Lobatto formulas.
The SEM-NI approximation of the solution of (38) will be the function uδ ∈ Vδ
such that ∑

m

aNm,Tm(uδ , vδ) =
∑

m

(f, vδ)Nm,Tm ∀vδ ∈ Vδ. (60)

We consider now a test case and we compare the convergence rate of the it-
erative methods explained in Section 2.3. We will denote by DN the Dirichlet
Neumann method (47), by ARN the Adaptive Robin-Neumann method (48) and
by BiCGStab-SP the preconditioned BiCGstab method applied to the precon-
ditioned Steklov-Poincaré equation (58). Our aim is twofold. From one hand
we will represent the numerical solution of the heterogeneous problem (40), on
the other hand we want to investigate and compare the convergence rate of the
iterative methods versus the magnitude of the viscosity ν and the discretization
size (i.e. the local geometric sizes hm and the local polynomial degrees Nm).

Test case #1
Let us consider problem (40). The computational domain Ω = (−1, 1)2 is split
in Ω1 = (−1, 0.8) × (−1, 1) and Ω2 = (0.8, 1) × (−1, 1). The interface is Γ =
{0.8} × (−1, 1). The data of the problem are: ~b = [y, 0]t, b0 = 1, f = 1 and
the inflow interface is Γin = {0.8} × (−1, 0). Dirichlet boundary conditions are
imposed on the vertical sides of Ω, precisely g = 1 on {−1} × (0, 1), g = 0
on {1} × (−1, 1), while homogeneous Neumann conditions are imposed on the
horizontal sides of Ω2. The viscosity will be specified below.
In Fig. 8 the SEM-NI solutions for ν = 10−2 and ν = 10−3 are shown. A
non-uniform partition in 3 × 6 (4 × 6, resp.) quadrilaterals has been considered
in Ω1 (Ω2, resp.). The same polynomial degree N = 8 has been fixed inside each
spectral element. The jump of the solution across Γout is evident for ν = 0.01,
in particular we have obtained ‖u1 − u2‖L∞(Γout) ≃ 0.237 when ν = 0.01 and
‖u1 − u2‖L∞(Γout) ≃ 0.020 when ν = 0.001.
Now we want to compare DN, ARN and BiCGStab-SP methods for what con-
cerns the convergence rate and the computational efficiency.
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Figure 9: Test case #1 with ν = 0.01. DN and ARN iterations to satisfy the
stopping test (61) versus the relaxation parameter θ

The convergence of both DN and ARN is measured by the stopping test on the
difference between two iterates, i.e.

‖λ(k+1) − λ(k)‖ ≤ ǫ for DN

max{‖λ(k+1) − λ(k)‖, ‖µ(k+1) − µ(k)‖} ≤ ǫ for ARN,
(61)

while the convergence of BiCGStab-SP is measured by the stopping test on the
residual r(k+1) = χ− Sλ(k+1), i.e.

‖r(k+1)‖
‖r(0)‖ ≤ ǫ. (62)

The convergence of both DN and ARN methods depends on the choice of the
relaxation parameter θ, on the contrary, the BiCGStab-SP algorithm does not
require to set any acceleration parameter.
In Fig. 9 we report the number of iterations of both DN and ARN methods
in order to converge up to a tolerance of 10−6 for ν = 0.01 and we conclude
that, for this test case, the optimal value of θ is θopt = 1. Analogous results are
obtained for smaller values of the viscosity.
In Table 1 we report the number of iterations needed by every iterative scheme
(DN, ARN, BiCGstab-SP) to converge up to a tolerance of 10−6, versus the
polynomial degree N . For both DN and ARN method we set θ = 1. The
partition of Ω is not uniform and it coincides with that used to represent the
numerical solutions in Fig. 8. The discretization we have used is fine enough to
guarantee the absence of spurious oscillations due to large Péclet number.
As we can see, the convergence rate of all methods is independent of both poly-
nomial degree N and viscosity ν.
The BiCGStab-SP method requires the smallest number of iterations, neverthe-
less each Bi-CGStab iteration costs about two and a half iterations of either
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ν = 0.1 ν = 0.01 ν = 0.001

N DN ARN SP DN ARN SP DN ARN SP

4 2 3 1 2 3 1 2 3 1
6 2 3 1 2 3 1 2 3 1
8 2 3 1 2 3 1 2 3 1
10 2 3 1 2 3 1 2 3 1
12 2 3 1 2 3 1 2 3 1
14 2 3 1 2 3 1 2 3 1
16 2 3 1 2 3 1 2 3 1

Table 1: Test case #1. Number of iterations to satisfy stopping test with ǫ =
10−6. The relaxation parameter is θ = 1 in both DN and ARN. SP is an abridged
notation for BiCGStab-SP method.

DN or ARN. As a matter of fact, each iteration of DN (or equivalenlty ARN)
requires the solution of an advection problem in Ω1 plus the solution of an el-
liptic problem in Ω2. On the contrary, each iteration of BiCGstab-SP requires
two matrix vector products to compute the residual r(k) = χ − Sλ(k) plus the
solution of two linear systems on the preconditioner S2z

(k) = r(k), meaning that
we have to solve two advection problems in Ω1 plus three elliptic problems in
Ω2 at each iteration.
For this test case, we conclude that all three methods are very efficient and their
computational costs are comparable. Nevertheless, both DN and ARN methods
require a-priori knowledge of the optimal relaxation parameter θ.

2.5 Navier-Stokes/potential coupled problem

Models similar to the (Navier-)Stokes/Darcy problem introduced in Sect. 1 can
be used in external aerodynamics to describe the motion of an incompressible
fluid around a body such as, for example, a ship, a boat or a submerged body
in a water basin. In fact, such problems can be studied by decomposing the
computational domain into two parts: a region Ω2 close to the body where, due
to the viscosity effects, all the interesting features of the flow occur, and an outer
region Ω1 far away from the body where one can neglect the viscosity effects.
See, e.g., Fig. 10.
Therefore, suitable heterogeneous differential models comprising Navier-Stokes
equations, Euler equations, potential flows and other models from fluid dynamics
could be envisaged (see, e.g., [BCR89, IC03]).
Here, we present a simple model where in Ω2 we consider the full Navier-Stokes
equations, while in Ω1 we adopt a Laplace equation for the velocity potential.
A coupled heterogeneous model of this kind has been studied in [SH93] consid-
ering a computational domain as in Fig. 11 and the following generalized Stokes
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Ω1

Ω2

Γ

Potential

Navier-Stokes

Figure 10: Flow around a cylinder computed using a Navier-Stokes/potential
coupled problem.

problem: 



α~uǫ − νǫ∆~uǫ + ∇pǫ = ~f in Ω
∇ · ~uǫ = 0 in Ω

~uǫ = ~0 on Γb,

(63)

with suitable boundary conditions on the outer boundary Γ∞. The viscosity is
νǫ = ν in Ω2, while νǫ = ǫ in Ω1.

Γ∞

Γb

Ω1

Γ

body

Ω2

~n

inflow

Figure 11: Representation of the computational domain for an external aerody-
namics problem

In [SH93] a vanishing viscosity argument is used letting ǫ → 0 in Ω1 in order
to set up a suitable global model and to define the correct interface conditions
across Γ. Precisely, the following limit coupled problem was characterized:





α~u− ν∆~u+ ∇p = ~f in Ω2

∇ · ~u = 0 in Ω2

∆q = ∇ · ~f in Ω1

(64)
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with suitable boundary conditions and the coupling conditions across the inter-
face Γ

∂q

∂~nΓ
= (~f − α~u) · ~nΓ on Γ

−ν ∂~u
∂~nΓ

+ p~nΓ = q~nΓ on Γ.

(65)

~nΓ denotes the unit normal vector on Γ directed from Ω2 to Ω1. We remark
that, apart from the physical meaning of the variables, the coupling conditions
(65) are similar in their structure to those used for the Navier-Stokes/Darcy
coupling (28). In fact, (65)1 corresponds to (28)1, and in (65)2 the pressure is
still discontinuous across the interface, even if there is no distinction between
the normal and the tangential components of the stress tensor as in (28)2 and
(28)3.
Because of these similarities, the analysis that we shall develop in Sect. 2.6 for
the Navier-Stokes/Darcy problem could be accommodated to account also for
the heterogenous coupling (64)-(65).
However, one has to keep in mind that the physical meaning of the two coupled
problems is very different. In the Navier-Stokes/Darcy case we have two viscous
models where Darcy equation and the coupling conditions can be obtained by
homgenization in the limit ǫ→ 0 in Ωp, where ǫ represents the size of the pores
in the porous medium. On the other hand, the Navier-Stokes/potential model
couples viscous and inviscid equations, the latter being obtained in the limit
ν → 0 like also the corresponding coupling conditions.

2.6 Asymptotic analysis of the coupled Navier-Stokes/Darcy
problem

We focus now on the coupled Navier-Stokes/Darcy problem (27)-(28), however
we confine ourselves to the steady problem by dropping the time-derivative in
the momentum equation (27)1:

−div T(uf , pf ) + (uf · ∇)uf = f in Ωf . (66)

Even when considering the time-dependent problem, a similar kind of “steady”
problem can be found when using an implicit finite difference time-advancing
scheme. In that case, however, an extra reaction term αuf would show up on
the left-hand side of (66), where the positive coefficient α plays the role of inverse
of the time-step. This reaction term would not affect our forthcoming analysis,
though.

To discuss possible boundary conditions on the external boundary of Ωf and Ωp,
let us split the boundaries ∂Ωf and ∂Ωp as ∂Ωf = Γ∪Γinf and ∂Ωp = Γ∪Γp∪Γbp,
as shown in Fig. 6, left.
For the Darcy equation we assign the piezometric head ϕ = ϕp on Γp; moreover,
we require that the normal component of the velocity vanishes on the bottom
surface, that is, up · np = 0 on Γbp.
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For the Navier-Stokes problem, several combinations of boundary conditions are
possible, representing different kinds of flow problems. Here, we assign a non-
null inflow uf = uin on Γinf and a no-slip condition uf = 0 on the remaining
boundary Γf .
To summarize, the coupled problem (66)-(28) is supplemented with the boundary
conditions:

uf = uin on Γinf , uf = 0 on Γf ,

ϕ = ϕp on Γp, K
∂ϕ

∂n
= 0 on Γbp.

(67)

We introduce the following functional spaces:

Hf = {v ∈ (H1(Ωf ))
d : v = 0 on Γf ∪ Γinf },

H̃f = {v ∈ (H1(Ωf ))
d : v = 0 on Γf ∪ Γ},

Q = L2(Ωf ), Hp = {ψ ∈ H1(Ωp) : ψ = 0 on Γp}.
(68)

We denote by | · |1 and ‖ · ‖1 the H1–seminorm and norm, respectively, and
by ‖ · ‖0 the L2–norm; it will always be clear form the context whether we are
referring to spaces on Ωf or Ωp.
The space W = Hf ×Hp is a Hilbert space with norm

‖w‖W =
(
‖w‖2

1 + ‖ψ‖2
1

)1/2 ∀w = (w, ψ) ∈W.

Finally, we consider on Γ the trace space Λ = H
1/2
00 (Γ) and denote its norm by

‖ · ‖Λ (see [LM68]).

We introduce a continuous extension operator

Ef : (H1/2(Γinf ))d → H̃f . (69)

Then ∀uin ∈ (H
1/2
00 (Γinf ))d we can construct a vector function Efuin ∈ H̃f such

that Efuin|Γin
f

= uin.

We introduce another continuous extension operator:

Ep : H
1/2(Γbp) → H1(Ωp) such that Epϕp = 0 on Γ. (70)

Then, for all ϕ ∈ H1(Ωp) we define the function ϕ0 = ϕ− Epϕp.

Finally, we define the following bilinear forms:

af (v,w) =

∫

Ωf

ν

2
(∇v + ∇Tv) · (∇w + ∇Tw) ∀v,w ∈ (H1(Ωf ))

d,

bf (v, q) = −
∫

Ωf

q div v ∀v ∈ (H1(Ωf ))
d, ∀q ∈ Q,

ap(ϕ,ψ) =

∫

Ωp

∇ψ · K∇ϕ ∀ϕ,ψ ∈ H1(Ωp) ,

(71)
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and, for all v,w, z ∈ (H1(Ωf ))
d, the trilinear form

cf (w; z,v) =

∫

Ωf

[(w · ∇)z] · v =
d∑

i,j=1

∫

Ωf

wj
∂zi
∂xj

vi . (72)

Now, if we multiply (66) by v ∈ Hf and integrate by parts we obtain

af (uf ,v) + cf (uf ;uf ,v) + bf (v, pf ) −
∫

Γ
n · T(uf , pf )v =

∫

Ωf

f · v .

Notice that we can write

−
∫

Γ
n · T(uf , pf )v = −

∫

Γ
[n · T(uf , pf ) · n]v · n −

∫

Γ
(T(uf , pf ) · n)τ · (v)τ ,

so that we can incorporate in weak form the interface conditions (28)2 and (28)3
as follows:

−
∫

Γ
n · T(uf , pf )v =

∫

Γ
gϕ(v · n) +

∫

Γ

ναBJ√
K

(uf )τ · (v)τ .

Finally, we consider the lifting Efuin of the boundary datum and we split uf =
u0
f +Efuin with u0

f ∈ Hf ; we recall that Efuin = 0 on Γ and we get

af (u
0
f ,v) + cf (u

0
f + Efuin;u

0
f + Efuin,v) + bf (v, pf )

+

∫

Γ
gϕ(v · n) +

∫

Γ

ναBJ√
K

(uf )τ · (v)τ =

∫

Ωf

f · v − af (Efuin,v). (73)

From (27)2 we find

bf (u
0
f , q) = −bf (Efuin, q) ∀q ∈ Q. (74)

On the other hand, if we multiply (27)3 by ψ ∈ Hp and integrate by parts we
get

ap(ϕ,ψ) +

∫

Γ
K
∂ϕ

∂n
ψ = 0 .

Now we incorporate the interface condition (28)1 in weak form as

ap(ϕ,ψ) −
∫

Γ
(uf · n)ψ = 0,

and, considering the splitting ϕ = ϕ0 + Epϕp we obtain

ap(ϕ0, ψ) −
∫

Γ
(uf · n)ψ = −ap(Epϕp, ψ). (75)
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We multiply (75) by g and sum to (73) and (74); then, we define

A(v,w) = af (v,w) + g ap(ϕ,ψ) +

∫

Γ
g ϕ(w · n) −

∫

Γ
g ψ(v · n)

+

∫

Γ

ναBJ√
K

(w)τ · (v)τ ,

C(v;w, u) = cf (v;w,u),
B(w, q) = bf (w, q),

(76)

for all v = (v, ϕ), w = (w, ψ), u = (u, ξ) ∈ W , q ∈ Q. Finally, we define the
following linear functionals:

〈F , w〉 =

∫

Ωf

f ·w − af (Efuin,w) − g ap(Epϕp, ψ),

〈G, q〉 = −bf (Efuin, q),
(77)

for all w = (w, ψ) ∈W , q ∈ Q.
Adopting these notations, the weak formulation of the coupled Navier-Stokes/Darcy
problem reads:

find u = (u0
f , ϕ0) ∈W , pf ∈ Q such that

{
A(u, v) + C(u+ u∗;u+ u∗, v) + B(v, pf ) = 〈F , v〉 ∀v = (v, ψ) ∈W
B(u, q) = 〈G, q〉 ∀q ∈ Q,

(78)
with u∗ = (Efuin, 0) ∈ H̃f ×H1(Ωp).

Remark that the interface conditions (28) have been incorporated in the weak
formulation as natural conditions on Γ: in particular, (28)2 and (28)3 are nat-
ural conditions for the Navier-Stokes problem, while (28)1 becomes a natural
condition for Darcy’s problem.
The well-posedness of (78) can be proved quite easily in the case of the Stokes/Darcy
coupling, i.e. when we neglect the trilinear form C(·; ·, ·). Indeed, in this case
the existence and uniqueness of the solution follows from the classical theory
of Brezzi for saddle-point problems after proving the continuity of A(·, ·), its
coerciveness on the kernel of B(·, ·) and that an inf-sup condition holds between
the spaces W and Q. For details of this analysis we refer to [DQ03].
The case of the Navier-Stokes/Darcy problem is more involved. In particular, in
this case we could prove the well-posedness only under some hypotheses on the
data similar to those required for the sole Navier-Stokes equations. Moreover,
uniqueness is guaranteed only in the case of small enough filtration velocities
uf · n across Γ. The analysis that we have carried out is based on classical
results for nonlinear saddle-point problems (see, e.g., [GR86]). We refer the
reader to [BDQ08, DQ09]. Similar results have been proved using a different
approach in [GR07].
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2.7 Solution techniques for the Navier-Stokes/Darcy coupling

A possible approach to solve the Navier-Stokes/Darcy problem is to exploit its
naturally decoupled structure keeping separated the fluid and the porous media
parts and exchanging information between surface and groundwater flows only
through boundary conditions at the interface. From the computational point of
view, this strategy is useful at the stage of setting up effective methods to solve
the problem numerically.
Therefore, we apply a domain decomposition technique at the differential level
to study the Navier-Stokes/Darcy coupled problem. Our aim will be to intro-
duce and analyze a generalized Steklov-Poincaré interface equation (see [QV99])
associated to our problem, in order to reformulate it solely in terms of inter-
face unknowns. This re-interpretation is crucial to set up iterative procedures
between the subdomains Ωf and Ωp, that can be used at the discrete level.
Here we illustrate the main ideas behind this approach, and refer to [DQ09] for
a complete analysis.
We choose a suitable governing variable on the interface Γ. Considering the
interface conditions (28)1 and (28)2, we can foresee two different strategies to
select the interface variable:

1. we can set the interface variable λ as the trace of the normal velocity on
the interface:

λ = uf · n = −K
∂ϕ

∂n
; (79)

2. we can define the interface variable σ as the trace of the piezometric head
on Γ:

σ = ϕ = −1

g
n · T(uf , pf ) · n. (80)

Both choices are suitable from the mathematical viewpoint since they guarantee
well-posed subproblems in the fluid and the porous medium part.
We discuss here the approach in the case of the Stokes/Darcy coupling consid-
ering the choice of the interface variable λ as in (79). We refer the reader to
[Dis04a] for the second case (80).
For simplicity, from now on we consider the following condition on the interface:

(uf )τ = 0 on Γ (81)

instead of (28)3.

Consider the auxiliary problems:





−div T(u∗, p∗) = f in Ωf

div u∗ = 0 in Ωf

u∗ = uin on Γinf
(u∗)τ = 0 on Γ
u∗ · n = 0 on Γ,





−div (K∇ϕ∗) = 0 in Ωp

ϕ∗ = ϕp on Γp

K
∂ϕ∗

∂n
= 0 on Γbp

K
∂ϕ∗

∂n
= 0 on Γ.

(82)
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Then, assuming to know the value of λ ∈ Λ0, with

Λ0 = {µ ∈ H1/2
00 (Γ) :

∫
Γ µ = 0},

we consider the problems:





−div T(uλ, pλ) = 0 in Ωf

div uλ = 0 in Ωf

uλ = 0 on Γinf
(uλ)τ = 0 on Γ
uλ · n = λ on Γ,





−div (K∇ϕλ) = 0 in Ωp

ϕλ = 0 on Γp

K
∂ϕλ

∂n
= 0 on Γbp

K
∂ϕλ

∂n
= λ on Γ.

(83)

We can prove that the solution of the Stokes-Darcy problem can be expressed
as: uf = uλ + u∗, pf = pλ + p∗, ϕ = ϕλ + ϕ∗, where λ ∈ Λ0 is the solution of
the Steklov-Poincaré equation

(Sf + Sp)λ = χ on Γ. (84)

Sf and Sp are the local Steklov-Poincaré operators formally defined as:

Sf : Λ0 → Λ′
0 such that Sfλ = n · T(uλ, pλ) · n on Γ,

while
Sp : Λ0 → Λ′

0 such that Spλ = gϕλ on Γ.

Finally,
χ = −n · T(u∗, p∗) · n− gϕ∗ on Γ.

The analysis of the operators Sf and Sp as well as the study of the well-posedness
of the interface equation (84) have been carried out in [DQ03]. In particular, we
have proved that the operator Sf is invertible on the trace space Λ0 and it is
spectrally equivalent to Sf + Sp, i.e., there exist two positive constants k1 and
k2 (independent of η) such that

k1〈Sfη, η〉 ≤ 〈Sη, η〉 ≤ k2〈Sfη, η〉 ∀η ∈ Λ0.

The same property holds at the discrete level considering conforming finite ele-
ment approximations of Sf and Sp with constants k1 and k2 that do not depend
on the grid size h. This property makes the operator Sf an attractive precon-
ditioner to solve the interface problem (84) via an iterative method like, e.g.,
Richardson or the Conjugate Gradient, yielding a convergence rate independent
of h.
For example, we can consider the following Richardson iterations: given λ(0)inΛ0,
for k ≥ 0,

λ(k+1) = λ(k) + θS−1
f (χ− (Sf + Sp)λ

(k)) on Γ, (85)

where 0 < θ < 1 is a suitable relaxation parameter.
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This method requires at each step to apply Sp and S−1
f , i.e., recalling the defi-

nitions of these operators, to solve a Darcy problem in Ωp with given flux across
Γ and a Stokes problem in Ωf with assigned normal stress on Γ. More precisely,
we can rewrite (85) as: let λ(0) ∈ Λ be an initial guess; for k ≥ 0,

solve





−div (K∇ϕ(k+1)) = 0 in Ωp

ϕ(k+1) = ϕp on Γp

K
∂ϕ(k+1)

∂n
= 0 on Γbp

K
∂ϕ(k+1)

∂n
= λ(k) on Γ,

solve





−div T(u(k+1), p(k+1)) = f in Ωf

div u(k+1) = 0 in Ωf

u(k+1) = uin on Γinf
(u(k+1))τ = 0 on Γ

−n · T(u(k+1), p(k+1)) · n = gϕ(k+1) on Γ,

compute λ(k+1) = (1 − θ)λ(k) + θu(k+1) · n on Γ.

(86)

Remark that this algorithm has the same structure as the Dirichlet-Neumann
method in the domain decomposition framework.

Another possible algorithm that we have studied in [DQV07] is a sequential
Robin-Robin method which at each iteration requires to solve a Darcy problem
in Ωp followed by a Stokes problem in Ωf , both with Robin conditions on Γ.
Precisely, the algorithm reads as follows.
Having assigned a trace function η0 ∈ L2(Γ), and two acceleration parameters
γf ≥ 0 and γp > 0, for each k ≥ 0:
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solve





−div (K∇ϕ(k+1)) = 0 in Ωp

ϕ(k+1) = ϕp on Γp

K
∂ϕ(k+1)

∂n
= 0 on Γbp

−γpK
∂ϕ(k+1)

∂n
+ gϕ

(k+1)
|Γ = η(k) on Γ,

solve





−div T(u(k+1), p(k+1)) = f in Ωf

div u(k+1) = 0 in Ωf

u(k+1) = uin on Γinf
(u(k+1))τ = 0 on Γ

n · T(uk+1
f , pk+1

f ) · n + γfu
(k+1)
f · n

= −gϕ(k+1)
|Γ − γfK

∂ϕ(k+1)

∂n
on Γ,

compute η(k+1) = −n · T(u
(k+1)
f , p

(k+1)
f ) · n + γpu

(k+1)
f · n on Γ.

(87)

Both the Stokes problem in Ωf and the Darcy problem in Ωp are well-posed and,
at convergence, we recover the solution (uf , pf ) ∈ Hf × Q and ϕ ∈ Hp of the
coupled Stokes/Darcy problem. Indeed, denoting by ϕ∗ the limit of the sequence
ϕk in H1(Ωp) and by (u∗

f , p
∗
f ) that of (ukf , p

k
f ) in (H1(Ωf ))

d ×Q, we obtain

−γpK
∂ϕ∗

∂n
+ gϕ∗

|Γ = −n · T(u∗
f , p

∗
f ) · n + γpu

∗
f · n on Γ , (88)

so that we have

(γf + γp)u
∗
f · n = −(γf + γp)K

∂ϕ∗

∂n
on Γ ,

yielding, since γf + γp 6= 0, u∗
f · n = −K

∂ϕ∗

∂n on Γ, and also, from (88), that
n · T(u∗

f , p
∗
f ) · n = −gϕ∗

|Γ on Γ. Thus, the two interface conditions (28)1 and

(28)2 are satisfied, and we can conclude that the limit functions ϕ∗ ∈ Hp and
(u∗

f , p
∗
f ) ∈ Hf ×Q are the solutions of the coupled Stokes/Darcy problem.

A proof of convergence is presented in [DQV07] and it follows the guidelines of
the theory by P.-L. Lions [Lio90] for the Robin-Robin method (see also [QV99,
Sect. 4.5]).
A crucial point in the algorithm is the choice of the acceleration parameters γf
and γp. A general strategy is not available, but thanks to a reinterpretation
of the Robin-Robin method as an alternating direction scheme à la Peaceman-
Rachford (see [PR55]), we were able to give some hints on how to choose them.
We refer to [DQV07].

We will illustrate the numerical behavior of the Dirichlet-Neumann and of the
Robin-Robin algorithms in Sect. 2.8.
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Finally, we address the case of the Navier-Stokes/Darcy coupling. Also to this
nonlinear problem we can asociate an interface equation similar to (84) still
involving the operator Sp but a nonlinear operator S̃f analogous to Sf . Formally,
we can represent S̃f : Λ0 → Λ′

0 as the operator associated to the Navier-Stokes
problem: 




−div T(uλ, pλ) + (uλ · ∇)uλ = 0 in Ωf

div uλ = 0 in Ωf

uλ = 0 on Γinf
(uλ)τ = 0 on Γ
uλ · n = λ on Γ,

(89)

such that S̃fλ = n · T(uλ, pλ) · n on Γ.
Then, we can write the interface problem:

find λ ∈ Λ0 : S̃f (λ) + Spλ = χp on Γ, (90)

with χp =, and prove its equivalence to the global coupled problem.
A rigorous presentation of this approach can be found in [BDQ08].
The set-up of effective iterative methods for the interface problem (90) is not
straightforward. In particular, no results are available yet on the characterization
of suitable operators spectrally equivalent to S̃f + Sp. In [BDQ08, DQ09] we
have proposed and analyzed two classical schemes, fixed-point or Newton, for
(90) showing their equivalence to the following algorithms, respectively.

Fixed-point iterations. Given u0
f ∈ Hf , for k ≥ 1, find u

(k)
f ∈ Hf , p

(k)
f ∈ Q,

ϕ(k) ∈ Hp such that, for all v ∈ Hf , q ∈ Q, ψ ∈ Hp,




af (u
(k)
f ,v) + cf (u

(k−1)
f ;u

(k)
f ,v) + bf (v, p

(k)
f )

+

∫

Γ
g ϕ(k)(v · n) +

∫

Γ

ναBJ√
K

(u
(k)
f )τ · (v)τ =

∫

Ωf

f · v

bf (u
(k)
f , q) = 0

ap(ϕ
(k), ψ) =

∫

Γ
ψ(u

(k)
f · n) .

(91)

Newton-like methods. Let u0
f ∈ Hf be given; then, for k ≥ 1, find u

(k)
f ∈ Hf ,

p
(k)
f ∈ Q, ϕ(k) ∈ Hp such that, for all v ∈ Hf , q ∈ Q, ψ ∈ Hp,




af (u
(k)
f ,v) + cf (u

(k)
f ;u

(k−1)
f ,v) + cf (u

(k−1)
f ;u

(k)
f ,v) + bf (v, p

(k)
f )

+

∫

Γ
gϕn(v · n) +

∫

Γ

ναBJ√
K

(u
(k)
f )τ · (v)τ

= cf (u
(k−1)
f ;u

(k−1)
f ,v) +

∫

Ωf

f · v

bf (u
(k)
f , q) = 0

ap(ϕ
(k), ψ) =

∫

Γ
ψ(u

(k)
f · n) .

(92)
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Some numerical results will be presented in Sect. 2.8

2.8 Numerical results for the Navier-Stokes/Darcy problem

We consider a regular triangulation Th of the domain Ωf ∪ Ωp, depending on a
positive parameter h > 0, made up of triangles T . We assume that the triangu-
lations Tfh and Tph induced on the subdomains Ωf and Ωp are compatible on Γ,
that is they share the same edges therein. Finally, we suppose the triangulation
induced on Γ to be quasi-uniform (see, e.g., [Qua09]).
Several choices of finite element spaces can be made. If we indicate by Wh and
Qh the finite element spaces which approximate the velocity and pressure fields,
respectively, for the Navier-Stokes problem, there must exist a positive constant
β∗ > 0, independent of h, such that the classical inf-sup condition is satisfied,
i.e., ∀qh ∈ Qh, ∃vh ∈ Wh, vh 6= 0, such that

∫

Ωf

qh div vh ≥ β∗‖vh‖H1(Ωf )‖qh‖L2(Ωf ).

No additional compatibility condition is required when coupling with the Darcy
equations. Thus, for our tests we use the P2 − P1 Taylor-Hood finite elements
for Stokes or Navier-Stokes and P2 elements for Darcy equation.

We investigate the convergence properties of algorithm (86) (or, equivalently,
(85)) and the PCG algorithm for (84) with preconditioner S−1

f . For the moment
we set the physical parameters ν, K, g to 1. We consider the computational
domain Ω ⊂ R2 with Ωf = (0, 1) × (1, 2), Ωp = (0, 1) × (0, 1) and the interface
Γ = (0, 1) × {1}. The boundary conditions and the forcing terms are chosen in
such a way that the exact solution of the coupled Stokes/Darcy problem is

(uf )1 = − cos
(π

2
y
)

sin
(π

2
x
)
, (uf )2 = sin

(π
2
y
)

cos
(π

2
x
)
− 1 + x,

pf = 1 − x, ϕ =
2

π
cos
(π

2
x
)

cos
(π

2
y
)
− y(x− 1),

where (uf )1 and (uf )2 are the components of the velocity field uf (see [DQ09]).
Four different regular conforming meshes have been considered whose number
of elements in Ω and of nodes on Γ are reported in Table 2, together with the
number of iterations to convergence. A tolerance 10−10 has been prescribed for
the convergence tests based on the relative residues. In the Dirichlet-Neumann-
like algorithm (86) we set the relaxation parameter θ = 0.7.
Figure 12 shows the computed residues for the adopted iterative methods when
using the finest mesh (logarithmic scale on the y-axis).
These numerical tests show that the discrete preconditioner Sf is optimal with
respect to the grid parameter h since the corresponding preconditioned methods
yield convergence in a number of iterations independent of h.

We consider now the influence of the physical parameters, which govern the cou-
pled problem, on the convergence rate. We use the PCG method as it embeds
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Table 2: Number of iterations obtained on different grids.

Number of Number of Algorithm (86) PCG for (84)
mesh elements nodes on Γ (θ = 0.7) (preconditioner S−1

f )

172 13 18 5
688 27 18 5
2752 55 18 5
11008 111 18 5
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Algorithm (86)
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Figure 12: Computed relative residues for the interface variable λ.

the choice of dynamic optimal acceleration parameters. We take the same com-
putational domain, but here the boundary data and the forcing terms are chosen
in such a way that the exact solution of the coupled problem is (see [DQ09]):

(uf )1 = y2 − 2y + 1, (uf )2 = x2 − x, pf = 2ν(x+ y − 1) +
g

3K
,

ϕ =
1

K

(
x(1 − x)(y − 1) +

y3

3
− y2 + y

)
+

2ν

g
x.

The most relevant physical quantities for the coupling are the fluid viscosity ν
and the hydraulic conductivity K. Therefore, we test our algorithms with respect
to different values of ν and K, and set the other physical parameters to 1. We
consider a convergence test based on the relative residue with tolerance 10−10.
In Table 3 we report the number of iterations necessary for several choices of ν
and K. The symbol # indicates that the method did not converge within 150
iterations.
We can see that the convergence of the algorithm is troublesome when the values
of ν and K decrease. In fact, in that case the method converges in a large number
of iterations which increases when h decreases, losing its optimality properties.
The subdomain iterative method that we have proposed is then effective only
when the product νK is sufficiently large, while dealing with small values causes
severe difficulties.
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Table 3: Iterations using the PCG method (preconditioner S−1
f ) with respect to

several values of ν and K.

ν K h = 1/7 h = 1/14 h = 1/28 h = 1/56
1 1 5 5 5 5

10−1 10−1 11 11 10 10
10−2 10−1 15 19 18 17
10−3 10−2 20 54 73 56
10−4 10−3 20 59 # #
10−6 10−4 20 59 148 #

However, the algorithm still performs well if, instead of the steady Stokes prob-
lem, one considers the generalized Stokes momentum equation:

γuf − div T(uf , pf ) = f̃ in Ωf , (93)

where γ can represent the inverse of a time step within a time discretization
using, e.g., the implicit Euler method. Some numerical results are reported in
Table 4 (see also [Dis04b]).

Table 4: Number of iterations to solve problem the modified Stokes/Darcy prob-
lem using (93) for different values of ν, K and γ.

Iterations on the mesh with grid size
ν K γ h = 1/7 h = 1/14 h = 1/28 h = 1/56

10 15 24 28 28
10−3 10−2 102 12 14 16 14

103 8 9 9 8
103 15 23 28 33

10−6 10−4 104 13 14 17 18
105 8 9 9 9

On the other hand, the Robin-Robin method (87) performs quite well in presence
of small values of ν and K. We present hereafter a test considering the same
setting as for Table 3. The analogy with the Peaceman-Rachford method has
suggested us to set γf = 0.3 and γp = 0.1 (see [Dis04a] for more details). In
Table 5 we report the number of iterations obtained using the Robin-Robin
method for some small values of ν and K and for four different computational
grids. A convergence test based on the relative increment of the trace of the
discrete normal velocity on the interface ukfh · n|Γ has been considered with

tolerance 10−9. (See [DQV07].)

Finally, we present some numerical tests for the Navier-Stokes/Darcy coupling
using the fixed-point and Newton algorithms of Sect. 2.7. The computational

37



Table 5: Number of iterations using the Robin-Robin method with respect to ν, K and
four different grid sizes h; the acceleration parameters are γf = 0.3 and γp = 0.1.

ν K h = 1/7 h = 1/14 h = 1/28 h = 1/56
10−4 10−3 19 19 19 19
10−6 10−4 20 20 20 20
10−6 10−7 20 20 20 20

domain and the finite element discretization are the same as in the previous
tests. (See also [BDQ08].)

In a first test, we set the boundary conditions in such a way that the ana-
lytical solution for the coupled problem is uf = (ex+y + y,−ex+y − x), pf =
cos(πx) cos(πy) + x, ϕ = ex+y − cos(πx) + xy. In order to check the behavior of
the iterative methods with respect to the grid parameter h, we set the physical
parameters (ν, K, g) all equal to 1.
The algorithms are stopped as soon as ‖xn−xn−1‖2/‖xn‖2 ≤ 10−10, where ‖·‖2

is the Euclidean norm and xn is the vector of the nodal values of (unf , p
n
f , ϕ

n).

Our initial guess is u0
f = 0.

The number of iterations obtained using the fixed-point algorithm (91), and the
Newton method (92) are displayed in Table 6. Both methods converge in a
number of iterations which does not depend on h.

Table 6: Number of iterations for the iterative methods with respect to h.

h Fixed-point Newton
h = 1/7 9 5
h = 1/14 9 5
h = 1/28 9 5

A second test is carried out in order to assess the influence of the physical
parameters on the convergence rate of the algorithms. In this case, the analytical
solution is uf = ((y − 1)2 + (y − 1) +

√
K/αBJ , x(x − 1)), pf = 2ν(x + y − 1),

and ϕ = K
−1(x(1 − x)(y − 1) + (y − 1)3/3) + 2νx. We choose several values for

the physical parameters ν and K as indicated in Table 7.

3 Virtual control approach

The virtual control approach represents an alternative approach to the varia-
tional asymptotic one, to solve heterogeneous problems.
It is based on the optimal control theory that has been introduced in domain
decomposition method with overlapping subdomains to treat both heteroge-
neous couplings, involving Navier-Stokes and full potential operators ([DGPT88,
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Table 7: Number of iterations of the fixed-point (FP) and Newton (N) methods
with respect to the parameters ν and K.

ν K h = 1/7 h = 1/14 h = 1/28
FP N FP N FP N

1 1 7 5 7 5 7 5
1 10−4 5 4 5 4 5 4

10−1 10−1 10 5 10 5 10 5
10−2 10−1 17 6 17 6 17 6
10−2 10−3 14 5 14 5 14 5

GPT90]), and homogeneous problems, either elliptic and parabolic (see [DGP80,
GPD82, LP98a, LP98b, LP99]). In the pioneering papers of Glowinski et al.
([DGP80, GPD82]), this method was referred to as a Least Square formulation
of the multi domain problem.
The basic idea of this approach consists in introducing two “virtual” controls
which play the role of unknown Dirichlet data on the interfaces of the decompo-
sition and in minimizing the L2−norm of the difference between the hyperbolic
and the elliptic solutions (defined inside the two subdomains) on the overlap.
The virtual control approach for heterogeneous advection-diffusion operators
was introduced and analysed in [GLQ01] and there it has been extended to non-
overlapping subdomain decompositions (with sharp interfaces). In the latter
situation, the virtual controls are defined on the unique interface and the cost
functional to be minimized has to be chosen accurately in order to guarantee
the well posedness of the optimal control problem.
Finally, in [AGQ06] two different formulations of the heterogeneous advection-
diffusion problem with either two and three virtual controls have been analysed
for overlapping decompositions.
In the following subsection we will give a detailed description of virtual control
approach with either overlapping and non-overlapping decompositions for the
heterogeneous problems introduced in Section 1.
Here we only note that the virtual control approach without overlap is more
efficient than the overlapping version, however the former requires a more definite
a-priori knowledge on structure of interface conditions. On the contrary, the
virtual control approach with overlap is more general and it can be regarded as
a rigorous translation of a common practice in engineering community based on
solving both problems in a common region and using simple “Dirichlet” type
conditions at subdomain boundaries.

3.1 Virtual control approach without overlap for AD problems

The idea of this approach consists in formulating an optimal control problem
([Lio71]) featuring both control and observation on the interface Γ. We in-
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Figure 13: Virtual control without overlap

troduce two functions λ1 and λ2 defined on the interface Γ and called virtual
controls, such that they represent the unknown Dirichlet data on Γ for u1 and
u2, respectively, i.e.

u1 = λ1 on Γin, u2 = λ2 on Γ. (94)

By collecting differential equations (32) and (33), the external boundary condi-
tions (36) and the interface condition (94), we consider the following problem:
given λ1, λ2, find u1 = u1(λ1) and u2 = u2(λ2) such that





A1u1 = div(~bu1) + b0u1 = f in Ω1

u1 = g1 on (∂Ω1 \ Γ)in

u1 = λ1 on Γin

(95)

and




A2u2 = −div(ν∇u2) + div(~bu2) + b0u2 = f in Ω2

u2 = g2 on ∂Ω2 \ Γ
u2 = λ2 on Γ.

(96)

In the case where Γin = ∅, no λ1 is needed since there is no need to prescribe
any boundary data on Γin for problem (95).
The virtual controls λ1 and λ2 are determined in such a way that the solutions
u1 and u2 of (95) and (96) adjust in the best possible way on Γ. More precisely,
we look for the solution of the minimization problem

inf
λ1, λ2

J(λ1, λ2), (97)

where J(λ1, λ2) is a suitably chosen cost functional.
Various instances have been proposed and analyzed in [GLQ01]. Consider, for
example,

J(λ1, λ2) =
1

2
‖u1(λ1) − u2(λ2)‖2

L2
~b
(Γin) +

1

2
‖φ1(λ1) + φ2(λ2)‖2

H−1/2(Γ) , (98)
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where

φ1(λ1) = −~b · ~nΓu1(λ1), φ2(λ2) = −ν ∂u2(λ2)

∂~nΓ
+~b · ~nΓu2(λ2) (99)

are the fluxes on Γ associated to the differential operators A1 and A2 (respec-

tively) andH−1/2(Γ) is the dual space ofH
1/2
00 (Γ). Denoting by −∆Γ the Laplace

Beltrami operator on Γ, for any ψ, φ ∈ H−1/2(Γ) we define the following inner
product (see, e.g., [Lio71]):

(ψ, φ)H−1/2(Γ) =

∫

Γ
(−∆Γ)−1/4ψ (−∆Γ)−1/4φdΓ =

∫

Γ
(−∆Γ)−1/2ψ φdΓ (100)

and the related norm ‖ψ‖H−1/2(Γ) = (ψ,ψ)
1/2

H−1/2(Γ)
.

We note that the observation is performed on the whole interface Γ for what
concerns the gap on the fluxes, whereas it is restricted to the inflow interface Γin

for that on the velocities.
From now on, by solution of the virtual control approach we will mean the so-
lution of the minimization problem (97), with J defined in (98) and with ui(λi)
(for i = 1, 2) the solutions of problems (95) and (96), respectively.
Problems (95) and (96) are well posed. As a matter of fact, the following result
holds (see, e.g., [GQL90]):

Theorem 3.1 Under assumptions (44), if g1 ∈ L2
~b
((∂Ω1\Γ)in) and λ1 ∈ L2

~b
(Γin),

then the first-order problem (95) admits a unique solution u1 = u1(λ1) ∈ L2(Ω1).
Moreover u1 ∈ L2

~b
(∂Ω1) and div(~bu1) ∈ L2(Ω1).

As of problem (96), if g2 ∈ H1/2(∂Ω2 \ Γ) and λ2 ∈ H1/2(Γ), and moreover
there exists a function µ ∈ H1/2(∂Ω2) with g2 = µ|(∂Ω2\Γ) and λ2 = µ|Γ, then
there exists a unique solution u2(λ2) of (96) belonging to H1(Ω2). (See, e.g.,
[GQL90].)
We introduce the following spaces

V1 = {w ∈ L2(Ω1) : div(~bw) ∈ L2(Ω1), w|Γ ∈ L2
~b
(Γ)}, Λ1 = L2

~b
(Γin),

V2 = H1(Ω2),

Λ2 =
{
λ2 ∈ H1/2(Γ) : ∃µ ∈ H1/2(∂Ω2) s.t. λ2 = µ|Γ and g2 = µ|∂Ω2\Γ

}
,

~V = V1 × V2, Λ = Λ1 × Λ2.

(101)

In order to prove the existence of solution of the minimization problem (97), we
define two pairs of auxiliary problems:
find (wf1 , w

f
2 ) ∈ ~V such that





A1w
f
1 = f in Ω1

wf1 = g1 on (∂Ω1 \ Γ)in

wf1 = 0 on Γin,





A2w
f
2 = f in Ω2

wf2 = g2 on ∂Ω2 \ Γ

wf2 = 0 on Γ,

(102)
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and find (uλ1

1 , uλ2

2 ) ∈ ~V such that





A1u
λ1

1 = 0 in Ω1

uλ1

1 = 0 on (∂Ω1 \ Γ)in

uλ1

1 = λ1 on Γin,





A2u
λ2

2 = 0 in Ω2

uλ2

2 = 0 on ∂Ω2 \ Γ

uλ2

2 = λ2 on Γ.

(103)

Moreover we define the fluxes on the interface Γ associated to the solutions uλ1

1

and uλ2

2 as

φλ1

1 = −~b · ~nΓu
λ1

1 , φλ2

2 = −ν ∂u
λ2

2

∂~nΓ
+~b · ~nΓu

λ2

2 , (104)

while those associated to the solutions wf1 and wf2 are

χ1 = −~b · ~nΓw
f
1 , χ2 = −ν ∂w

f
2

∂~nΓ
+~b · ~nΓw

f
2 . (105)

The cost functional J can be split as

J(λ1, λ2) = J0(λ1, λ2) + A(λ1, λ2) (106)

where

J0(λ1, λ2) =
1

2
‖λ1 − λ2‖2

L2
~b
(Γin) +

1

2

∥∥∥φλ1

1 + φλ2

2

∥∥∥
2

H−1/2(Γ)
,

while A is an affine functional which reads

A(λ1, λ2) =
1

2
‖χ1 + χ2‖2

H−1/2(Γ) +
(
χ1 + χ2, φ

λ1

1 + φλ2

2

)
H−1/2(Γ)

.

If all data are smooth enough, the existence of λ = (λ1, λ2) achieving infJ(λ1, λ2)
in a possibly very large abstract spaceΛ, follows from the property of (J0(λ1, λ2))

1/2

to be a norm (see [GLQ01, Sect. 5]).

3.1.1 The optimality system

By following standard arguments of optimal control theory for elliptic problems
(see [Lio71]), we derive now the optimality system corresponding to the mini-
mization problem (97).
Let us write the minimization problem (97) in a variational setting, i.e., we look
for the solution λ = (λ1, λ2) ∈ Λ such that

〈∇J(λ),µ〉 = 0 ∀µ ∈ Λ. (107)

The partial derivative of J are

〈 ∂J
∂λ1

, µ1〉 = (λ1 − λ2, µ1)L2
~b
(Γin) + (φ1(λ1) + φ1(λ2), φ

µ1

1 )H−1/2(Γ) ∀µ1 ∈ Λ1,

〈 ∂J
∂λ2

, µ2〉 = − (λ1 − λ2, µ2)L2
~b
(Γin) + (φ1(λ1) + φ1(λ2), φ

µ2

2 )H−1/2(Γ) ∀µ2 ∈ Λ2,

(108)
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where, for any (µ1, µ2) ∈ Λ, φµ1

1 and φµ2

2 follow the definition of the fluxes as in
(104), while uµ1

1 , uµ2

2 are defined as in (103).
From the definition (100), for i = 1, 2 we obtain

(φ1(λ1) + φ1(λ2), φ
µi
i )H−1/2(Γ) =

∫

Γ
(−∆Γ)−1/2(φ1(λ1) + φ1(λ2)) φ

µi
i dΓ (109)

and, in particular for the flux φµ1

1 , it holds
∫

Γ
(−∆Γ)−1/2(φ1(λ1) + φ2(λ2)) φ

µ1

1 dΓ =

=

∫

Γin

(−∆Γ)−1/2(φ1(λ1) + φ2(λ2)) (−~b · ~nΓ)µ1dΓ

+

∫

Γout

(−∆Γ)−1/2(φ1(λ1) + φ1(λ2)) (−~b · ~nΓ)uµ1

1 dΓ.

(110)

By defining the adjoint problems





A∗
1p1 ≡ −~b · ∇p1 + b0p1 = 0 in Ω1

p1 = 0 on (∂Ω1 \ Γ)out

p1 = (−∆Γ)−1/2(φ1(λ1) + φ2(λ2)) on Γout,

(111)

and




A∗
2p2 ≡ −div(ν∇p2) −~b · ∇p2 + b0p2 = 0 in Ω2

p2 = 0 on ∂Ω2 \ Γ

p2 = (−∆Γ)−1/2(φ1(λ1) + φ2(λ2)) on Γ,

(112)

and, by making use of Green’s formula, we have:

∫

Γout

(−∆Γ)−1/2(φ1(λ1) + φ1(λ2)) (−~b · ~nΓ)uµ1

1 dΓ =

∫

Γout

p1 (−~b · ~nΓ)uµ1

1 dΓ

=

∫

Γin

(~b · ~nΓ)p1µ1dΓ

while
∫

Γ
(−∆Γ)−1/2(φ1(λ1) + φ1(λ2)) φ

µ2

2 dΓ =

∫

Γ
p2

(
−ν ∂u

µ2

2

∂~nΓ
+~b · ~nΓu

µ2

2

)
dΓ

= −
∫

Γ
ν
∂p2

∂~nΓ
µ2,

whence

〈 ∂J
∂λ1

, µ1〉 =

∫

Γin

(−~b · ~nΓ) [(λ1 − λ2) + (p2 − p1)]µ1dΓ,

〈 ∂J
∂λ2

, µ2〉 =

∫

Γin

(~b · ~nΓ)(λ1 − λ2)µ2dΓ −
∫

Γ
ν
∂p2

∂~nΓ
µ2dΓ

(113)
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for any µ1 ∈ Λ1 and µ2 ∈ Λ2. In conclusion, the solution of the minimization
problem (97) satisfies the following optimality system (in distributional sense):

(OS)





- state equations (95) and (96);

- adjoint equations (111) and (112);

- Euler equations:

(λ1 − λ2) + p2 − p1 = 0 on Γin

~b · ~nΓ(λ1 − λ2) − ν
∂p2

∂~nΓ
= 0 on Γin

−ν ∂p2

∂~nΓ
= 0 on Γout.

3.1.2 Computation of the Laplace-Beltrami operator

The computation of the discrete counterpart of (−∆Γ)−1/2(φ1(λ1)+φ2(λ2)) when
Ω ⊂ R2 can be made as follows.
Given a differentiable function u in an open neighbourhood of Γ, the tangential
gradient of u is defined by (see, e.g., [DDE05])

∇Γu(~x) = ∇u(~x) − (∇u(~x) · ~nΓ(~x))~nΓ(~x), ∀~x ∈ Γ, (114)

where ∇ denotes the usual gradient in R2. The Laplace-Beltrami operator can
be defined through the weak relation

∫

Γ
−∆Γu wdΓ =

∫

Γ
∇Γu · ∇ΓwdΓ, (115)

for any function w differentiable in an open neighbourhood of Γ vanishing at the
end-points of Γ. In particular, if Γ is a segment parallel to the y-axis, it reduces
to ∫

Γ
−∆Γu wdΓ =

∫

Γ

∂u

∂y

∂w

∂y
dΓ. (116)

In a finite dimensional context, if AΓ,h denotes the symmetric positive definite
matrix associated to the discretization of (116), we approximate (−∆Γ)1/2 by

the square root of AΓ,h, that is the s.p.d. matrix A
1/2
Γ,h defined by

A
1/2
Γ,h = PΛ1/2P T , (117)

where Λ and P are the eigenvalues and eigenvectors matrices, respectively, of
AΓ,h.
Alternatively, the fractional Laplace-Beltrami operator (−∆Γ)−1/2 can be de-
fined through a Neumann to Dirichlet map defined from H−1/2(Γ) to H1/2(Γ).
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Precisely, for any φ ∈ H−1/2(Γ) we solve the problem




−∆u+ u = 0 in Ω1

∂u

∂~n
= 0 on ∂Ω1 \ Γ

∂u

∂~nΓ
= φ on Γ

(118)

and we set (−∆Γ)−1/2φ = u|Γ. The differential problem (118) may be solved in
Ω2 instead of Ω1.

3.1.3 Recovering the interface conditions

In order to recover the interface conditions we are imposing on the interface Γ,
we eliminate the adjoint state variables p1 and p2 from the optimality system
(OS).

Let us set ~̂b = −~b, b0 = b0 − div~̂b and

Γin
b = Γout, Γout

b = Γin, (∂Ω1 \ Γ)inb = (∂Ω1 \ Γ)out.

Thanks to (111), (112) and Euler equations in (OS), the functions p1 and p2

satisfy the following coupled problem in Ω





div(̂~bp1) + b0p1 = 0 in Ω1

−div(ν∇p2) + div(̂~bp2) + b0p2 = 0 in Ω2

p1 = 0 on (∂Ω1 \ Γ)inb

p2 = 0 on ∂Ω2 \ Γ

−ν ∂p2

∂~nΓ
+ (̂~b · ~nΓ)p2 = (̂~b · ~nΓ)p1 on Γout

b

p1 = p2 on Γin
b

ν
∂p2

∂~nΓ
= 0 on Γin

b .

(119)

By noting that b0 + 1
2div~̂b = b0 + 1

2div~b ≥ σ0 > 0 (see (31)) and by applying
Theorem 2.1, problem (119) admits the unique solution p1 = 0 in Ω1, p2 = 0 in
Ω2. Therefore, (112)3 implies φ1(λ1) + φ2(λ2) = 0 on Γ, while the first Euler
equation in (OS) implies that λ1 − λ2 = 0 on Γin, i.e. the following conditions
hold on the interface:

φ1(λ1) + φ2(λ2) = 0 on Γ

λ1 = λ2 on Γin.
(120)

In conclusion the following result holds:
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Theorem 3.2 If λ is the solution of the minimization problem (97) with J
defined in (98), then the state solutions u1 and u2 of (95) and (96) satisfy the
interface conditions (120). Moreover the pair (u1(λ1), u2(λ2)), obtained by the
virtual control approach coincides with the solution of the heterogeneous problem
(40).

Thanks to the interface condition (120)2, the virtual control problem may be
reformulated in terms of a unique control function λ defined on Γ and coinciding
with λ2. The control λ1, previously introduced, will coincide now with the
restriction of λ to Γin.
By this reduction, the virtual control problem (97) becomes:
look for the solution of the minimization problem

inf
λ∈Λ2

J1(λ) with J1(λ) =
1

2
‖φ1(λ) + φ2(λ)‖2

H−1/2(Γ)
, (121)

with

φ1(λ) = −~b · ~nΓu1(λ), φ2(λ) = −ν ∂u2(λ)

∂~nΓ
+~b · ~nΓu2(λ) (122)

and u1 = u1(λ), u2 = u2(λ) solutions of (95) and (96) with λ2 = λ, λ1 = λ|Γin.
By working as done for the two-controls formulation, the derivative of the cost
functional J1 reads:

〈J ′
1(λ), µ〉 =

∫

Γin

(−~b · ~nΓ)(p2 − p1)µdΓ

−
∫

Γ
ν
∂p2

∂~nΓ
µdΓ

(123)

for any µ ∈ Λ2.
The corresponding optimality system (OS1) reads:

(OS1)





- state equations (95) and (96) with λ2 = λ, λ1 = λ|Γin

- adjoint equations (111) and (112) with φi(λ) instead of φi(λi), for i = 1, 2 ;

- Euler equations:

(~b · ~nΓ)(p2 − p1) + ν
∂p2

∂~nΓ
= 0 on Γin

ν
∂p2

∂~nΓ
= 0 on Γout

Remark 3.1 Another cost functional proposed in [GLQ01] is

J̃(λ1, λ2) =
1

2
‖u1(λ1) − u2(λ2)‖2

L2
~b
(Γ) +

1

2
‖φ1(λ1) + φ2(λ2)‖2

H−1/2(Γ) . (124)

In this case the observation is performed on the whole interface for both fluxes
and velocities. The minimization problem (97), in which the functional J is
replaced by J̃ , admits a unique solution too (see [GLQ01]), however it is not
guaranteed that inf J̃(λ1, λ2) = 0, so that no interface conditions are explicitely
associated to this minimization problem.
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Remark 3.2 We finally remark that the cost functional to be minimized is
set up starting from known interface conditions, it is problem dependent and
it requires a-priori knowledge of the coupled problem. When the latter are
not available, it is more suitable to consider the virtual control approach with
overlap, that we will introduce in Section 3.3.

3.1.4 How to solve the optimality system

A first intuitive way to solve the optimality system (OS1) consists in invoking
a Krylov method to seek the solution λ of the Euler equation of (OS1). Let us
write the Euler equation, in distributional sense, as

J ′
1(λ) = 0. (125)

When we solve it by a Krylov method, like either GMRES or Bi-CGStab, we
have to evaluate the action of the functional J ′

1 on the iterate λ(k) at each
iteration k ≥ 0 and this means to perform the steps summarized in the following
algorithm.

Algorithm 1

1. solve the primal problems (95) and (96) with λ(k) instead of λi, for i = 1, 2;

2. compute the fluxes φ1(λ
(k)), φ2(λ

(k)) and the function
s(k) = (−∆Γ)−1/2(φ1(λ

(k)) + φ2(λ
(k)))

3. solve the dual problems (111), (112) with s(k) instead of (−∆Γ)−1/2(φ1(λ1)+
φ2(λ2))

4. compute J ′
1(λ

(k)) by (123), which reads (in distributional sense):

J ′
1(λ) =





(−~b · ~nΓ)(p2 − p1) − ν
∂p2

∂~nΓ
on Γin

−ν ∂p2

∂~nΓ
on Γout.

(126)

The solution of the Euler equation J ′
1(λ) = 0, by a Krylov method with the use

of Algorithm 1, is an alternative to the solution of the Steklov-Poincaré equation
(54).
By properly replacing the definition of both state and adjoint equations and
by correctly writing the derivatives of the cost functional, Algorithm 1 can be
adapted to solve the optimality system associated to the minimization of J̃ .
Solving J ′(λ) = 0 is equivalent to solve the Schur complement with respect to
the control variable λ derived from the optimal system (OS1).
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J1(λ) J̃(λ1, λ2)

ν ‖u1 − u2‖L∞(Γout) inf J1 #it ‖u1 − u2‖L∞(Γout) inf J̃ #it

0.1 2.330e-1 1.242e-12 18 1.367e-1 5.239e-6 44
0.05 1.221e-1 3.137e-12 27 5.275e-2 3.286e-7 61
0.01 1.346e-2 6.989e-11 60 7.146e-4 6.234e-10 134
0.005 1.075e-2 2.294e-11 82 5.049e-4 8.749e-10 177

,

Table 8: Test case #1. Comparison between the cost functionals (121) and
(124). #it stands for the number of Bi-CGStab-VC iterations

3.1.5 Numerical results for decompositions without overlap

Let us consider the Test case #1 introduced in Sect. 2.4. First of all we compare
the numerical solutions obtained by the virtual control approach by minimizing
either the cost functional J1(λ) defined in (121) (or, equivalently J(λ1, λ2) de-
fined in (98)) and J̃(λ1, λ2) defined in (124). We have solved both the optimality
system (OS1) and that associated to the minimization of J̃ by Bi-CGStab iter-
ations and by following the steps summarized in Algorithm 1 (see Sect. 3.1.4).
We will name Bi-CGStab-VC this approach.
In Table 8 we report for both the functionals (121) and (124):
- the L∞-norm on Γout of the jump of the solution, i.e., [u]Γout = ‖u1−u2‖L∞(Γout);
- the infimum of the minimized cost functional;
- the number of Bi-CGStab-VC iterations to converge up a tolerance ε = 10−8

versus the viscosity ν.
A non-uniform spectral element discretization has been considered to solve the
boundary-value problems in both Ω1 and Ω2. The domain Ω1 (Ω2, resp.) has
been split in 3× 6 (4× 6, resp.) quadrilaterals with the same polynomial degree
N = 16 in each spatial direction and in each element.
First of all we note that not only the solution (u1, u2), obtained by minimizing
the cost functional J1, features a jump on Γout (in fact we know that it is
discontinuous on Γout), but also the solution obtained by minimizing the cost
functional J̃ is discontinuous on Γout. Moreover, as pointed out in Remark 3.1,
we observe that the value inf J̃ is not null for any considered viscosity, however
inf J̃ → 0 as ν → 0.
We have observed that the reached value inf J1 is independent of the viscosity
and it is very close to the machine accuracy.
About the number of Bi-CGStab iterations needed to solve the variational equa-
tion J ′

1(λ) = 0, we observe that the convergence rate linearly depends on the
reciprocal of the viscosity, that the minimimiziation of J̃ requires twice the iter-
ations to minimize J1 and that the computational cost of each Bi-CGStab-VC
iteration is the same for both the minimization problems. Then we conclude
that the minimization of the cost functional J̃ costs twice that of J1.
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ν = 0.01
N LB (1) LB (SP−1)

4 19 18
6 16 17
8 15 16
10 17 18
12 18 18
14 19 18
16 21 20

ν = 0.005
N LB (1) LB (SP−1)

4 23 24
6 26 23
8 27 26
10 33 27
12 27 27
14 26 28
16 26 28

Table 9: Number of Bi-CGStab-VC iterations for the minimization of J1(λ) on
the test case #1. The acronym LB(1) stands for the implementation based on
the computation of the square root of the discrete Laplace-Beltrami operator,
while LB(SP−1) stands for the implementation based on the inversion of the
Steklov-Poincaré (or Dirichlet to Neumann) operator (see Remark 3.1.2)

In Tab. 9 we report the number of BiCGStab-VC iterations needed to solve
the optimality system (OS1) up to a tolerance ε = 10−6, versus the polynomial
degree N , for two different values of the viscosity: ν = 0.01 and ν = 0.005.
It emerges that the convergence rate of Bi-CGStab-VC is independent of the
polynomial degree.

3.2 Domain decomposition with overlap

Let us consider now a decomposition of Ω with overlap. Precisely, we introduce
two subdomains Ω1 and Ω2, such that:

Ω = Ω1 ∪ Ω2, Ω12 = Ω1 ∩ Ω2 6= ∅, Γi = ∂Ωi \ (∂Ωi ∩ ∂Ω), i = 1, 2 (127)

and we denote by ~nΓi (for i = 1, 2) the outward normal vector on Γi with respect
to Ωi.
In view of the considerations given at the beginning of this section, our aim is to
investigate domain decomposition approaches alternative to the sharp-interface
one which do not require a-priori knowledge of interface conditions.

3.2.1 An engineering practice on overlapping subdomains

The simpler and, very likely, most largely used approach consists in extending
the classical Schwarz method ([Sch90, Lio88]) to the heterogeneous coupling,
then iterating on the Dirichlet data on the interfaces Γ1 and Γ2.
For example, if A1 and A2 are the differential operators defined in (32) and (33),
respectively, the additive (or sequential) version of the Schwarz method reads:
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Ω12

Ω1

Ω2

Γ1

Γ2

Figure 14: The computational domain split in two overlapping subdomains

given u
(0)
1 and u

(0)
2 , for k ≥ 0 do





A1u
(k+1)
1 = f in Ω1

u
(k+1)
1 = g1 on (∂Ω1 \ Γ1)

in

u
(k+1)
1 = u

(k)
2 on Γin

1 ,





A2u
(k+1)
2 = f in Ω2

u
(k+1)
2 = g2 on ∂Ω2 \ Γ2

u
(k+1)
2 = u

(k+1)
1 on Γ2.

If we replace the interface condition u
(k+1)
2 = u

(k+1)
1 with u

(k+1)
2 = u

(k)
1 on Γ2, we

obtain the so-called multiplicative (or parallel) version of the Schwarz method.
The convergence of the Schwarz method applied to the global advection-diffusion
equation has been largely studied, see, e.g. [Cai89, Cai91, Mat98, HC02].
In [Mat98], the analysis of the Schwarz alternating method is made for homo-
geneous singular perturbation problems in which the advection dominates. Pre-
cisely, the author proves that if the subdomains can be chosen to follow the flow,
i.e., if the boundary interface of one of the subdomains corresponds to an outflow
boundary for the streamlines of the flow, then the Schwarz iterates converge in
the maximum norm with an error reduction factor per iteration that exponen-
tially decays with increasing overlap or decreasing diffusion. On the contrary, if
the flow is recirculating and the subdomains are not suitably chosen, numerical
evidence shows that there can be some deterioration in the convergence factor of
the Schwarz method. No theoretical results however are available in literature
about the convergence of Schwarz method for heterogeneous decompositions.

3.2.2 Schwarz method with Dirichlet/Robin interface conditions

In [HC03] a variant of the classical Schwarz method is proposed, always for
homogeneous advection-diffusion problems, and it consists in replacing Dirichlet
with Robin conditions only on one interface of the decomposition with the aim
of accelerating the convergence.
Let us consider again the overlapping decomposition shown in Fig. 14. In
[HC03], Houzeaux and Codina consider the homogenous problem (1) and propose
to solve it by a two-domain approach as follows: find the pair (u1, u2) such that
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A2u1 = f in Ω1

u1 = g on ∂Ω1 \ Γ1

u1 = u2 on Γ1

A2u2 = f in Ω2

u2 = g on ∂Ω2 \ Γ2

ν
∂u1

∂nΓ2

− 1

2
(~b · ~nΓ2

)u1 = ν
∂u2

∂nΓ2

− 1

2
(~b · ~nΓ2

)u2 on Γ2.

(128)

By introducing Steklov-Poincaré operators on the interfaces, they prove that
problem (128) admits a unique solution (u1, u2) such that u1 = u2 on Ω12.
Moreover, the function

u =

{
u1 in (Ω1 \ Ω12)
u2 in Ω2

coincides with the solution of (1).
However, in [HC03] an overlapping Dirichlet/Robin method is proposed for the
solution of the two advection-diffusion problems, with the purpose of inherit-
ing the robustness properties of the classical Schwarz method, yet allowing the
limit case of zero (or extremely small) overlapping, for which Dirichlet/Dirichlet
method fails. Note that the interface condition (128)6 arises from writing the
convective term in skew-symmetric form.
Problem (128) can be solved iterating by subdomains. The resulting method is

called Dirichlet-Robin method and it reads: given u
(0)
1 and u

(0)
2 , for k ≥ 0 do





A2u
(k+1)
1 = f in Ω1

u
(k+1)
1 = g on ∂Ω1 \ Γ1

u
(k+1)
1 = θu

(k)
2 + (1 − θ)u

(k)
1 on Γ1

A2u
(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 \ Γ2

ν
∂u

(k+1)
2

∂nΓ2

− 1

2
(~b · ~nΓ2

)u
(k+1)
2 = ν

∂u
(k+1)
1

∂nΓ2

− 1

2
(~b · ~nΓ2

)u
(k+1)
1 on Γ2,

(129)

where θ > 0 is a suitable relaxation parameter. As alternative to the relaxation of
Dirichlet data (129)3, the authors propose to relax the Robin data (129)6. Under
suitable choices of the relaxation parameter the Dirichlet-Robin algorithm (129)
converges to the solution of the advection-diffusion problem (128).
When the heterogeneous coupling is considered, the Robin interface condition
(128)6 could be replaced by the following one:

−1

2
(~b · ~nΓ2

)u1 = ν
∂u2

∂nΓ2

− 1

2
(~b · ~nΓ2

)u2 on Γ2 (130)
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so that the iterative Dirichlet-Robin algorithm for the coupled advection/advection-
diffusion problem should read:

given u
(0)
1 and u

(0)
2 , for k ≥ 0 do





A1u
(k+1)
1 = f in Ω1

u
(k+1)
1 = g on (∂Ω1 \ Γ1)

in

u
(k+1)
1 = θu

(k)
2 + (1 − θ)u

(k)
1 on Γin

1

A2u
(k+1)
2 = f in Ω2

u
(k+1)
2 = g on ∂Ω2 \ Γ2

ν
∂u

(k+1)
2

∂nΓ2

− 1

2
(~b · ~nΓ2

)u
(k+1)
2 = −1

2
(~b · ~nΓ2

)u
(k+1)
1 on Γ2.

(131)

We note that algorithm (131) coincides with the Dirichlet-Neumann algorithm
(47) when the overlap reduces to the empty set. We refer to Remark 2.1 in Sect.
3.3.2 about the classification of Neumann and Robin interface conditions.

3.3 Virtual control approach with overlap for the advection-
diffusion equation

Let us consider an overlapping decomposition of Ω as in (127). As done for
the non-overlapping situation presented in Sect. 3.1, we introduce the Dirichlet
virtual controls λ1 ∈ L2

~b
(Γin

1 ) and λ2 ∈ H1/2(Γ2) and we look for the solution of
the following minimization problem:

inf
λ1,λ2

Ĵ(λ1, λ2), (132)

with

Ĵ(λ1, λ2) =

∫

Ω12

(u1(λ1) − u2(λ2))
2dΩ, (133)

and u1 = u1(λ1), u2 = u2(λ2) solutions of





A1u1 = f in Ω1

u1 = g1 on (∂Ω1 \ Γ1)
in

u1 = λ1 on Γin
1 ,





A2u2 = f in Ω2

u2 = g2 on ∂Ω2 \ Γ2

u2 = λ2 on Γ2.
(134)

The minimization problem (132) has been studied in [GLQ01, AGQ06].
Along this section we set

Λ1 = L2
~b
(Γin

1 ),

Λ2 =
{
λ2 ∈ H1/2(Γ2) : ∃µ ∈ H1/2(∂Ω2) s.t. λ2 = µ|Γ2

and g2 = µ|∂Ω2\Γ2

}
,
(135)

The following result is stated in [GLQ01].

52



Ω1

Ω1

Ω2

Ω2

Γin
1

Γ1 Γ2

Γ2 λ1

λ2

Figure 15: Virtual control with overlap

Proposition 3.1 If the cost functional Ĵ can be written as the sum of a quadratic
functional Ĵ0(λ1, λ2) and an affine functional Â(λ1, λ2) (as done in Sect. 3.1),
and if the seminorm

‖(λ1, λ2)‖ =
(
Ĵ0(λ1, λ2)

)1/2
(136)

is indeed a norm, then problem (132) admits a unique solution in the space
obtained by completion of Λ1 × Λ2 with respect to the norm (136).

The property of (136) being a norm, depends on problem data, i.e. on the
convection field ~b and on the domain.
In [AGQ06], sufficient conditions which guarantee uniqueness of solution of the
minimization problem (132) are furnished.
For simplicity, let us consider the decomposition of Ω in two subdomains, as
described in (15) and we refer to [AGQ06] for more general situations where
either the overlapping set Ω12 = Ω1 ∩ Ω2 is not connected or ∂Ω12 ∩ ∂Ω = ∅.
We denote by ~n12 the outward unit normal to Ω12. The sufficient conditions
(alternative one to each other) which guarantee uniqueness of solution for (132)
are:

I. ~b · ~n12 6= 0 on ∂Ω12 ∩ ∂Ω,

II.





µ = b0 + div~b ≥ 0 on ∂Ω12, µ 6≡ 0 on ∂Ω12,

the direction ~b at any point of ∂Ω12 forms with the outward normal
to ∂Ω12 an acute angle,

III.





~b · ~n12 6= 0 on ∂Ω12,
µ

bn
− 1

2

∂

∂τ

(
bτ
bn

)
> 0 on ∂Ω12,

where
∂

∂τ
is the derivative along ∂Ω12, while bn and bτ are the normal

and tangential components, respectively, of ~b on ∂Ω12.

The previous proposition guarantees, under suitable assumptions, the uniqueness
of the virtual controls and then that of the solution u1 in Ω1 and u2 in Ω2.
However in general, u1 6= u2 on the overlap Ω12. A natural question is: how do
we recover in Ω12 a solution of the heterogeneous problem.
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The following result ensures that the difference between u1 and u2 in the L2(Ω12)
norm annihilates when the viscosity vanishes (see [GLQ01]).

Theorem 3.3 If we set

φ(ν) = inf
λ1,λ2

Ĵ(λ1, λ2) (137)

and if we let ν → 0, all other data being fixed, then

φ(ν) → 0 as ν → 0. (138)

The optimality system associated to the minimization problem (132) can be
derived by proceeding as in Sect. 3.1.
For any µ1 ∈ Λ1, µ2 ∈ Λ2, we introduce the auxiliary problems as follows





A1u
µ1

1 = 0 in Ω1

uµ1

1 = 0 on (∂Ω1 \ Γ1)
in

uµ1

1 = µ1 on Γin
1 ,





A2u
µ2

2 = 0 in Ω2

uµ2

2 = 0 on ∂Ω2 \ Γ2

uµ2

2 = µ2 on Γ2,
(139)

and we differentiate the functional Ĵ :

〈 ∂Ĵ
∂λ1

, µ1〉 = (u1(λ1) − u2(λ2), u
µ1

1 )L2(Ω12) ∀µ1 ∈ Λ1,

〈 ∂Ĵ
∂λ2

, µ2〉 = − (u1(λ1) − u2(λ2), u
µ2

2 )L2(Ω12) ∀µ2 ∈ Λ2.

(140)

We define the adjoint problems:
{
A∗

1p1 = χ12(u1(λ1) − u2(λ2)) in Ω1

p1 = 0 on ∂Ωout
1

(141)

and {
A∗

2p2 = −χ12(u1(λ1) − u2(λ2)) in Ω2

p2 = 0 on ∂Ω2,
(142)

(where χ12 denotes the characteristic function of the overlapping set Ω12) and,
by Green’s formulas and the boundary conditions set in (139), (141) and (142),
the optimality system associated to the minimization problem (132) reads (in
distributional sense):

(OS2)





- state equations (134);

- adjoint equations (141) and (142);

- Euler equations:

(−~b · ~nΓ1
)p1 = 0 on Γin

1

ν
∂p2

∂~nΓ2

= 0 on Γ2

The optimality system (OS2) can be solved as described in Sect. 3.1.4 by a
Bi-CGStab method.
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3.3.1 Using three virtual controls

In order to force the solutions u1 and u2 to coincide in Ω12, a virtual control prob-
lem with three controls has been proposed and studied in [AGQ06]. Precisely, in
addition to the Dirichlet controls λ1 and λ2, a distributed control λ3 ∈ L2(Ω12)
is used as forcing term in the hyperbolic equation in Ω1.
Let Λ1 and Λ2 the spaces defined in (135), then we set

Λ3 = L2(Ω12). (143)

The three virtual controls problem is defined as follows. We seek λ = (λ1, λ2, λ3) ∈
Λ1 × Λ2 × Λ3 solution of the regularized minimization problem

inf
λ1,λ2,λ3

ˆ̂
Jα(λ1, λ2, λ3), (144)

where:

ˆ̂
Jα(λ1, λ2, λ3) =

1

2

∫

Ω12

(u1(λ1, λ3) − u2(λ2))
2dΩ

+
α

2

(
‖λ1‖2

Λ1
+ ‖λ2‖2

Λ2
+ ‖ωλ3‖2

Λ3

)
,

(145)

u1 = u1(λ1, λ3) and u2 = u2(λ2) are the solutions of the state equations




A1u1 = f + ωλ3 in Ω1

u1 = g on (∂Ω1 \ Γ1)
in

u1 = λ1 on Γin
1





A2u2 = f in Ω2

u2 = g on ∂Ω2 \ Γ2

u2 = λ2 on Γ2,
(146)

α ≥ 0 is a penalization coefficient and, finally, ω is a smooth function in Ω such
that

0 ≤ ω(~x) ≤ 1 in Ω, ω = 0 in Ω\Ω12, ω > 0 in Ω12.

The optimality system associated to (145) reads (in variational form):

(OS3)





- state equations (146);

- adjoint equations (141) and (142);

- Euler-Lagrange equations:

(−~b · ~nΓ1
)(p1 + αλ1) = 0 on Γin

1

ν
∂p2

∂~nΓ2

+ αλ2 = 0 on Γ2

αωλ3 + ωp1 = 0 in Ω12.

The following Theorem is proved in [AGQ06]:

Theorem 3.4 For any α > 0, the minimization problem (144) has a unique
solution depending on α, say (λ1, λ2, λ3) = (λ1(α), λ2(α), λ3(α)), such that

‖u1(λ1(α), λ3(α)) − u2(λ2(α))‖L2(Ω12) → 0 as α→ 0. (147)
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Moreover, if there exists a solution (λ0
1, λ

0
2, λ

0
3) of the problem (146) such that the

corresponding state functions coincide in Ω12, i.e. u0
1(λ

0
1, λ

0
3) = u0

2(λ
0
2) in Ω12,

then the solution (λ0
1, λ

0
2, λ

0
3) is unique and λk(α) → λ0

k as α→ 0, for k = 1, 2, 3.

Remark 3.3 The third control has been introduced to dump the difference
between the hyperbolic and elliptic solutions on the overlap. It is important to
highlight that it is added to the right hand side of the hyperbolic equation and
not to the right hand side of the elliptic problem. This choice guarantees the
uniqueness of solution of the minimization problem (144) when α = 0, through
the application of the uniqueness continuation theorem.

3.3.2 Numerical results on virtual control approaches

In this Section we present some numerical results obtained by solving the cou-
pled advection/advection-diffusion problem by two- and three- virtual controls
approaches. First of all, we consider the one-dimensional problem

{
−νu′′(x) + u′(x) = 1 0 < x < 1
u(0) = u(1) = 0,

(148)

and we set Ω1 = (0, 0.6), Ω2 = (0.3, 1). In Figure 16 we show the numerical
solution obtained with both 2-controls (dashed line) and 3-controls (solid line),

for ν = 1, at left and ν = 10−2 at right. The regularization parameter in
ˆ̂
Jα is

α = 0. The discretization is performed by spectral elements, precisely, we have
decomposed both Ω1 and Ω2 in two spectral elements and the common element
discretizes the overlap Ω12. The polynomial degree used is N = 16 in each
element of both Ω1 and Ω2 when ν = 1, while it is N = 16 in each element of
Ω1 and N = 24 in Ω2 \Ω12 when ν = 10−2. As we can see the solution obtained
with 3-controls matches on the overlap Ω12 also with large viscosity ν = 1.
Note that the interface Γ1 is an outflow boundary for the hyperbolic problem,
so that the control λ1 is not needed. The number of degrees of freedom (i.e.
the dimension of the system solved by Bi-CGStab) is one for the two controls
approach, while it is of the same order of the number of discretization nodes on
the overlap (about N) for the three controls approach.

Let us consider now the 2D problem described in the Test case # 1 and let
ˆ̂
J0

denotes the cost functional
ˆ̂
Jα with α = 0 (i.e. without regularization). In the

following table the infimum reached by both the cost functionals Ĵ and
ˆ̂
J0 is

shown for different values of the viscosity ν. It is evident that the minimiza-
tion of the cost functional with three controls provides a better solution with
respect to the two virtual controls approach. Nevertheless, the cost of the three
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Figure 16: Numerical solutions of (148) obtained with 2 controls (dashed line)
and 3 controls (solid line) for ν = 1 at left and for ν = 10−2 at right. Ω1 =
(0, 0.6), Ω2 = (0.3, 1).

2-controls 3-controls

ν #it inf Ĵ(λ1, λ2) #it inf
ˆ̂
J0(λ1, λ2, λ3)

0.1 18 8.71 · 10−4 319 2.83 · 10−11

0.01 15 5.85 · 10−5 276 1.97 · 10−11

0.001 18 4.92 · 10−7 220 5.81 · 10−11

0.0001 18 9.79 · 10−9 190 2.45 · 10−11

Table 10: Test case #1. The number of Bi-CGStab iterations to solve the
optimality systems (OS2) and (OS3) and the infimum of the cost functionals Ĵ

and
ˆ̂
J0 versus the viscosity ν

virtual controls approach (in terms of BiCG-Stab iterations needed to solve the
optimality system) is very large, as shown in Table 10.
The stopping test for Bi-CGStab iterations is performed on the norm of the rela-
tive residual with tolerance ε = 10−6. We observe that the number of iterations
is small and is independent of the viscosity in the case of two virtual controls,
while it is very large for the three virtual controls approach, even if it decreases
when ν → 0.
In Figure 17 we can appreciate the difference between the hyperbolic solution
u1 and the elliptic one u2 inside the overlapping region Ω12 for the two-virtual
controls approach (left), and the goodness of the solution of the three virtual
controls approach (right) when the viscosity is ν = 0.01.

Remark 3.4 We conclude this Section by highlighting some features of the
virtual control approach with overlap.
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Figure 17: Test case #1. ν = 0.01. Left: the solution obtained by minimizing

Ĵ(λ1, λ2). Right: the solution obtained by minimizing
ˆ̂
Jα(λ1, λ2, λ3) with α = 0

The analysis carried out on the virtual control approach with overlap represents a
formal mathematical justification to engineering practice, that is to the Schwarz
method applied to heterogeneous problems.
The virtual control approach with overlap is more “indifferent” with respect to
interface conditions (no a-priori information are required, contrary to the virtual
control approach without overlap (see Remark 3.2).)
However, some open questions remain about the setting of the cost functional.
In particular it is interesting to know if a “best” functional exists, if it is problem
dependent or, again, if it depends on the characteristic parameters of the problem
itself.

3.4 Virtual control with overlap for the Stokes-Darcy coupling

In this section we apply the virtual control approach with overlap introduced
in Sect. 3.3 to the coupled Stokes-Darcy problem that we have considered in
Sect. 2.6.
Figure 18 shows our computational domain. In the subdomain Ω1 we consider
the following Stokes problem: find (~u, p) ∈ [H1(Ω1)]

2 × L2(Ω1) such that





−ν∆~u+ ∇p = ~f in Ω1

div ~u = 0 in Ω1

ν∇~u · ~n1 − p~n1 = ~g on Γt1
~u = ~u∗ on Γw1
~u = λ1 on Γ1,

(149)

where ~f , ~g and ~u∗ are suitably chosen enough regular data.
On the other hand, in the subdomain Ω2, we consider the Darcy problem: find
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Figure 18: Schematic representation of the computational domain.

the piezometric head ϕ ∈ H1(Ω2) such that





−div (K∇ϕ) = 0 in Ω2

K∇ϕ · ~n2 = ψN on Γw2
ϕ = ψD on Γb2
ϕ = λ2 on Γ2,

(150)

where ψN and ψD are suitable boundary data.
We refer to Fig. 18 for the notation of the boundaries.

λ1 and λ2 are the controls variables which have to be seeked in the following
spaces, respectively:

Λ1 =
{
µ ∈ [H1/2(Γ1)]

2 : ∃~v ∈ [H1(Ω1)]
2, ~v = µ on Γ1, ~v = ~0 on Γw1

}
, (151)

Λ2 =
{
µ ∈ H1/2(Γ2) : ∃ψ ∈ H1(Ω2), ψ = µ on Γ2, ∇ϕ · ~n2 = 0 on Γw2 ,

ψ = 0 on Γb2

}
. (152)

λ1 and λ2 are the solutions of the following minimization problem:

inf
λ1,λ2

J(λ1, λ2) with J(λ1, λ2) =
1

2

∫

Ω12

(~u+K∇ϕ)2 . (153)

Remark 3.5 Other functionals may be considered for the minimization problem
(153) instead of J . For example, we may minimize the jump of pressures in the
overlapping region, thus considering:

inf
λ1,λ2

J(λ1, λ2) with J(λ1, λ2) =
1

2

∫

Ω12

(p − gϕ)2 . (154)
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Moreover, we could take into account some continuity condition (i.e., the con-
tinuity of the normal velocities) on the physical interface Γ ⊂ Ω12 between the
fluid and the porous-media regions. In this case we consider the functional

J̃(λ1, λ2) =
1

2

∫

Γ
(~u · ~n+K∇ϕ · ~n)2 +

1

2

∫

Ω12

(p− gϕ)2 , (155)

where ~n is the normal unit vector on Γ directed outwards of the fluid domain.

We introduce now the following auxiliary problems:

find (~uf , pf ) ∈ [H1(Ω1)]
2 × L2(Ω1) such that





−ν∆~uf + ∇pf = ~f in Ω1

div ~uf = 0 in Ω1

ν∇~uf · ~n1 − pf~n1 = ~g on Γt1
~uf = ~u∗ on Γw1
~uf = ~0 on Γ1,

(156)

and find ϕ∗ ∈ H1(Ω2) such that





−div (K∇ϕ∗) = 0 in Ω2

K∇ϕ∗ · ~n2 = ψN on Γw2
ϕ∗ = ψD on Γb2
ϕ∗ = 0 on Γ2.

(157)

Moreover, we consider the following problems depending only on the control
variables:

find (~uλ1 , pλ1) ∈ [H1(Ω1)]
2 × L2(Ω1) such that





−ν∆~uλ1 + ∇pλ1 = ~0 in Ω1

div ~uλ1 = 0 in Ω1

ν∇~uλ1 · ~n1 − pλ1~n1 = ~0 on Γt1
~uλ1 = ~0 on Γw1
~uλ1 = λ1 on Γ1,

(158)

and find ϕλ2 ∈ H1(Ω2) such that





−div (K∇ϕλ2) = 0 in Ω2

K∇ϕλ2 · ~n2 = ~0 on Γw2
ϕλ2 = 0 on Γb2
ϕλ2 = λ2 on Γ2.

(159)

Then, we can split

~u = ~uf + ~uλ1 , p = pf + pλ1 , ϕ = ϕ∗ + ϕλ2 . (160)
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In this way we can rewrite the functional J(λ1, λ2) in (153) as

J(λ1, λ2) = J0(λ1, λ2) + A(λ1, λ2), (161)

where J0(λ1, λ2) is the quadratic functional

J0(λ1, λ2) =
1

2

∫

Ω12

(~uλ1 +K∇ϕλ2)2 (162)

while A(λ1, λ2) is the affine functional

A(λ1, λ2) =
1

2

∫

Ω12

(~uf +K∇ϕ∗)2 +

∫

Ω12

(~uλ1 +K∇ϕλ2) · (~uf +K∇ϕ∗). (163)

We compute now ∇J = ∇J0 + ∇A.
We have:

〈∂J
0

∂λ1
,µ1〉 =

∫

Ω12

~uµ1 · (~uλ1 +K∇ϕλ2) (164)

Considering the dual problem:





−ν∆~v + ∇q = (~uλ1 +K∇ϕλ2)χΩ12
in Ω1

div ~v = 0 in Ω1

ν∇~v · ~n1 − q~n1 = ~0 on Γt1
~v = ~0 on Γw1
~v = ~0 on Γ1,

(165)

we can characterize the operator (164) as

〈∂J
0

∂λ1
,µ1〉 = −

∫

Γ1

(ν∇~v · ~n1 − q~n1) · µ ∀µ ∈ Λ1. (166)

On the other hand, we have:

〈∂J
0

∂λ2
, µ2〉 =

∫

Ω12

−div(K(~uλ1 +K∇ϕλ2)χΩ12
)ϕµ2 , (167)

and, using the dual problem:





−div (K∇ψ) = −div(K(~uλ1 + ∇ϕλ2)χΩ12
) in Ω2

K∇ψ · ~n2 = ~0 on Γw2
ψ = 0 on Γb2
ψ = 0 on Γ2,

(168)

we obtain

〈∂J
0

∂λ2
, µ2〉 = −

∫

Γ2

K∇ψ · ~n2 µ2 ∀µ2 ∈ Λ2. (169)
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We proceed in a similar way to characterize the affine functional A. In this case,
we have

〈 ∂A
∂λ1

,µ1〉 = −
∫

Γ1

(
ν∇~̃v · ~n1 − q̃~n1

)
· µ ∀µ ∈ Λ1, (170)

〈 ∂A
∂λ2

, µ2〉 = −
∫

Γ2

K∇ψ̃ · ~n2 µ2 ∀µ2 ∈ Λ2. (171)

(~̃v, q̃) ∈ [H1(Ω1)]
2×L2(Ω1) is the solution of the dual problem (165) with forcing

term (~uf +K∇ϕ∗)χΩ12
, while ψ̃ ∈ H1(Ω2) is the solution of the dual problem

(168) with forcing term −div(K(~uf +K∇ϕ∗)χΩ12
).

To solve the minimization problem (153) we use the following algorithm:

1. Solve (156) and (157) to get ~uf , pf and ϕ∗.

2. Compute ∇A:

• solve (165) with forcing term (~uf +K∇ϕ∗)χΩ12
and compute (170);

• solve (168) with forcing term −div(K(~uf +K∇ϕ∗)χΩ12
) and compute

(171).

3. Find (λ1, λ2) ∈ Λ1×Λ2 such that ∇J0 = −∇A. To this aim we use an iter-
ative method like Bi-CGStab. At each iteration, to compute ∇J0(λ1, λ2)
we do

• solve (158) and (159);

• compute ~uλ1 +K∇ϕλ2 in Ω12;

• solve (165) to get (166);

• solve (168) to get (169).

4. Finally, solve (158) and (159) using the functions λ1 and λ2 computed at
step 3 and use (160) to obtain the desired solutions.

3.4.1 Stokes / Darcy coupling with 3 virtual controls

A three virtual controls approach for the Stokes/Darcy coupling with overlap
can be formulated as follows:





α~u− ν∆~u+ (~u · ∇)~u+ ∇p = ~0 in Ω1

div~u = 0 in Ω1

ν∇~u · ~n1 − p~n1 = ~g on Γt1
~u = ~u∗ on Γw1
~u = λ1 on Γ1

−div(K∇ϕ) = χΩ12
λ3 in Ω2

K∇ϕ · ~n2 = ψN on Γw2
ϕ = ψD on Γb2
ϕ = λ2 on Γ2,
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where λ3 is the third control, while other notations are those introduced in
the previous section. It turns out that the virtual controls λ1, λ2, and λ3 are
solutions of the minimization problem

inf
λ1,λ2,λ3

J(λ1, λ2, λ3).

Several possible choices can be made for the cost functional J , e.g.,

J(λ1, λ2, λ3) =

∫

Ω12

(K∇ϕ+ ~u)2dΩ.

A discussion about this approach (and related ones) is given in [DGQ].

3.5 Coupling for incompressible flows

The Navier-Stokes/potential coupling introduced in Sect. 2.5 has been considered
by Glowinski et al. [DGPT88, DGP80] in the framework of virtual controls with
overlapping decomposition.
We denote by Ω1 the extended subdomains where we consider the potential
model, while let Ω2 be the extended subregion where we consider the full Navier-
Stokes equations. Finally, Ω12 = Ω1 ∩ Ω2 is the overlapping region, and Γi =
∂Ωi \ (∂Ωi ∩ ∂Ω), for i = 1, 2. See Fig. 19.

Ω1 Ω2

Γ1

Γ2

Γb

Γ∞

Figure 19: Splitting of the computational domain in two overlapping regions for
the Navier-Stokes/potential coupling

We consider two control variables λ1 and λ2 in the following spaces, respectively:

Λ1 =
{
µ ∈ H1/2(Γ1) : ∃ψ ∈ H1(Ω1), ψ = µ on Γ1,

∂ψ
∂~n∞

= 0 on Γ∞

}
,

Λ2 = {µ ∈ [H1/2(Γ2)]
d : ∃~v ∈ [H1(Ω2)]

d, ~v = µ on Γ2,

~v = ~0 on Γb ∪ (Γ∞ ∩ ∂Ω2), d = 2, 3}.
λ1 and λ2 represent Dirichlet interface conditions for the two subproblems. In-
deed, we consider:





∆ϕ = 0 in Ω1

∂ϕ

∂~n∞
= ~u∞ · ~n∞ on Γ∞ ∩ ∂Ω1

ϕ = λ1 on Γ1,

(172)
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and 



α~u− ν∆~u+ (~u · ∇)~u+ ∇p = ~f in Ω2

div ~u = 0 in Ω2

~u = ~0 on Γb ∪ (Γ∞ ∩ ∂Ω2)
u = λ2 on Γ2.

(173)

The unknown Dirichlet data λ1 and λ2 are the solutions of the minimization
problem:

inf
λ1,λ2

J(λ1,λ2) with J(λ1,λ2) =
1

2

∫

Ω12

(∇ϕ− u)2dΩ (174)

and satisfying the condition

∫

Γ2

λ2 · ~nΓ2
dΓ +

∫

Γ∞∩∂Ω2

~u∞ · ~n∞dΓ = 0.

We refer the interested reader to [DGPT88, DGP80]. A similar approach for the
case of compressible flows is presented in [GPT90].
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[Dub93] E. Dubach. Contribution à la résolution des equations fluides en
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